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A Generalized Tool for Accurate and Efficient Image
Registration of UAV Multi-lens Multispectral
Cameras by N-SURF Matching

Jyun-Ping Jhan

Abstract—The original multispectral (MS) images obtained from
multi-lens multispectral cameras (MSCs) have significant misregis-
tration errors, which require image registration for precise spectral
measurement. However, due to the nonlinearity intensity differ-
ences among MS images, performing image matching is difficult
to find sufficient correct matches (CMs) for image registration,
and results in a complex coarse-to-fine solution. Based on the
modification of speed-up robust feature (SURF), we proposed a
normalized SURF (N-SURF) that can significantly increase the
amount of CMs among different pairs of MS images and make
one-step image registration possible. In this study, we first intro-
duce N-SURF and adopt different MS datasets acquired from three
representative MSCs (MCA-12, Altum, and Sequoia) to evaluate
its matching ability. Meanwhile, we utilized three image trans-
formation models—affine transform (AT), projective transform
(PT), and an extended projective transform (EPT) to correct the
misregistration errors of MSCs and evaluate their co-registration
correctness. The results show that N-SURF can obtain 6-20 times
more CMs than SURF and can successfully match all pairs of
MS images, while SURF failed in the cases of significant spectral
differences. Moreover, visual comparison, accuracy assessment,
and residual analysis show that EPT can more accurately correct
the viewpoint and lens distortion differences of MSCs than AT and
PT, and it can obtain co-registration accuracy of 0.2-0.4 pixels.
Subsequently, using the successful N-SURF matching and EPT
model, we developed an automatic MS image registration tool that
is suitable for various multilens MSCs.

Index  Terms—Image matching, image registration,
multispectral camera (MSC), multispectral (MS) image.

1. INTRODUCTION

ULTISPECTRAL (MS) images can be acquired using
M a multilens multispectral camera (MSC) that records
visible [red (RED), green (GRE), and blue (BLU)] and invisible
[red edge (REG) and near-infrared (NIR)] spectral information.
The light weight and small size of MSCs make them suitable for
mounting on various unmanned aerial vehicle (UAV) platforms
to obtain high-spatial-resolution images, and the diversity of the
MS band combinations can derive various vegetation indexes [1]
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that can be widely applied in environment monitoring applica-
tions [2], [3]. However, since MSCs adopt a multi-lens structure
to record distinct spectral information, the viewpoint and lens
distortion differences among each lens lead to significant ghost
effects in original images. To recover one-sensor geometry for
precise spectral analysis, performing automatic MS image reg-
istration is an important task to reduce the band misregistration
errors of MSCs [4]-[6].

Image matching is a crucial step in image registration [7]; it
is used to find conjugate features between overlapped images
and then estimate the coefficients of a geometric transformation
model. Therefore, the geometric differences, such as scale,
rotation, and translation, between two images can be corrected
by a proper image transformation. Various image matching
methods have been developed in recent decades and these can be
generally classified into area-based and feature-based methods
[7]. Compared to area-based methods that compute the cost
function of pixel intensities in an image template, feature-based
methods extract specific features (i.e., points, corners, or lines)
that are better suited for real-time image registration purposes.
State-of-the-art feature-based image matching methods such as
scale-invariant feature transform (SIFT) [8] and speed-up robust
feature (SURF) [9] can extract scale- and rotation-invariant
features to match images with geometric distortions and have
been widely adopted in 3-D scene reconstruction [10], object
recognition [11], and image registration [7]. Feature-based im-
age matching methods generally contain three steps: feature
extraction, feature description, and feature matching. Feature
extraction extracts the local extremum from a multiscale image
space to acquire scale-invariant features, and a feature threshold
(FT) is utilized to determine whether it is a robust feature. Next,
the main direction is assigned by finding the maximum gradients
to achieve rotation invariance and a multi-dimension descriptor
is established on each feature by computing the gradient distri-
bution of neighborhood pixels. In the end, features are matched
if two points have the most similar invariant descriptors on
reference and target images.

To increase the image matching performance, recent im-
provements in SIFT descriptors, such as principal component
analysis-SIFT (PCA-SIFT) [12], colored SIFT (CSIFT) [13],
and gradient location-orientation histogram (GLOH) [14] make
them more effective and correct. Meanwhile, to increase the
number of matching points between viewpoint differences, ap-
plying geometric transformation matching, such as Affine-SIFT
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[15] and fully affine invariant SURF (FAIR-SURF) [16] can
overcome distortion among images. Although many improved
SIFT-like, SURF-like, and even deep learning-based methods
[17] have been proposed to increase the matching robustness
in common color images, successful image matching of the
non-linearity intensity differences of MS images remains chal-
lenging.

A. Related Works on MS Image Matching and Image
Registration

Due to it is difficult to find sufficient correct matches (CMs)
on MS images, related works on MS image registration have
generally adopted complicated coarse-to-fine image registration
procedures [4], [18]. Ye and Shan [18] adopted two-stage image
matching procedures for satellite MS image registration. They
first use scale restriction SIFT [19] to correct the significant
translation and rotation among images and then perform a
fine co-registration by another area-based matching. Similar
approaches of integrating both feature-based and area-based
matching for satellite MS image registration can be found in
[20] and [21]; however, these approaches are too complicated
and time-consuming for practical application when dealing with
large amounts of MS image registration. For MSCs, Jhan et al.
[4] proposed a robust and adaptive band-to-band image trans-
form method for correcting their misregistration errors. They
first conducted a camera system calibration to directly obtain
the coefficients of an image transformation model and then used
SURF matching to optimize the remaining systematic errors
caused by the calibration uncertainty. Though co-registration
accuracy better than 0.5 pixels were reported, it requires prior
knowledge and successful image matching to conduct sensor
calibration and errors optimization, respectively.

In order to conduct one-step image registration, three MS
image matching strategies can be considered to overcome the
nonlinearity intensity differences and to increase the number
of CMs. The first one is to construct an MS cube and match
neighbor images that have the most similar spectral information
[22]. However, this is only suitable for datasets that have various
bands of MS images. The second method is to enhance the image
contrast and brightness to increase the extracted features [23],
[24]. Since more features can be detected, the number of CMs
is increased, but this caused an extra image processing effort.
The final and most commonly adopted method is to modify the
feature descriptor to increase the robustness to intensity change.
Researchers have studied the performance of various feature-
based matching methods on MS images and proposed their
improved feature descriptors [25]-[28]. However, since there
was no further improvement in feature extraction, incrementing
of CMs is still limited.

B. Motivation and Objective

Although related studies have focused on methods to increase
the feature descriptor robustness, increase the candidate features
can significantly increase the number of CMs for accurate im-
age registration. However, the intensity differences among MS
images afford an inconsistent amount of features and a potential
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TABLE I
MS DATASETS
MSC MCA-12' Altum? Sequoia’®
Manufacture Tetracam Micasense Parrot
Bands 12 SMS+1TIR | 4MS+1RGB
Wavelength (nm) 450-950 475-840 530-810
Bandwidth (nm) 10 ~20 10 ~40 10 ~40
MS Image Resolution | 1280 x 1024 | 2064 x 1544 1280 % 960
Groups of Images 100 x 12 100 x 5 100 x 4
Thitp://www.tetracam.com/
*https://www.micasense.com/altum
*https://www.parrot.com/us

"http://www.tetracam.com/
Zhttps://www.micasense.com/altum
3https://www.parrot.com/us

Fig. 1. MSCs, sample MS images, and misregistration errors of sample MS
images. (a)—(c) MCA-12, Altum, and Sequoia, respectively. (d)—(f) Sample MS
images of (a)—(c) showing BLU, GRE, RED, REG, and NIR images from left to
right. Please note that only five images of MCA-12 are demonstrated here and
Sequoia has no BLU image. (g)—(i) The significant band misregistration errors
of (d)—(e) with false color combinations of REG, GRE, and RED images.

number of CMs are lost when same FT value is adopted. There-
fore, to conduct MS image registration of MSCs, we modified
the feature extraction and FT criteria of SURF and proposed
normalized SURF (N-SURF) [29]. N-SURF can extract more
features than SURF to achieve successful MS image matching.

In this article, we evaluated the N-SURF matching ability
on different pairs of MS images that were obtained from three
representative MSCs. Additionally, we adopted three different
image transformation models to correct the misregistration er-
rors and compared their co-registration correctness. Moreover,
to automatically co-register a large amount of UAV MS images,
we developed an automatic MS image registration tool that is
suitable for the accurate and rapid image registration applica-
tions of various MSCs.

II. MS DATASETS

As given in Table I and shown in Fig. 1, three representative
MS datasets acquired from MCA-12, Altum, and Sequoia MSCs
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Fig. 2.
MSCs.

MS image matching analysis of N-SURF and image registration of

are used to conduct image matching and image registration
analysis. MCA-12 has 12 separate lenses that can record 12
distinct 1.3-megapixel narrowband MS images. Altum and Se-
quoia are hybrid MSCs, where Altum records five 3.2-megapixel
MS images and one very-low-resolution (0.02-megapixel) ther-
mal infrared (TIR) image, while Sequoia only captures four
1.2-megapixel MS images and another high-resolution (16-
megapixel) color (RGB) image. Although the numbers of MS
bands are unequal, they can be generally classified into five MS
categories, BLU, GRE, RED, REG, and NIR; note that Sequoia
has no BLU image.

Each camera comprises 100 groups of MS images, where
each group of MS images contains all bands of images that were
simultaneously captured by the camera. The Sequoia dataset was
downloaded from the Pix4D sample dataset [30] and the other
two were acquired by a UAV company in Taiwan. Fig. 1 demon-
strates one group of sample MS images for each MSC, which
shows that the nonlinearity intensity change across different MS
bands is significant. For example, the vegetation area is lighter
on an NIR image and darker on a RED image. Furthermore,
since MCA-12 adopts narrower bandwidth filters, its original
BLU image has very low contrast and low illumination to the
point that the image contents are barely visible; thus, requir-
ing atmospheric correction to obtain the true reflectance value
[31]. In addition, Fig. 1 illustrates that, due to the geometric
differences of viewpoint and lens distortion among lenses, the
original images are not aligned, which leads to significant mis-
registration errors. Since the textures, intensity, and illumination
differ among MS bands and scenes, performing successful MS
image matching is quite challenging. Meanwhile, correcting
the geometric differences among the lenses of MSC requires
understanding how to choose a proper image transformation
model.

III. METHODOLOGY

Fig. 2 depicts the MS image matching evaluation of N-SURF
and image registration analysis of MSCs. The sample MS images
in Fig. 1 are used for N-SURF matching, wherein we analyzed all
MS image matching pairs (ex: 5 bands have C5 = 10 different
pairs) and evaluated the N-SURF matching performance using
three indexes: matching rate (MR); number of CMs; and correct
rate (CR). Meanwhile, in order to correct the misregistration
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Scale

Fig. 3.
N-SURFE.

Differences in local extremum detection structure between SURF and

errors of MSCs, we adopted affine transform (AT), projective
transform (PT), and extended projective transform (EPT) for
image registration and analyzed their correctness by visual
comparison, accuracy assessment, and residual analysis.

A. Normalized Speed-Up Robust Feature

In contrast to the original SURF that extracts features on a
multi-image scale, we adopted single-image scale to increase
the candidate features and compute the cumulative distribu-
tion function (CDF) of FT to obtain the required number of
features. The modified SURF is named N-SURF since equal
amounts of features can be obtained across different scenes
and different bands of MS images. N-SURF is a modified
form of the open-source code OpenSURF [32], which is almost
identical to the original SURF but affords slightly better perfor-
mance [33]. Details of N-SURF are introduced in the following
sections.

1) Feature Extraction: To extract scale-invariant features,
SUREF constructs a multiscale image space that contains different
sizes of fast Hessian (FH) box filter to detect blob-like features.
It consists of numbers of octaves, where each octave contains
four layers of FH and each one refers to a specific image scale.
According to Bay et al. [9], the first octave has filter sizes
of FH-9, FH-15, FH-21, and FH-27, while the second octave
has larger sizes of FH that contain FH-15, FH-27, FH-39, and
FH-51. As depicted in Fig. 3, the feature extraction in first
octave searches the local extremum (i.e., red cross) within 3
x 3 neighborhood pixels and three connected image scales
of 9-15-21 and 15-21-27. Therefore, if the FH’s determinant
of the local extremum (3 x 3 x 3) is larger than a FT, it is
treated as a candidate feature. In contrast to SURF, N-SURF
(see the right part in Fig. 3) only searches the local extremum
(3 x 3) in each single image scale to increase the candidate
features.

Fig. 4 summarizes the maximum number of extracted features
(i.e., where FT = 0) of sample MS images in each individual
scale of N-SURF and the first octave of SURF; obviously, a
small size for FH can extract more features than a larger one and
each scale has significantly more than SURF. Please note that
N-SUREF is also scale-invariant as the scale factor is interpolated
in single scale space and applied to construct feature descriptors.
Regarding the scale factor and the descriptor construction, refer
to Bay et al. [9].
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MCA-12, Altum, and Sequoia, respectively.

2) Feature Threshold: The FH determinant is sensitive to
image contrast and texture such that a fixed value of FT yields
different number of features depending on the MS images and
scenes. To obtain required amount of features, we adopt CDF
to adaptively select the proper FT. Fig. 5 presents the FT’s CDF
of sample MS images on FH-9, which clearly shows that how
the intensity differences of MS images affect the curve of CDF.
Taking MCA-12 as an example, if FT is equal to 2000, then 0 k,
10k, 11k, 13k, and 13 k features will be afforded on BLU, GRE,
RED, REG, and NIR images, respectively. Since no features are
detected on BLU images, image matching and image registration
cannot be performed. Conversely, by querying CDF to obtain
20k features on BLU, GRE, RED, REG, and NIR images, FT
is automatically determined as 100, 500, 500, 500, and 500,
respectively.

3) Matching and Evaluation Indexes: N-SURF is same as
SUREF that can construct 64- or 128-dimension descriptors and
then match features by comparing the Euclidean distance ratio
of the first- and second-closest descriptors on a target image.
Even though the higher-dimension descriptor is more robust to
find unique features, it causes greater memory usage and higher
computation cost. On the other hand, a higher distance ratio can
offer more matches but also lead to more errors. To reduce the
computation cost and complexity, SURF and N-SURF utilize 64-
dimension descriptors for matching features that have a distance
ratio < = 0.8, and perform matching on all possible MS pairs,
for example: NIR versus (REG, RED, GRE, and BLU), REG vs.
(RED, GRE, and BLU), RED versus (GRE and BLU), and GRE
versus BLU. Meanwhile, as shown in (1)—(2), we introduce two
evaluation indexes and use the number of CMs to evaluate the
matching performance.

MR (%) = 2 Matches/Total DetectedFeatures (1)
CR (%) = CMs/Matches. 2)
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a) Matching Rate: The MR represents the ability to
find conjugate matches between images, which is calculated
by two times the number of matches over the summation of
extracted features on the reference and target images. Since
matched features exist in both the reference and target images,
it is multiplied by two. Therefore, a higher value of MR can
be expected between two MS images that have fewer spectral
differences.

b) Correct Matches and Correct Rate: The number of
CMs is the most important consideration for accurately esti-
mate the coefficients of image transformation model. First, the
blunders in initial matches are filtered by random sample con-
sensus (RANSAC), and then a recursive error removal scheme is
applied to eliminate false matches and preserve the CMs while
estimating the coefficients. Hence, the CR is represented by CMs
over total matches; for details about the recursive computation
and error removal, refer to “coefficients computation and accu-
racy assessment” section below.

B. Image Registration

With successful image matching, we can select an appropriate
image transformation model to estimate the coefficients, correct
the misregistration errors, and evaluate the correctness of co-
registration results through visual inspection and quantitative
accuracy assessment.

1) Image Transformation Model: From the geometric accu-
racy perspective of MS image registration, finding a proper
image transformation model is key for accurately correcting the
systematic misregistration errors of viewpoint and lens distor-
tion differences of MSCs. For MSCs, we utilized the AT, PT,
and EPT models to conduct MS image registration.

a) Affine Transform: As shown in (3) and (4), AT has six
parameters (A—F), in which (x, y) and (u, y) are the image co-
ordinates of the target and reference images, respectively. It has
been widely used on most image registration applications for two
parallel scenes that have translation, rotation, and anisotropic
linear distortions

Axx+Bxy+C 3)
Dxx+ Exy-+F. (@Y)

b) Projective Transform: Unlike AT, PT as shown in (5)
and (6) is suitable for two non-parallel images that describes
the map projection of a quadrangle and a square using eight
parameters (A, — As, B; — Bs,and C; — (C5). Due to the slight
rotation differences among each lens of the MSC results in an
incompletely parallel images, it is expected that PT would have
better co-registration results than AT

. A1 ><£C+A2 ><y+A3
o Cy xax+Cy xy+1
B1 X.’E+BQ Xy-l—Bg
v = .
Cy xx+Cy x y+1
¢) Extended Projective Transform: Although PT is suit-
able to correct the non-parallel images of MSCs, there are still
lens distortion differences among each lens. As depicted in

Fig. 6, the radial lens distortion curve of each lens of MCA-12,
Altum, and Sequoia that were calibrated using an indoor camera

u =

vV =

®)

(6)
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Fig. 6. Radial lens distortion curve of MSCs. (a)-(c) Results of MCA-12,
Altum, and Sequoia, respectively.

calibration field [34], the radial lens distortion curves of different
lenses in each MSC are very similar, and only slightly different
(only 5-10 pixels) at the image borders. Therefore, without
considering the lens distortion differences, it is expected that
misregistration errors remain at the borders of images after PT.
To correct both the geometrical differences of viewpoint and
lens distortion, EPT is formed by adding the additional lens
distortion parameters [35] of (7) and (8) to the original PT
model. (K7 — K3) and (P; — P») are coefficients of the radial
and decentering lens distortion coefficients, respectively, and r
represents the distance to the image perspective center

AwZJ?X(K1XT2+K2XT4+K3XT6)+P1

x (r® +22%) 4+ 2Py (7)
Ay:yx (K1 XT‘2+K2 XT‘4+K3 XT6)+P2
x (r? 4+ 2y%) + 2Py ay. (8)

2) Coefficients Computation and Accuracy Assessment: The
coefficients of each image transformation model are estimated
using the least-square adjustment of matches, and the co-
registration accuracy is represented by the root-mean-square
errors (RMSEs) of the residuals of matches. However, since
matches still comprise errors after RANSAC, the folds of RM-
SEs are used as the threshold, and matches that have residuals
larger than the threshold are removed. To accurately estimate
the coefficients, we adopt a recursive error removal scheme
that conducts least-square adjustment and estimates RMSEs for
removing errors; then, the procedure is repeated until no matches
are removed. According to our experiences, 2.5 times the RMSE
is an optimal value that can obtain reasonable accuracy and CMs.

3) Analysis of Co-Registration Results: To evaluate the cor-
rectness of the co-registration results among different image
transformation models, visual comparison can provide direct ev-
idence of the correctness, while RMSEs can provide numerical
accuracy assessment. Moreover, by inspecting the distribution
of CMs residuals, we can select the best image transformation
model with the smallest systematic errors suitable for MSC
image co-registration.

IV. RESULTS AND ANALYSIS

This section evaluates the matching performance of SURF
and N-SUREF, compares the different image registration results,

6357

TABLE II
SAMPLE OF MATCHING EVALUATION TABLE
Matching Method Features of Reference Image
’ MR (%) CR (%)
Features of Target Image CM (Pts) RMSE (Pixcls)
SURF-10 | GRE(1,370) | RED(1,772) | REG(2,006) | NIR(2,152)
(1 7) * * * * * * * *
GRE # 36 74 10 52 * *
(1,370) 362 | 031 68 0.29 * *
RED 4 10 54 * *
(1,772) 79 0.26 * *
REG 4 21 71
(2,006) 239 | 0.30
TABLE III

PARAMETER SETTINGS FOR MATCHING EVALUATION

Method | SURF-MAX N-SURF-2% | N-SURF-MAX
Scale First octave FH-9

2 % of the image resolution.

Features | Max. features | MCA-12 | Altum | Sequoia | Max. features
26000 64000 | 24000

Matching parameters
Descriptor dimensions 64
Matching threshold 0.8
Image transformation model EPT
Error removal threshold 2.5 times RMSEs

and introduces the generalized tool for MS image co-registration
of MSCs.

A. Matching Performance Evaluation

Table II gives the matching evaluation table of MCA-12
that utilizes SURF-10 (i.e., FT = 10) and EPT for the image
registration of all MS image matching pairs, which summarizes
the utilized matching method, the extracted number of features,
evaluation indexes, and RMSEs of image registration. In the
table, the symbols “+” and “#” denote that the image matching
or image registration has failed and that the matching pair
already exists, respectively. Therefore, the differences between
different pairs can be clearly observed. For example, it shows
that SURF-10 leads to different amounts of features on different
MS images, in which only a few features are detected on the
BLU image and is not possible to conduct image registration.
On the other hand, since the spectral response between NIR
versus RED and NIR versus GRE are significantly different, the
SURF-10 image registration failed.

To reduce the complexity of matching analysis in this article,
only SURF-MAX, N-SURF-2% (feature amounts are equal to
2% of the image resolution), and N-SURF-MAX are used for
comparison; Table III gives the adopted matching parameters.
Image resolution of 2% is an empirical threshold for ensuring
that sufficient features are obtained between different scenes
and image sizes. Note that if the threshold is greater than the
number of extracted features, N-SURF-2% will be equal to N-
SURF-MAX (i.e., FT = 0).

1) Overview: Three major findings can be observed from the
highlighted areas of matching evaluation tables (Tables I-III in
the appendixes). First, N-SURF-MAX can clearly obtain more
CMs (indicated in bold numbers) than SURF-MAX. Second,
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Fig.7. Summary of the matching performance evaluation of robust MS image
matching pairs. From left to right are MR, CR, and CMs; from top to bottom are
the results of MCA-12, Altum, and Sequoia. Labels (1)—(4) represent REG versus
NIR, REG versus GRE, GRE versus. RED, and GRE versus BLU, respectively.

N-SURF-2% and -MAX are perform significantly better than
SURF-MAX; they successfully match all pairs, while SURF-
MAX fails (shown as %) in some cases. All cases show that MS
image matching pairs (highlighted as gray shading) with smaller
spectral difference can obtain higher MR and better RMSE:s,
where the top four matching pairs (i.e., REG versus NIR, REG
versus GRE, GRE versus RED, and GRE versus BLU) can
construct robust MS matching pairs to connect each image.
Therefore, we can chose REG as a master image to perform
matching and registering on NIR and GRE images and then use
a corrected GRE image to connect with RED and BLU images.
Further detailed analysis is based on these four MS matching
pairs.

2) Analysis of Robust MS Image Matching Pairs: Fig. 7
shows the MR, CR, and CMs of the robust MS image matching
pairs for each camera. Compared to SURF-MAX, N-SURF-(2%
and MAX) have higher values of MR and CR. There are no
significant differences in CR between N-SURF-(2% and MAX),
but since N-SURF-2% extracts a consistent amount of features
between images, it has a better MR. On the other hand, it is
obvious that the total number of CMs for N-SURF-(2% and
MAX) are respectively increased by 4—13 and 6-20 times com-
pared to SURF-MAX. As for the image registration accuracy
(indicated in italic numbers and green color), we can also observe
that the RMSEs of N-SURF-2% is smaller than SURF-MAX;
since N-SURF-MAX extracts the maximum number of features,
its accuracy is slightly poorer than N-SURF-2%. In summary,
N-SURF is more efficient and accurate than SURF and can ob-
tain more CMs for MS image matching and registration, where
N-SURF-2% can achieve balanced CMs and co-registration
accuracy.
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Fig. 8. Comparison of CM distributions. From left to right are SURF, N-
SURF-FH-9, N-SURF-FH-15, and N-SURF-FH-9-15; from top to bottom are
results of MCA-12, Altum, and Sequoia. The green and red points represent
correct and false matches, respectively.

TABLE IV
CMSs AND IMAGE REGISTRATION ACCURACY OF SURF AND THREE DIFFERENT
SCALES OF N-SURF

SURF-MAX N-SURF-MAX
REG vs. RED First Octave | FH-9 | FH-15 | FH-9-15
RMSE (Pixels) 0.47 045 | 0.58 0.49
MCA-12 CMs (Pts) 311 2891 | 2170 4911
Altum | RMSE (Pixels) 0.49 034 | 058 0.42
CMs (Pts) 282 3241 | 2712 5736
Sequoia | _RMSE (Pixels) 0.31 0.27 | 035 0.30
q CMs (Pts) 694 5044 | 3455 8325
TABLE V

PROCESSING EFFICIENCY OF INDEPENDENT AND BATCH MODE UNDER
MULTITHREAD AND GPU ACCELERATING

Camera MCA-12 Altum Sequoia
Independent’ (min.) 65 62 17
Independent” (min.) 13 14 3

Batch' (min.) 2 2 2
Batch’ (min.) 2 2 2
'CPU: Intel(R) Core(TM) i7-8700 3.2 GHz
2GPU: NVIDIA GeForce GTX TITAN X

!CPU: Intel(R) Core(TM) i7-8700 3.2 GHz.
2GPU: NVIDIA GeForce GTX TITAN X.

3) Different Scales of N-SURF: To better understand the
differences between SURF and N-SURF, Fig. 8 compares the
CMs’ distributions of SURF (first octave only) and three dif-
ferent scales of N-SURF (i.e., FH-9, FH-15, and FH-9-15),
while Table IV gives the number of CMs and image registration
accuracy. The matching pair utilized here is REG vs. RED that
has significant spectral differences and we used the maximum
number of features for matching analysis. Focusing on the
yellow circle in Fig. 8, SURF can only obtain a limited amount
of CMs, while N-SURF in different scales can all obtain a denser
and better distribution of CMs. Meanwhile, different scales of
N-SURF in Table IV shows that FH-9 has the best accuracys;
the larger filter size of FH-15 slightly reduces the accuracy
and amount of CMs, and multiscale FH-9-15 can nearly obtain
the total amount of CMs between two independent scales and
the image registration accuracies in between them. Therefore,
N-SURF both proves that it can acquire more CMs and has a
better distribution, which is crucial for accurately estimating the
coefficients of the image transformation model.
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TABLE Al
MATCHING EVALUATION TABLE OF MCA-12
Matching Method Features of Reference Image
0, 0,
Features of Target Image (1:\4MR ((Pfs)) RM(S:ER ((P/;)))(els)
SURF-MAX | GRE(11,522) | RED(10,608) | REG(10,775) | NIR(10,140)
BLU 11 52 11 56 * * * *
(10,053) 481 | 0.66 | 481 | 0.85 * * * *
GRE " 14 53 9 37 9 31
(11,522) 678 | 043 | 256 | 045 | 171 | 043
RED 4 9 42 * *
(10,608) 308 | 042 * *
REG " 13 51
(10,775) 555 | 0.46
N-SURF-2% | GRE(26,000) | RED(26,000) | REG(26,000) | NIR(26,000)
BLU 20 70 15 63 8 58 7 55
(26,000) 2,733 | 0.80 [ 1,945 0.80 | 848 | 0.89 | 641 | 0.90
GRE 4 40 67 21 63 17 61
(26,000) 5,722 | 0.42 | 2,710 0.42 | 1,952 0.43
RED 4 21 62 21 69
(26,000) 2,635] 042 12,362 ] 041
REG 4 36 66
(26,000) 4,827 | 0.45
N-SURF-MAX | GRE(66,683) | RED(64,773) | REG(66,053) | NIR(67,386)
BLU 9 69 7 67 4 64 3 59
(74,097)  [3,257] 0.89 | 2,417] 0.89 1,202 0.99 | 849 | 0.96
GRE 4 20 65 12 65 9 62
(66,683) 7,092 | 0.46 |3,867 | 0.50 | 2,794 | 0.48
RED 4 12 60 12 61
(64,773) 3,617 | 0.47 |3,525] 0.50
REG 4 19 67
(66,053) 6,383 | 0.52
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Fig.9. Theimage registration results of sample MS images and their accuracy
and residuals of different image transformation models. (a)—(c) Co-registered
results of sample MS images by EPT. (d)—(f) Accuracy of different image
transformation models of (a)—(c), respectively. (g)—(i) Residuals of AT, PT, and
EPT, respectively, that are acquired from the co-registered BLU image of Altum.

B. Comparisons of Different Image Registration Results

Fig. 9 depicts the image registration results of sample MS
images in Fig. 1, the co-registration accuracy, and the residuals of
CMs for different image transformation models. First, it shows
that all images are well co-registered, and the accuracy of EPT
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TABLE AIl
MATCHING EVALUATION TABLE OF ALTUM

Matching Method Features of Reference Image
Features of Target Image évll\/l[{ ((P/tus)) RMS]IE{ ((P/:))(els)
SURF-MAX | GRE(22,611) | RED(24,354) | REG(22,728) | NIR(21,620)
BLU 6 [ 73 ] 10 ] 76 2 63 * *
(23,623) 957 | 0.42 [1,785] 0.40 | 318 [ 0.56 * *
GRE 4 3 68 16 80 3 66
(22,611) 489 | 0.47 2,858 | 0.32 | 469 | 0.50
RED # 2 57 * *
(24,354) 282 | 0.49 * *
REG # 15 78
(22,728) 2,558 | 0.34
N-SURF-2% GRE RED REG NIR(32,000)
BLU 25 | 81 28 82 10 84 3 75
(32,000) 12,699] 0.35 [14,108] 0.38 [5,177] 0.52 | 1,253 [ 0.56
GRE 4 12 78 47 83 14 87
(32,000) 5,649 | 0.33 |24,086| 0.35 | 7,685 0.50
RED # 8 79 2 69
(32,000) 3,772] 036 | 964 | 0.29
REG 4 56 83
(32,000) 28,894] 0.29
N-SURF-MAX |GRE(132,800)[RED(147,315)|REG(135,976)|NIR(135,976)
BLU 17 [ 8 | 17 | 81 7 34 2 78
(140,021)  [18,033] 0.38 [19,972] 0.41 | 7,251 0.55 [2,013 ] 0.58
GRE 7 80 32 83 10 85
(132,800) 7,667 | 0.35 |34,005| 0.37 |10,987| 0.51
RED 6 80 2 75
(147,315) 6,356 | 0.38 |2,226 | 0.32
REG 41 83
(135,976) 44,215| 0.31
TABLE AIIl
MATCHING EVALUATION TABLE OF SEQUOIA
Matching Method Features of Reference Image
0, 0,
Features of Target Image é\/ll\? ((P/tos)) RM(S:]IE{ ((P/‘i:)(els)
SURF-MAX RED(11,481) REG(10,451) NIR(10,632)
GRE 21 70 15 70 11 61
(11,578) 1,348 0.29 992 0.31 599 0.36
RED 4 11 67 9 65
(11,481) 691 0.31 478 0.47
REG " 28 76
(10,451) 1,816 0.29
N-SURF-2% RED(24,000) REG(24,000) NIR(24,000)
GRE 38 81 35 79 22 77
(24,000) 6,608 0.29 6,140 0.26 3,475 0.29
RED " 15 71 9 71
(24,000) 2,477 0.23 1,355 0.27
REG " 50 79
(24,000) 8,509 0.20
N-SURF-MAX RED(71,388) REG(58,535) NIR(75,989)
GRE 32 80 31 78 17 78
(72,566) 16,307 | 0.33 14,536 0.30 8,842 0.35
RED # 18 76 10 76
(71,388) 8,320 0.29 4,714 0.33
REG " 36 71
(58,535) 15915 | 0.25

is better than that of PT, and PT is better than AT. We can
observe that the accuracy improvement is not significant since
the original images are very close to parallel and the differences
in lens distortion among lenses are very small and only exist at
the image boundary. Except for the low intensity of MCA-12’s
BLU image that leads to larger errors, it shows that using AT
is suitable for most image registration applications, while EPT
can achieve the best results with 0.2—0.5 pixels accuracy.
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However, when looking to the residuals of co-registered im-
ages, their differences are much clearer. Fig. 9(g)—(i) is the CMs’
residuals of AT, PT, and EPT acquired from co-registered BLU
image of Altum; since the images are not exactly parallel, AT has
larger and anisotropy residuals, while PT gets better results but
larger residuals remain at the boundary of the image as the lens
distortion differences are not considered. However, since EPT
considered the lens distortion compensation, it shows that all
residuals are <1 pixel and randomly distributed, proving that this
is the best model for properly correcting the systematic errors
of MSCs.

C. Automatic MS Image Registration of MSCs

With the successful N-SURF matching and correct EPT
model, an automatic MS image registration tool was devel-
oped for various kinds of MSCs. To process a large amount
of MS images, batch or independent image processing can be
considered. For MSCs, the systematic misregistration errors are
assumed to be consistent; thus, one group of MS images can be
selected to estimate the EPT coefficients. The coefficients can
be fixed for co-registering the remaining groups of MS images
with efficient rapid processing. However, batch processing is not
recommended if synchronization errors are present among MS
images. In contrast, independent processing can perform image
matching and separately use EPT for image registration on each
group of MS images, which is adaptable for dealing with incon-
sistent systematic errors to obtain the best co-registration results.
The performances of the automatic MS image registration tool
are discussed in the following section.

1) Efficiency Analysis: The automatic MS image registration
tool is programmed in C#, and it adopts a multi-thread CPU and
third-party Alea GPU [32] to increase the processing efficiency.
Users can adjust the default amount of N-SURF features required
to increase the matching efficiency or number of CMs. Table V
gives the time consumed by N-SURF-2% for co-registering
100 groups of MS images (see Table I) under independent and
batch processing. In the independent mode, we can observe
that GPU is five times faster than the multi-thread CPU. In
addition, since there are no image matching efforts in batch
mode, it achieves an ultrahigh processing efficiency where both
multithread CPU and GPU computing can co-register all images
in 2 min. Nevertheless, this shows that the developed automatic
MS image registration tool is efficient for co-registering one
hundred groups of images under independent mode within 14
min if the GPU is adopted.

2) Comparison of the Results: Fig. 10(a) compares the co-
registration results of MCA-12 under batch and independent
processing where the coefficients of EPT for batch processing
are estimated from sample MS images. Although the results
are very similar, we can observe slight differences at the image
border, and independent processing performs better since MCA-
12 encounters synchronization errors.

On the other hand, although independent processing is suffi-
ciently adaptable to correct inconsistency errors, image match-
ing might fail on homogeneous textures or blurred images.
Therefore, when the co-registration accuracy is >0.8 pixels, a

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

With Failsafe

(a) (b)

Fig. 10.  Analysis of Batch and Independent Processing. (a) Co-registration
differences between batch and independent processing. (b) Compare the co-
registration results of independent processing with and without failsafe proce-
dure.
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Fig. 11. Image registration accuracies of all MS datasets. (a)—(c) Results of
MCA-12, Altum, and Sequoia, respectively.

failsafe procedure that uses the same coefficients as previous
successful matching results is adopted to ensure the accuracy.
Fig. 10(b) presents a low-texture image of Sequoia that induces
a larger error at the image boundary but it is properly corrected
after applying the failsafe procedure. Fig. 11 also shows the
image registration accuracies of all MS datasets that are pro-
cessed under the independent mode. Evidently, the accuracy
trend is stable within 0.2-0.6 pixels. However, since the BLU
image of MCA-12 has a very low image contrast, it has worse
accuracy than the others but still has successful image matching
and acceptable registration results with accuracy <0.8 pixels. In
addition, we can observe the horizontal trend as the failsafe is
automatically applied to ensure accuracy.

3) Limitations: Though the developed tool is adaptable for
various MSCs, we should be aware of the parallax effects of
multilens cameras since they become significant when focusing
on closer objects. When mounting an MSC on a UAV where the
imaging distance to the ground object is >20 m, the parallax
effects between lenses can be ignored and reliable image reg-
istration results can be obtained [36]. Otherwise, the parallax
effects of MSC become serious when taking ground images due
to the parallax value in the image becoming various for object
imaging distances, thus performing image registration will result
in larger errors.

V. CONCLUSION

MS image matching is difficult to find sufficient CMs for
image registration. In this article, based on the modification of
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SUREF feature extraction, we present novel N-SURF matching
for MSCs image registration. N-SURF can extract more features
using a single image scale and it can obtain the required number
of features by querying the CDF of FT. The MS image matching
evaluation of three representative state-of-the-art MSCs shows
that N-SUREF has better correctness, can obtain more and well-
distributed CMs, and can achieve successful matching on all MS
image matching pairs, while SURF failed in some case studies.
Meanwhile, to correct the misregistration errors in viewpoints
and lens distortion between each lens of MSC, the co-registration
results of AT, PT, and EPT are compared through visual com-
parison, accuracy assessment, and residual analysis. The results
show that EPT is the best model for MSC image registration and
that it can obtain accurate results within 0.2—0.6 pixels accuracy
and have random distributed residuals all <1 pixel.

On the other hand, based on N-SURF and EPT, we have
also developed a generalized tool for various MSCs image
registration purposes. Through efficiency and visual analysis,
it proves that it can rapidly and accurately co-register a large
amount of MS images under GPU acceleration and independent
processing. Therefore, it has the advantages of accuracy, effi-
ciency, and no requiring prior knowledge for conducting further
sensor calibration. Since N-SURF can extract more features
and has proven its suitability in MS image matching, the future
analysis will focus on more challenging heterogeneous images
such as color versus thermal and color vs. synthetic-aperture
radar images.

VI. DATA AVAILABILITY STATEMENT

Automatic MS images registration tool and MS evalua-
tion dataset are available at github: https://github.com/jpjhan/
RABBIT/tree/master

MS evaluation datasets in google drive: https://reurl.cc/
Mdk944

ACKNOWLEDGMENT

The authors were respectively grateful to Prof. Cho-Ying
Huang of Department of Geography, National Taiwan Univer-
sity, and Rdata system Company Ltd., for providing a MCA-12,
and a RedEdge Altum multispectral camera. They were also
grateful to Rdata system Company Ltd., for providing the UAV
platform and assisting the sensor integration and data collection.

REFERENCES

[1] A. Agapiou, D. Hadjimitsis, and D. Alexakis, “Evaluation of broadband
and narrowband vegetation indices for the identification of archaeological
crop marks,” Remote Sens., vol. 4, no. 12, p. 3892, Dec. 2012.

[2] S. Sankaran et al., “Low-altitude, high-resolution aerial imaging systems
for row and field crop phenotyping: A review,” Eur. J. Agronomy, vol. 70,
pp. 112-123, Oct. 2015.

[3] H. Aasen, A. Burkart, A. Bolten, and G. Bareth, “Generating 3D hyper-
spectral information with lightweight UAV snapshot cameras for vegeta-
tion monitoring: From camera calibration to quality assurance,” ISPRS J.
Photogramm. Remote Sens., vol. 108, pp. 245-259, Oct. 2015.

[4] J.-P. Jhan, J.-Y. Rau, and N. Haala, “Robust and adaptive band-to-band
image transform of UAS miniature multi-lens multispectral camera,”
ISPRS J. Photogramm. Remote Sens., vol. 137, pp. 47-60, Mar. 2018.

[5]

[6]

[7]

[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

6361

J. Kelcey and A. Lucieer, “Sensor correction of a 6-band multispectral
imaging sensor for UAV remote sensing,” Remote Sens., vol. 4, no. 12,
pp. 1462-1493, Dec. 2012.

J.-P. Jhan, J.-Y. Rau, and C.-Y. Huang, “Band-to-band registration and
ortho-rectification of multilens/multispectral imagery: A case study of
MiniMCA-12 acquired by a fixed-wing UAS,” ISPRS J. Photogramm.
Remote Sens., vol. 114, pp. 6677, Apr. 2016.

B. Zitovd and J. Flusser, “Image registration methods: A survey,” Image
Vis. Comput., vol. 21, no. 11, pp. 977-1000, Oct. 2003.

D. Lowe, “Distinctive image features from scale-invariant keypoints,” Int.
J. Comput. Vis., vol. 60, no. 2, pp. 91-110, Nov. 2004.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up robust
features (SURF),” Comput. Vis. Image Understanding, vol. 110, no. 3,
pp. 346-359, Jun. 2008.

M.-D. Yang, C.-F. Chao, K.-S. Huang, L.-Y. Lu, and Y.-P. Chen, “Image-
based 3D scene reconstruction and exploration in augmented reality,”
Automat. Construction, vol. 33, pp. 48—60, Aug. 2013.

P. Loncomilla, J. Ruiz-del-Solar, and L. Martinez, “Object recognition
using local invariant features for robotic applications: A survey,” Pattern
Recognit., vol. 60, pp. 499-514, Dec. 2016.

K. Yan and R. Sukthankar, “PCA-SIFT: A more distinctive representation
for local image descriptors,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., 2004, pp. 506-513.

A.E. Abdel-Hakim and A. A. Farag, “CSIFT: A SIFT descriptor with color
invariant characteristics,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2006, pp. 1978—1983.

K. Mikolajezyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10,
pp. 1615-1630, Oct. 2005.

J.-M. Morel and G. Yu, “ASIFT: A new framework for fully affine invari-
ant image comparison,” SIAM J. Imag. Sci., vol. 2, no. 2, pp. 438—469,
Jan. 2009.

Y. Pang, W.Li, Y. Yuan, and J. Pan, “Fully affine invariant SURF for image
matching,” Neurocomputing, vol. 85, pp. 610, May 2012.

Z. Yang, T. Dan, and Y. Yang, “Multi-Temporal remote sensing image
registration using deep convolutional features,” IEEE Access, vol. 6,
pp. 38544-38555, 2018.

Y. Ye and J. Shan, “A local descriptor based registration method for
multispectral remote sensing images with non-linear intensity differences,”
ISPRS J. Photogramm. Remote Sens., vol. 90, pp. 83-95, Apr. 2014.
Z.Yi, C. Zhiguo, and X. Yang, “Multi-spectral remote image registration
based on SIFT,” Electron. Lett., vol. 44, no. 2, pp. 107-108, 2008.

M. Gong, S. Zhao, L. Jiao, D. Tian, and S. Wang, ““A novel Coarse-to-Fine
scheme for automatic image registration based on SIFT and mutual infor-
mation,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 7, pp. 4328-4338,
2014.

X. Chang, S. Du, Y. Li, and S. Fang, “A Coarse-to-Fine geometric scale-
invariant feature transform for large size high resolution satellite image
registration,” Sensors, vol. 18, no. 5, Apr. 2018. [Online]. Available: https:
//www.mdpi.com/about/announcements/784

M. Vakalopoulou and K. Karantzalos, “Automatic descriptor-based co-
registration of frame hyperspectral data,” Remote Sens., vol. 6, no. 4,
pp. 3409-3426, 2014.

M. Aladem, S. Baek, and S. A. Rawashdeh, “Evaluation of image enhance-
ment techniques for vision-based navigation under low illumination,” J.
Robot., vol. 2019, 2019, Art. no. 5015741.

0. Akcay and O. Avsar, “The effect of image enhancement methods during
feature detection and matching of thermal images,” in Proc. Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci., 2017, pp. 575-578.

Q. Li, H. Zhang, and T. Wang, “Multispectral image matching using
rotation-invariant distance,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3,
pp. 406410, Jun. 2011.

Q. Li, G. Wang, J. Liu, and S. Chen, “Robust scale-invariant feature
matching for remote sensing image registration,” IEEE Geosci. Remote
Sens. Lett., vol. 6, no. 2, pp. 287-291, Apr. 2009.

W. Ma et al., “Remote sensing image registration with modified SIFT and
enhanced feature matching,” IEEE Geosci. Remote Sens. Lett., vol. 14,
no. 1, pp. 3-7, Jan. 2017.

S. Saleem and R. Sablatnig, “A robust SIFT descriptor for multispectral
images,” IEEE Signal Process. Lett., vol.21,no.4, pp. 400403, Apr.2014.
J. P. Jhan, and J. Y. Rau, “A normalized surf for multispectral image
matching and band co-registration,” in Proc. ISPRS Arch. Photogramm.
Remote Sens. Spatial Inf. Sci., 2019, pp. 393-399.

“Pix4D sample dataset,” Pix4D, Johannesburg, South Africa, Jan. 2021.
[Online]. Available: https://support.pix4d.com


https://github.com/jpjhan/RABBIT/tree/master
https://reurl.cc/Mdk944
https://www.mdpi.com/about/announcements/784
https://support.pix4d.com

6362

[31]

[32]

[33]

[34]

[35]

[36]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

C.-Y. Huang, H.-L. Wei, J.-Y. Rau, and J.-P. Jhan, “Use of principal
components of UAV-acquired narrow-band multispectral imagery to map
the diverse low stature vegetation fAPAR,” GISci. Remote Sens., vol. 56,
no. 4, pp. 605-623, May 2019.

“Alea GPU,” Nvidia, Santa Clara, CA, USA, Jan. 2021. [Online]. Avail-
able: https://developer.nvidia.com/alea-gpu

D. Gossow, P. Decker, and D. Paulus, “An evaluation of open source SURF
implementations,” in Proc. RoboCup 2010: Robot Soccer World Cup X1V,
2010, pp. 169-179.

J.-Y. Rau and P.-C. Yeh, “A semi-automatic image-based close range 3D
modeling pipeline using a multi-camera configuration,” Sensors, vol. 12,
no. 8, Aug. 2012, Art. no. 11271.

C. S. Fraser, “Digital camera self-calibration,” ISPRS J. Photogramm.
Remote Sens., vol. 52, no. 4, pp. 149-159, Aug. 1997.

J.-P. Jhan, J.-Y. Rau, N. Haala, and M. Cramer, “Investigation of paral-
lax issues for multi-lens multispectral camera band co-registration,” in
Proc. ISPRS Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2017,
pp. 157-163.

Jyun-Ping Jhan received the Ph.D. degree in engi-
neering from the National Cheng Kung University,
Tainan, Taiwan, in 2017.

He is currently a Post-Doctoral Researcher with
the Department of Geomatics, National Cheng Kung
University, Tainan, Taiwan. His research interests
include in mobile mapping system, sensor integration
and calibration, digital image processing, and struc-
tural damage investigation.

Jiann-Yeou Rau received the Ph.D. degree in civil
engineering from the National Central University
(NCU), Taoyuan, Taiwan, in 2002.

He was with the Center for Space and Remote
Sensing Research, NCU, as a Research Scientist.
He is currently a Professor with the Department of
Geomatics, National Cheng Kung University, Tainan,
Taiwan. His research activities are mostly concen-
trated in the domain of digital photogrammetry and
mobile mapping technology through different plat-
forms, such as aircraft, UAV, and land vehicle. His
research interests include sandbank monitoring and bridge inspection through
UAV images, LOD-2 building modeling, 3-D modeling of close-range objects,
and other UAV and LiDAR applications.

Dr. Rau is a member of the Chinese Society of Photogrammetry and Remote
Sensing and of Image Processing and Pattern Recognition, Taiwan.


https://developer.nvidia.com/alea-gpu


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


