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Abstract—In this article, we propose an effective method for
remote sensing image registration. Point features are robust to
remote sensing images with low quality, small overlapping area,
and local deformation. Therefore, we extract point features from
remote sensing images and convert the problem of remote sensing
image registration into the problem of feature point matching. A
correspondence set constructed solely on the similar of features
often contains many false correspondences or outliers, so our key
idea is to remove the mismatches in the initial correspondence set
and obtain a stable correspondence through a two-step strategy.
First, we use two constraints to construct the optimization model
which can solve in linear time. The first constraint is that the
topology of the points and their neighbors can be maintained after
the spatial transformation. Another constraint is that the feature
distance of the correct matches are similar to the neighbors. Then,
we design a strategy to increase the number of inliers and raise
the precision by a global constraint calculated from the solution in
the previous step. Experiments on a variety of remote sensing image
datasets demonstrate that our method is more robust and accurate
than state-of-the-art methods.

Index Terms—Feature descriptor, global information, image
registration, locality preserving, scale-invariant feature transform
(SIFT).

I. INTRODUCTION

IMAGE registration is a fundamental and challenging step in
image processing [1]. Many image processing tasks require

image registration in advance, such as image fusion [2], [3],
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change detection [4], [5], and hyperspectral image process-
ing [6], [7]. Remote sensing image registration aims at aligning
two or more images that contain overlapping area [7]. These im-
ages often have the problem of low quality, occlusion, and local
distortion because they are obtained under different conditions,
such as by different sensors, from different viewpoints, or at
different times, so the task of remote sensing image registration
is extremely difficult. Feature-based methods can register im-
ages of completely different nature and handle complex image
distortions [9], so we formulate the problem of remote sensing
image registration to feature matching.

The goal of feature matching is to establish reliable feature
correspondences between two sets of features [10], [11]. It
is crucial problem for many vision-based task [12]–[15]. The
selection of feature points is crucial to the final result of feature
matching. So during the past few decades, many studies fo-
cused on designing more robust local descriptors and exploring
improvements in descriptor matching using alternate distance
metrics [16], [18]. The scale-invariant feature transform (SIFT)
feature [19] is one of the most widely used point features due
to its invariant to image scaling, rotation, affine transformation,
and illumination change. Even now, SIFT also appears in many
tasks [20]–[22]. Ye et al. [18] define a similarity metric named
HOPCncc, which uses the normalized correlation coefficient
(NCC) of the HOPC descriptors for multimodal registration.
It is robust against complex nonlinear radiometric differences.
Ye et al. [24] combine a feature detector named MMPC-Lap
and a feature descriptor named local histogram of orientated
phase congruency (LHOPC). MMPC-Lap is constructed by
using the minimum moment of phase congruency for feature
detection with an automatic scale location technique. LHOPC
derives the feature descriptor for a key point by utilizing an
extended phase congruency feature with an advanced descriptor
configuration. It is sufficiently robust to both geometric and
radiometric changes. Although many well-designed algorithms
have proposed to extract the local descriptors for image registra-
tion, there still exist some outliers in the result because of similar
scenes and local deformation, which requires new approaches to
solve the matching problem well. Now the mismatch elimination
algorithms are frequently used [25], [26]. These methods build
an initial set according to the similarity of descriptors first and
then delete mismatches from the initial set to find the stable
correspondences. This article intends to this method.

Existing mismatch elimination algorithms always rely on
geometric constraints to remove mismatches [27], [28]. These
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constraints can be roughly divided into local constraints and
global constraints. Despite these algorithms being continuously
proposed during the past few decades, there are still many chal-
lenges in handling remote sensing image registration [29]–[32].
First, due to changes in ground fluctuations or changes in imag-
ing viewpoints, local distortion often occurs in remote sensing
images, which reduces the accuracy of the algorithms that rely on
local constraints. Even though many algorithms can improve the
accuracy by controlling the threshold, there are also algorithms
that set a strict threshold, which will not only reduce the number
of correct matches but also cannot improve the accuracy. Then,
global constraints need to use the information of all matches;
however, there are often a large number of false matches in
the initial correspondence set, which is more obvious in remote
sensing images. Algorithms that rely on global constraints are
susceptible to outliers; even robust algorithms can hardly achieve
good results.

To address the above challenges, we design an efficient and
robust strategy for remote sensing image registration. Obviously,
for an image pair of the same scene or object, the local topolog-
ical relationship formed by the correct feature points changes
little. In addition, for a correct match, the area where these
two points are located in the same physical area. So the feature
distances of matches located in the same physical area should
be similar. Based on the above observations, we design two
metrics to describe the consistency of the neighbor topology
and the similarity of the feature distances of matches located in
the same area. We combined these two constraints to construct
a mathematical model and obtained its solution in linear time.
So far, our first step is an improvement on locality-preserving
matching algorithm (LPM), which relies on local information to
eliminate mismatches. The first step of our method is inspired by
LPM, because LPM proposes a framework for the effective use
of local information. In order to get more accurate results, we
increase the feature distance on the basis of LPM to make full use
of local information. However, methods that only rely on local
information have similar defects, that is, that the accuracy of the
results may not be satisfactory when there are local distortion
or similar scenes. To further increase the number of correct
matches and remove false matches, we design a strategy to
extract global information that is suitable for all correct matches
from the previous solution and use it to the initial matching
set. Specifically, we solve the transform matrix between the
two images according to the previous solution. Compared with
calculating the transform matrix based on the initial matching
set, this method can effectively avoid the influence of outliers.
The transform matrix is correct enough to truly reflect the
spatial changes of the two pictures. Most remote sensing image
transformations are affine transformations, so we use the affine
matrix as the global transformation matrix in the second step. So
by using the affine matrix as a guide, we can get a better result
than just using local constraints.

In summary, our contributions in this article are as follows.
1) We propose a method of using global information. Com-

pared with the existing methods, our method is robust to out-
liers in initial matching set. At the same time, our method
can be combined with other remote sensing image registration

methods, which provides a possibility to improve the result
of them.

2) We combine local topology information and local feature
information to construct a mathematical model that can be solved
in linear time. The solution of the model can well reflect the
spatial transformation, and is more accurate.

3) We innovatively use a simple method to effectively combine
global and local information for feature matching. Compared
with other methods, our local and global information combina-
tion is more effective. It has the advantages of local and global
constraints at the same time, and to a certain extent makes up
for the disadvantages of them.

The remainder of this article is organized as follows. In
Section II, we introduce the background and related works.
In Section III, we introduce our algorithm in detail, and we
make full use of local and global constraints for remote sensing
image registration. Section IV provides the evaluations of our
method in comparison with several state-of-the-art methods on
different remote sensing image datasets. Section V gives the
conclusion.

II. RELATED WORK

In this article, we propose a feature-based remote sensing
image registration method. Specifically, we formulate the regis-
tration problem as a matching problem. Here we briefly review
the work for feature matching. In general, the problem of feature
matching can be solved by two kinds of methods. The first type
is the mismatch elimination algorithm. This type of method
establishes accurate correspondences by filtering out unstable
matches in the initial matching set [33]. Another type directly
estimates the point-to-point matching relationship of two points
without an initial matching set.

The quality of the feature is very important to the final result.
So many methods focus on engineering robust local descrip-
tors. David Lowe [34] proposed the classic SIFT algorithm.
It is widely used in various situations due to it is invariant to
rotation, scaling, and brightness changes. Many methods [18],
[34] are based on it. For example, Lowe [19] compares the
ratio between the nearest and the second nearest neighbors
against a predefined threshold to get stable correspondences.
Although there are many methods for constructing an initial
matching set, it is difficult to avoid false matches in the results
by using only local descriptors. So it is critical to solving
the feature matching problem in a two-stage method. Mis-
matches are filtered by using additional constraints in the second
stage.

Some methods use global information as constraints, which
can be divided roughly into two main categories, say parameter
estimation methods [11], [35], [36] and nonparametric inter-
polation methods [37]–[39]. The random sample consensus
(RANSAC) algorithm [40] is a typical representative method
of parameter estimation methods. It attempts to obtain the
smallest possible outlier-free subset to estimate a provided
parametric model by resampling. RANSAC and its similar
methods [41]–[43] rely heavily on the accuracy of sampling
results. Obviously, when there are a large number of outliers in
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the initial matching set, the number of sampling times required
is significantly increased, which greatly affects the efficiency
of these methods. The non-parametric fitting methods learn a
predefined nonparametric model based on prior knowledge or
through regression. It maps feature points from one image to
another and then eliminates false matches by checking whether
each match is consistent with the estimated non-parametric
function. The representative of such methods are [44] algo-
rithm that eliminates outlier by estimation robust correspond
function, vector field consensus (VFC) [45] algorithm based on
vector field consistency, and [46] algorithm based on manifold
regularization. These methods nearly use the information of all
points, so the precision of these methods will decrease sharply
when there are many outliers or there are independent motion
structures in the point sets.

Some methods use local information as constraints [9], [47],
[48]. These methods use constraints that are similar to graph
matching to perform a robust estimation of correct matching
based on the assumptions of local structural consistency or
piecewise consistency. For example, the LPM [49] assumes
that local geometric structures in the vicinity of inliers are
invariant under geometric transformations which is similar to the
idea of the first step in our method. Based on the assumption,
it constructs a model with the neighborhood relationship and
neighborhood topology of feature points as constraints, which
effectively improves the calculation speed and robustness of the
algorithm. Jiang et al.’s work [50] is an improvement in LPM. It
considers the order of neighbors of each inlier and introduces a
stricter measuring criterion for local constraint. Bian et al. [51]
introduce a statistical strategy, which removes outliers based on
the number of neighboring matches. The reason why it is feasible
is the consistency of sports field of correct matches, which
converts the quantity of matches into the quality of matches.
These methods fully mined the information of local constraints,
so they are efficient, but the accuracy of their results will decrease
when there are local distortion or similar scenes. Our method
combines local and global information. Its goal is to get a better
result than the above methods that use only global or local
information.

Except for the mismatch elimination algorithm, another
feature-based matching method is to directly estimate the cor-
respondence between two point sets. These methods can be
divided roughly into two main categories. The first one is to
estimate the transformation matrix between point sets for feature
matching [52]–[55]. The transformation matrix can map the
target point sets to the template point sets so that the matching
points in the two sets can coincide as much as possible after
transformation. Another is based on the graph model [56]–[60].
These approaches treat the feature points as the vertices of the
graph, the vertices can be connected to edges, and the point
set as the graph. Their goal is to search for the largest subset
with similar graph structures from two point sets. Both of these
approaches can be viewed as optimization problems, and only
the way to construct the optimization equation is different.
However, when there are a large number of outliers or the data
degradation is serious, the performance of these algorithms will
be greatly reduced or even fail.

III. PROPOSED METHOD

This section describes our method for remote sensing image
registration by establishing accurate correspondences between
two feature sets extracted from two remote sensing images.
There are many well-designed feature descriptors that can ef-
ficiently establish initial correspondences. The SIFT descrip-
tor with a distance ratio method [19] that compares the ratio
between the nearest and the second-nearest neighbors against
a predefined threshold is used to gain an initial matching set.
The emphasis of this article is to eliminate mismatches, so the
details of building an initial matching set will not be discussed
here. In the following, we will introduce a two-stage feature
matching method based on local and global information. First,
we remove outliers from initial set and construct approximately
accurate correspondences by combining the feature descriptor
and local structure information. Then, the transformation of
these correspondences can be used as global information to
obtain a more effective result.

A. Construct an Approximately Correct Solution

Suppose a set of N initial correspondences S =
{(xi, yi,mi, ni)}Ni=1 extracted from different images have
been obtained, where xi and yi are vectors denoting the spatial
positions of feature points and mi and ni are vectors denoting
the descriptors of feature points. This article tries to remove the
outliers in S and get establish correspondences in a two-stage
manner.

For an image pair of the same scene or object, the topological
relationship formed by the correct feature points in an area is
not changed easily under spatial transformations. In addition,
points that constitute a correct match are located in the same
physical area. Their feature distance can indicate the difference
between the two images in the same area. So the feature distances
of matches in the same area are similar. Based on the above
observations, we design two metrics to build an optimization
model. Denoting I is the unknown inliers set, the optimization
model is

I∗ = argmin
I

C(I;S, λ) (1)

with the cost function C defined as

C(I;S, λ) =
∑
i∈I

{ ∑
j|xj∈Nxi

[d(xi, xj)− d(yi, yj)]
2

+
∑

j|yj∈Nyi

[d(xi, xj)− d(yi, yj)]
2

+ β
∑

j|xj∈Nxi
,yj∈Nyi

[fd(mi, ni)− fd(mj , nj)]

}

+ λ(N − |λ|) (2)

where fd(.) and d(.) are two measurement functions. The
fd(.) is a certain distance metric such as Euclidean distance.
It calculates the Euclidean distance between two features. To
increase the robustness of the algorithm, we normalized the
feature distances. Assuming that the maximum value of all
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feature distances is xmax, the minimum value is xmin, and the
normalized value of any value x is (x− xmin) / (xmax − xmin).
Therefore, the range of the characteristic distance becomes
0–1, and the range of the characteristic distance term can be
manipulated by β. The definition of d is shown in (3).

d(xi, xj) =

{
0, xj ∈ Nxi

1, xj �∈ Nxi

. (3)

The d is used to measure whether a pair of points are neighbors.
The Nx denotes the point x and its K neighbors. If there are
two matches (xi, yi) and (xj , yj), xj is the neighborhood point
of xi. And (xi, yi) is a correct match, due to the topological
relationship formed by correct matches should be maintained,
yj should be the neighborhood of yi, that is, d(yj , yi) is 0, on the
contrary, d(yj , yi) is 1. So the first and second terms of (2) are
to find the similarity of the topological structure of a matching.
The third term fd(.) compares the distance between the feature
difference of a pair of matches and its neighbors. It is easy to
find that the distance of the wrong match is large. β is used to
balance the proportion of two distances. The last term is similar
to the regularization term, which discourages the outliers. Its
goal is to increase the number of correct matches in the result
as much as possible and prevent the solution tending to make
all matches wrong. The parameter λ > 0 and β > 0 controls the
tradeoff between these three terms. Ideally, the optimal solution
should be near zero, i.e., the first term of C should be zero, and
the second term of C should be very small.

To calculate conveniently, we use an N × 1 binary vec-
tor p to indicate the correctness of these N pairs of matches.
Specifically, pi ∈ {0,1} denotes the correctness of the ith match
(xi, yi,mi, ni), where pi = 1 indicates the ith match is correct
match and pi = 0 indicates the ith match is error match. In this
case, the cost function in (2) is converted to

C(p;S, λ) =
N∑
i=1

pi

{ ∑
j|xj∈Nxi

d(yi, yj) +
∑

j|yj∈Nyi

d(xi, xj)

+
β

K

∑
j|xj∈Nxi

,yj∈Nyi

[fd(mi, ni)− fd(mj , nj)]

}

+ λ

(
N −

N∑
i=1

pi

)
. (4)

It can be solved by optimizing p to minimize the cost (4) to
eliminate false matches and construct stable feature matches,
and K is the number of points in the neighborhood. Because∑

j|xj∈Nxi
d(yi, yj) and

∑
j|yj∈Nyi

d(xi, xj) are numerically
equal and physical consistency, it can be be further simplified.
To optimize the objective (4), we merge the terms related to pi
and obtain

C(p;S, λ) =
N∑
i=1

pi(ci − λ) + λN (5)

where

ci = 2
∑

j|xj∈Nxi

d(yi, yj)

+
β

K

∑
j|xj∈Nxi

,yj∈Nyi

[fd(mi, ni)− fd(mj , nj)] . (6)

For each correspondence i in initial correspondence set, ci
is a fixed value, due to the neighborhood relationship and the
feature distance between the feature points are fixed when the
initial matching set does not change, and hence we can calculate
all {ci}Ni=1 in advance. That is to say, in (5), only the value
of pi is uncertain. To optimize (5), any match with a cost
smaller than λ will decrease the value of cost function, while
any match with a cost bigger than λ will increase the value of
cost function. Therefore, the optimal solution ofp that minimizes
(5) is determined by the following criterion:

pi =

{
1, ci ≤ λ

0, ci > λ
, i = 1, . . . , N. (7)

And hence, the optimal match set I∗ is determined by

I∗ = {i|pi = 1, i = 1, . . . , N}. (8)

From (7), we see that parameter λ is also a threshold used to
judge whether a correspondence is correct. The setting of pi is
arbitrary when ci = λ.

This strategy works well due to the following reasons. On the
one hand, for an outlier (xi, yi,mi, ni), its local neighborhood
structures are different between two images, and the feature
distance between it and its neighbors is also large, which leads
to a large cost ci, and hence it will be easily identified as an
outlier. On the other hand, for an inlier (xj , yj ,mj , nj), even if
there are some outliers in their neighborhood Nxj

or Nyj
, the

proportion of inliers is still greater than that of outliers. mj and
nj represent the same physical area. The feature distance of their
neighbors will not be too different from theirs. Hence, its cost
cj will not be large.

In our evaluation, we adopt a simple strategy that searches
K (K = 4 in default) nearest neighbors under the euclidean
distance for constructing neighborhood Nx to each point x.
Since theNx is constructed based on the initial matching set, not
all points inNx are inliers. If the neighborhoodNx is constructed
by all inliers, the result will be more accurate. As the result is
not influenced by the outliers, the difference between the inlier
and outlier will be enlarged, which makes the result easier to
distinguish, especially when there are a large number of outliers
in S. However, the true inlier set I cannot be gained in advance
because our aim is to find the inlier set. To solve this problem, we
use an approximation set to replace it. We previously obtained a
solution I0, which is mainly composed of inliers. So we use I0
to construct a neighborhood for each match in S and solve the
optimal I∗ as

I∗ = argmin
I

C(I; I0, S, λ). (9)
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TABLE I
COMPARISON OF THE RESULT OF ONE STAGE AND TWO STATE

B. Gain More Efficient Result Based on Transformation
Matrix

Since we not only use local topology structure but also add
a constraint about feature distance, we can get correspondence
I1 that is closer to the optimal solution. Then, the global infor-
mation can be obtained by calculating the transformation matrix
T through the optimal I1. In remote sensing image registration
tasks, the affine transformation can solve most of the registration
problems. So we use the affine transformation as the global
transformation T, and estimate its parameters by the least square
method. So this transform matrix T can theoretically fit most
correct matches, and we can get a more stable correspondence
set. The goal of image registration is to obtain an accurate trans-
formation matrix so that the matching points of the perceived
image can perfectly coincide with the matching points of the
reference image after transformation. But in this process, there is
a high probability that the matching points do not coincide due to
local deformation, but they are not far away. So the mismatches
can be eliminated by the following formula:

si = fc(xi, T yi) (10)

pi =

{
1, si ≤ λ2

0, si > λ2

, i = 1, . . . , N. (11)

where

λ2 = hf(I). (12)

The metric function fc is used to calculate the Euclidean
distance of two coordinates. The si is the distance of the match-
ing points of the perceived image and the matching points of
the reference image after transformation. λ2 is a new threshold
value, which is positively correlated with the pixels of the image,
and f(I) is the pixel of picture I (the diagonal of the picture), h
is the scale factor, then we can get the final correspondence I2
using (11) and (12).

To verify whether the second step can increase the number
of correct matches and improve the accuracy, we conducted
experiments to compare the results of only the first step and the
results of the two steps while keeping the parameters consistent.
Eighteen representative images are selected as experimental
data. The experimental result is shown in Table I. The two-step
strategy can effectively improve the accuracy and recall of the
algorithm.

The procedure of the algorithm is shown in Algorithm 1.

C. Computational Complexity Analysis

Our method concludes two steps: the construction of the
correspondences by local constraints and the construction of

Algorithm 1: Procedure of the Mismatch Elimination by
Local and Global Constraints.

Input: The putative feature correspondences
S = {(xi, yi,mi, ni)}Ni=1 and Parameters K, β, λ, and h.

Output: The correspondence I2
1: Construct neighborhood {Nxi

, Nyi
}Ni=1 based on S;

2: Calculate cost {ci}Ni=1 using (6);
3: Determine the approximate correspondence I0 using

(7) and (8);
4: Construct neighborhood {Nxi

, Nyi
}Ni=1 based on I0;

5: Calculate cost {ci}Ni=1 using (6);
6: Determine the approximate correspondence I1 using

(7) and (8);
7: Calculate the transformation matrix T between two

images obtained by the I1;
8: Calculate cost {si}Ni=1 using (10) according to T ;
9: Determine the final correspondence I2 using (11) and

(12);

more correct matches based on the transformation. The compu-
tational complexity analysis is described as follows. We use the
following formula to approximately approach spending time:

Ttotal = Tconstruction + Treconstruction (13)

Tconstruction is the time to construct the optimal correspondence
by local constraints, and Treconstruction is the time to remove out-
liers and increase inliers based on the transformation. The time
complexity to search theK nearest neighbors for each point inS
is aboutO((K +N) logN) the time complexity to calculate the
cost {ci}Ni=1 isO(KN), and the time complexity to calculate the
cost{si}Ni=1 isO(N). Therefore, the total time complexity of our
method is about O(KN + (K +N) logN +N). Generally,
the time complexity of our method can be simply written as
O(N logN).

IV. EXPERIMENT AND RESULTS

A. Evaluation Criterion

The number of correct correspondences is an important cri-
terion to evaluate the effectiveness of the proposed method.
Our method of marking the correct match is as follows. First,
select a part of the matches, manually select the correct matches,
and estimate the transformation parameters between the images.
Then, other matches suitable for the transformation relationship
within a certain error range are regarded as the correct matches.
In order to improve the accuracy of the labeling, we manually
modified the labels on the area with large changes. In addition,
there are many effective criteria. For our experimental results,
the evaluation is carried out using the following criteria.

1) Number of correct matches (NCM)
The number of correct correspondences is used as the cri-
terion to evaluate the robustness of the proposed method.

2) Precision
Precision is defined as the ratio of correct matches divided
by the sum of correct matches and false matches. It can be
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Fig. 1. Accuracy and recall rate of different λ when β = 4.

expressed as follows:

Precision =
correct matches

correct matches+false matches
. (14)

3) Recall
Recall is the number of correctly matched points with
respect to the number of corresponding points between
two images of the same scene. Correspondences are the
total matches that satisfy the transformation matrix within
the range of allowable threshold.

Recall=
correct matches
correspondences

. (15)

4) Root-mean-square error (RMSE)
The accuracy is evaluated by the root-mean-square error
(RMSE) criterion. The RMSE can be expressed as follows:

RMSE =

√
1

N

∑N

i=1
(Xi −X ′

i)
2 + (Yi − Y ′

i )
2 (16)

where (X ′
i, Y

′
i ) means the transformed coordinates of

(Xi, Yi). N means the total number of correctly matched
pairs.

B. Parameters and Test Datasets

1) Parameters Settings: There are four parameters in our
method: K, β, λ, and h. The K is the number of nearest
neighbors for neighborhood construction, the β controls the
proportion of the feature distance and the local neighborhood
information, the λ is the threshold for judging whether a match
is a correct correspondence, and theh sets the maximum distance
of the correct matching points of the perceived image and the
matching points of the reference image after transformation. In
our evaluation, we set the default values as K = 4, β = 4, and
λ = 6. The relationship betweenβ and λ is difficult to determine.
To analyze the sensitivity of the two parameters, we will fix one
value and change another value to experiment. When β = 4,
λ = 6, the result of first step is the best. The experimental results
are shown in Figs. 1 and 2. The X-axis of these pictures means the
cumulative distribution. It is the probability that the value of test
data less than the value of current ordinate. So Fig. 1 is the result
of fixed β changing λ. The accuracy rate reaches the extreme
value when λ = 6. The recall rate increases as λ increases, so to
ensure precision and get enough recall at the same time, we set λ
to 6. Fig. 2 is the result of fixed λ changing β. The accuracy and
recall are the maxima when λ = 6 and β = 4, respectively. It is
worth noting that the input has an influence on the selection of

Fig. 2. Accuracy and recall rate of different β when λ=6.

Fig. 3. Comparison of the average accuracy and average recall rate corre-
sponding to different h values.

the algorithm’s threshold. Our input is different from the original
LPM input. In the experimental environment of this article, the
threshold of LPM is no longer 6, but 4. The experiment result
shows that which is β has little effect on the final result, so
we finally set β to 4. The way to determine h is simple. The
larger the h, the lower the accuracy, and the higher the recall of
the result. We compared the experimental results of different h
on 18 pictures. The different results are shown in Fig. 3. The
recall increases with the increase of h when h < 0.038, and
the rate of increase tends to slow down when h > 0.029, and
the accuracy decreases with the increase of h when h > 0.026;
when h > 0.032, the rate of decrease becomes larger. When the
value of h is between 0.029 and 0.038, the recall is high and
when the value of h is between 0.026 and 0.032, the precision
is high. Finally, we chose h = 0.032.

2) Test Datasets: To evaluate the effectiveness of our
method, we selected a total of 102 pairs of images from four
datasets for testing. We selected 10 pairs of representative im-
ages from them to show. These images are shown in Fig. 4.

1) Image pairs 1 and 2: These images are from CIAP.1 In this
dataset, 30 pairs of images are selected for testing. These
images are all of size 700 × 700 and have already been
orthorectified. The feature matching task for such image
pairs typically arises in the image mosaic problem. The
images are publicly available (from the Erdas example
data), which are captured over eastern Illinois, IL, USA.

2) Image pairs 3, 4, and 5: These images are from UAV [61].
In this dataset, 22 pairs of images are selected for testing.
These images only a few parts of scenes in each pair
of these images are overlapped, which greatly increases

1Online. [Available]: http://download.intergraph.com/downloads/erdas-
imagine-2013-2014-example-data

http://download.intergraph.com/downloads/erdas-imagine-2013-2014-example-data
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Fig. 4. Ten image pairs selected from the test data. (a) and (b) Pair 1. (c) and (d) Pair 2. (e) and (f) Pair 3. (g) and (h) Pair 4. (i) and (j) Pair 5. (k) and (l) Pair 6.
(m) and (n) Pair 7. (o) and (p) Pair 8. (q) and (r) Pair 9. (s) and (t) Pair 10.

the difficulty of matching. Most of them are captured
by a UAV over Yongzhou city and HeJiangdong villages
of Hunan province, China, which are suitable for image
Mosaic tasks.

3) Image pairs 6 and 7: These images are from SAR. In this
dataset, 10 pairs of images are selected for testing. These
image pairs are corrupted with strong noise, which brings
great challenges to the image matching task. Every image
pair is obtained by synthetic-aperture radars (SARs) on a
satellite. They mainly include farmland, cities, mountains,
and rivers. Feature matching for such image pairs has been
widely used in the military field, disaster monitoring, and
resource detection. These image pairs can be modeled with
similarity or rigid transformation in most cases.

4) Image pairs 8, 9, and 10: These images are from
SUIRD. Forty pairs of images are selected for test-
ing. This dataset is a public dataset for image registra-
tion/matching research. It includes 50 pairs of images and
their groundtruth. These image pairs include horizontal,
vertical and mixed perspective variations, vertical and
their mixture which produces problems of low overlap,
image distortion, and severe outliers. Since our algorithm
requires feature descriptors, we reannotate the data set.

C. Experimental Results

In this section, we test the performance of our proposed
method on different kinds of datasets and compare it with
other feature matching methods. Five state-of-the-art methods

including RANSAC [40], MR-RPM [46], LPM [49], mTop-
KPR [50], and GLPM [9] are chosen for comparison. To be
fair, we implement these algorithms based on publicly available
codes and try our best to tune their parameters to make them best.
To verify whether our algorithm can find more correct matches
and remove false matches, the method only with first step is as
a comparative method.

1) Qualitative Results: First of all, some representative pic-
tures are extracted from the datasets for experiments, where both
CIAP and SAR contain two pairs of images, and both UAV and
SUIRD contain three pairs of images. The selected image pairs
include most challenges about remote sensing images, such as
ground relief variations, severe noise, and small overlap area.
The initial inlier percentages of these ten images are 0.98, 0.93,
0.88, 0.34, 0.75, 0.73, 0.74, 0.55, 0.95, and 0.78. The match
results of the ten image pairs are shown in Fig. 5, and the NCM,
the Precision, the Recall, and RMSE for each pair are listed
in Table II. As shown in Fig. 5, our algorithm can effectively
remove the mismatches in the initial correspondence set and
achieve an effective result even when the overlapping area is
small and the image quality is low. By using our proposed
method to filter out the mismatches, the precision and recall of
these image pairs are being (100%, 99%), (100%, 99%), (100%,
97%), (91%, 100%), (98%, 98%), (100%, 100%), (95%, 100%),
(96%, 98%), (99%, 99%), and (100%, 100%). The accuracy and
recall of our method have always been the highest. In pairs 4,
6, and 7, the NCM of some algorithms is the same as ours,
but our recall is very high, which shows the effectiveness of
our method that uses the transformation matrix to increase the
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Fig. 5. Feature matching results of the proposed method on ten representative image pairs. (a) Pair 1. (b) Pair 2. (c) Pair 3. (d) Pair 4. (e) Pair 5. (f) Pair 6. (g)
Pair 7. (h) Pair 8. (i) Pair 9. (j) Pair 10.

number of correct matches. It is worth noting that although
the accuracy and recall of LPM are not as good as ours in
pair 1, its RMSE is smaller than ours, because LPM eliminates
mismatches through the topology structure of neighbors, which
is very suitable for the situation with a few outlier points. The
effect of LPM is not as good as ours for the picture with lots
of outlier points. One reason is that our algorithm takes into
account the differences in the feature distance in a region, which
effectively removes a lot of mismatches. Another reason is that
we use the global constraints to get more correct matches and
remove error matches. The results of the mTopkRP and GLPM
are similar to LPM, and the reason may be that they also rely
only on local constraints. In addition, since we used the SIFT
with distance ratio to get the initial matching set, there are
not many outliers in our initial matching, which may cause
GLPM to not play its advantages. Our algorithm belongs to the
method of estimating transformation matrix like RANSAC, but
our algorithm performs better than RANSAC. The reason is that
RANSAC is a random method, which depends on the accuracy
of the points obtained by sampling. When there are many error
points, the number of iterations it requires will increase greatly,
which takes a lot of time. Our algorithm achieves satisfactory
results in all the images, although it is not outstanding in the SAR
image; the registration effect is worse due to the low quality and
high noise in the SAR images.

To show the advantages of our algorithm more clearly, we
have visualized part of the experimental results. The comparison
algorithms are LPM, RANSAC, and mTopkRP, respectively.
The experimental results are shown in Fig. 6. The four columns
of Fig. 1 are the results of LPM, mTopkRP, RANSAC, and our
method on five pairs of images. Each row represents the experi-
mental results of the above four methods on one pair of images.
For example, the four pictures in the first row are the matching
results of LPM, mTopkRP, RANSAC, and our algorithm on the

first data. In the first row, there are some mismatches between the
result of LPM and the result of RANSAC. Compared with the
result of our algorithm, the result of mTopkRP has fewer correct
matches. This shows that our method has the highest precision,
and the recall is close to LPM and RANSAC. The visualized
results are consistent with the results of numerical analysis. The
results from the second row to the fifth row show that in addition
to our method, the results of the other three methods all have
incorrect matches. Although it is difficult to compare the recall
through the visualized results, it can be concluded from the
previous numerical analysis that the recall of our results is close
to or even higher than that of LPM and RANSAC. So it can prove
that our algorithm can achieve the highest precision when the
recall is close to other algorithms, and our constraint combined
local and global information is effective. Our method uses the
solution obtained by strict local constraint to construct the global
information, thus avoiding the mismatching caused by the local
similarity of the images. At the same time, to compensate for
the loss of correct matches due to strict local constraints, we
use global constraints to search for potential correct matches to
increase the number of correct matches of the final result. As
the experiment shows, our method achieve effective results.

2) Quantitative Results: To provide a comprehensive quan-
titative evaluation of our method, we next conduct experiments
on all image pairs in the datasets. The initial inlier percentage,
precision, and recall statistics of the five algorithms are reported
in Fig. 7. The results on the datasets are similar to those before,
and our method achieves the highest accuracy when the recall is
similar. In addition, when there are a few outliers in the initial
matching set, all algorithms can achieve good results. However,
when there are many outliers, the results of other methods except
mine will deteriorate sharply. The accuracy of RANSAC and
MR-RPM will decrease to below 0.5, and the LPM will also
be below 0.7, which is like GLPM and mTopKPR. The curves
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TABLE II
COMPARISON OF NUMBER OF CORRECT MATCHES(NCM), PRECISION, RECALL, AND RMSE OF DATA SELECTED FROM TEST DATASET

The results in bold are the best.

of accuracy and recall rate of RANSAC can be simply viewed
as two stages with a large difference, which indicates that the
number of iterations of RANSAC in the first stage is not enough
to find the appropriate transformation matrix. The accuracy of
MR-RPM is the lowest among the algorithms when there are
a large number of error points, because it is based on global

constraints, which is easy to be affected by error points. The
accuracy and recall of our algorithm always remain above 0.8,
which indicates that our strategy is robust. Our method can
dig out the transformation matrix that is suitable for the most
correct matches from the matches containing a large number
of outlier points, and use it to find a more effective result. To
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Fig. 6. Visual results on five test data. Blue and red lines represent the inliers and outliers in the selected correspondence set by LPM, mTopkRP, RANSAC, and
our method, respectively. (a) LPM. (b) mTopkRP. (c) RANSAC. (d) OUR.

Fig. 7. Quantitative comparisons of RANSAC, MR-RPM, LPM, mTopkRP, GLPM, only one stage, and the proposed method on the datasets. (Left to right)
Initial inlier ratio, precision, and recall with respect to the cumulative distribution.

prove it, we compared the results of the algorithm with only the
first step to the result of our method. The result is that through
the second step, the precision and recall of our algorithm are
improved. Running time is also one of the criteria for measur-
ing algorithms. Through time complexity analysis before, our
algorithm can be solved in linear time. Below we quantify the
specific running time through experiments. The experimental
data and the comparison algorithms are the same as the previous
experiments. In order to highlight the time of our algorithm,
we did not take the first stage separately for comparison. The
experimental results are shown in Fig. 8. The experiment result
shows that the RANSAC is a sampling-based algorithm, so it
is the fastest. Because the run time of RANSAC is related to
the number of iterations, its running time has little tendency to

Fig. 8. Quantitative comparisons of RANSAC, MR-RPM, LPM, mTopkRP,
GLPM, and the proposed method on the datasets; run time with respect to the
cumulative distribution; the legend indicates the average running time of each
algorithm.



5204 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 9. Quantitative comparisons of RANSAC, our first step with RANSAC(P-
R), LPM, LPM with global post-processing (LPM-P) and the proposed method
on the datasets. (Left to right) Precision and recall with respect to the cumulative
distribution; the legend indicates the average value of each algorithm.

change. Therefore, the running time is longer than other methods
based on local information when the initial matching set is small.
As the algorithm complexity shows, the running time of our
algorithm is close to LPM, mTopKRP, and GLPM. The reason
why the running time of our algorithm is slightly higher than that
of LPM and GLPM is that the calculation of feature distance and
global information is required in our algorithm. MR-RPM has
the longest running time, mainly due to the slow convergence
speed caused by noise.

3) Further Results: Our method combines global and local
constraints, and they act on the first and second steps, respec-
tively. They are not simple combinations. The first step and the
second step are closely related, and replacing any one of them has
an impact on the final result. The results of the first step provide
a basis for the second step, so the results obtained by using
local constraints in the first step must not only be accurate but
also correctly reflect the transformation information. In theory,
our second step can also improve the effects of other algorithms,
which provides a possibility to improve the existing remote sens-
ing image registration method. To verify them, we did further
experiments. The experimental data has not changed. We replace
the first and second steps of our method with other methods
based on local information and global information, respectively,
to compare with our method. Specifically, we replace our first
step with LPM, and we call this method LPM-P. In addition,
we replace our second step with RANSAC. We call this method
P-R. The P represents the part we proposed. The experimental
results are shown in Fig. 9. From Fig. 9, our first and second
steps can work well. Compared with LPM and RANSAC, the
accuracy and recall of LPM-P and P-R are improved. At the same
time, the experimental results show that our first and second
steps complement each other. When the recall rate is close to
the highest, our results have the highest accuracy. Although
the accuracy and recall rate of P-R are improved relative to
RANSAC, they are not as good as our algorithm. The reason
may be related to the randomness of the RANSAC. Although
our first step reduced the number of false matches, the accuracy
of the transformation matrix obtained by sampling is still not
as good as the transformation matrix obtained by relying on
all matches. Our method effectively combines local and global
information. When the results of local constraints are not as good
as other algorithms, the best precision and near-best recall can
be achieved after combining global information.

V. CONCLUSION

In this article, we have proposed an efficient mismatch re-
moval method for remote sensing image registration, which is
based on the stable local and global constraints between the
two images of the same object or scene. The feature distance
and the consistency of neighbors are introduced to measure
the similarity of two local structures of an image pair. We use
the above measurements to construct an optimization model
and obtain its approximate solution in linear time. Then, the
transformation matrix that is suitable for all the correct matches
is calculated based on the approximate solution. Finally, we
obtain a more effective result under the guidance of the transfor-
mation matrix. The qualitative and quantitative results on various
remote sensing images have demonstrated the robustness and
superior performance of our method for remote sensing image
registration. The advantage of our article is that it fully combines
local and global constraints, and the disadvantage is that the
global transformation model is very important to the final result.
Sometimes, affine transformation cannot handle some complex
nonrigid transformation cases, so we have not found a perfect
global transformation model to handle all registration tasks. It
could be a problem for us to solve later.
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