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Abstract—Land-use mapping (LUM) using high-spatial resolu-
tion remote sensing images (HSR-RSIs) is a challenging and crucial
technology. However, due to the characteristics of HSR-RSIs, such
as different image acquisition conditions and massive, detailed
information, and performing LUM faces unique scientific chal-
lenges. With the emergence of new deep learning (DL) algorithms
in recent years, methods to LUM with DL have achieved huge
breakthroughs, which offer novel opportunities for the develop-
ment of LUM for HSR-RSIs. This article aims to provide a thorough
review of recent achievements in this field. Existing high spatial
resolution datasets in the research of semantic segmentation and
single-object segmentation are presented first. Next, we introduce
several basic DL approaches that are frequently adopted for LUM.
After reviewing DL-based LUM methods comprehensively, which
highlights the contributions of researchers in the field of LUM for
HSR-RSIs, we summarize these DL-based approaches based on two
LUM criteria. Individually, the first one has supervised learning,
semisupervised learning, or unsupervised learning, while another
one is pixel-based or object-based. We then briefly review the
fundamentals and the developments of the development of semantic
segmentation and single-object segmentation. At last, quantitative
results that experiment on the dataset of ISPRS Vaihingen and
ISPRS Potsdam are given for several representative models such
as fully convolutional network (FCN) and U-Net, following up with
a comparison and discussion of the results.

Index Terms—Deep learning (DL), high-spatial resolution
remote sensing images (HSR-RSIs), land-use mapping (LUM),
semantic segmentation.

Manuscript received February 18, 2021; revised April 3, 2021 and April 23,
2021; accepted May 2, 2021. Date of publication May 10, 2021; date of current
version June 8, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 41801241, in part by the Fundamental
Research Funds for the Central Universities under Grant 292018029 and Grant
375201906, in part by the Key Research, and Development Projects of Shanxi
Province under Grant 201903D121142, in part by the Open Fund of the State
Key Laboratory of Remote Sensing Science under Grant OFSLRSS201923,
and in part by the Guizhou Science, and Technology Plan Project under Grant
Qiankehezhicheng [2020] 4Y022. (Ning Zang and Yun Cao contributed equally
to this work.) (Corresponding author: Yuebin Wang.)

Ning Zang, Yun Cao, and Yuebin Wang are with the School of Land Science,
and Technology, China University of Geosciences, Beijing 100083, China (e-
mail: zangning97@163.com; cy12160019@163.com; xxgcdxwyb@163.com).

Bo Huang is with the Chinese University of Hong Kong, Hong Kong (e-mail:
bohuang@cuhk.edu.hk).

Liqiang Zhang is with the Faculty of Geographical Science, Beijing Normal
University, Beijing 100875, China (e-mail: zhanglq@bnu.edu.cn).

P. Takis Mathiopoulos is with the Department of Informatics, and Telecom-
munications, National, and Kapodistrian University of Athens, 15784 Athens,
Greece (e-mail: mathio@hol.gr).

Digital Object Identifier 10.1109/JSTARS.2021.3078631

I. INTRODUCTION

IN RECENT years, HSR-RSIs, including satellite (e.g.,
IKONOS, Quickbird, SPOT, and GaoFen) and airborne

(e.g., unmanned aerial vehicle) remote sensing imagery [1],
are steadily becoming widespread and available [2]. This
article mainly considering optical images. Accurate and timely
LUM for HSR-RSIs plays a significant part in a variety of
fields, such as precision agriculture, land use retrieval, and
land management [3]–[8]. The essence of LUM for HSR-RSIs
is semantic segmentation (or scene segmentation), which is
directed to correctly labeling each pixel of the entire image
with the corresponding semantic category of what is being
represented, as shown in Fig. 1. The land-cover maps are
critical products that present the forms of land use and practical
use, which have an indispensable referential value for the
aggregate plans of land-cover [9].

The complexity of HSR-RSIs increases swiftly as the observa-
tion scale turns finer [10] and the details of the objects get richer.
This leads to intraclass variability increased while decreasing
the interclass disparity, bringing more challenges to the LUM
of HSR-RSIs [11]. On the one hand, diverse imaging conditions
usually reduce the separability among different classes [12]. On
the other hand, each land parcel used for one purpose often
includes multiple categories of land-use with distinct character-
istics [13]. Traditionally, on the basis of the spatial unit of repre-
sentation, artificially designed feature extractor methods that are
popular in the past few decades have experienced the following
three stages: pixel-level, object-based, and per-field [14]–[17].
Nevertheless, traditional approaches that utilize hand-crafted
features lack the ability to precisely describe features of complex
ground objects [4], [18].

And the shallow classifiers lack discrimination because of the
small parameter scale [19]. DL is based on deep architectures
that are comprised of multiple nonlinear transformations [4],
[20]. It emphasizes automatic feature learning from a huge
dataset and tries to resolve the problems of feature extraction
and classifier design. Recently, deep architectures, such as con-
volutional neural network (CNN), which have its superiorities
in high-level semantic features representation, have indicated
tremendous potential in semantic segmentation [21]. In the as-
pect of segmentation accuracy and even efficiency, CNN greatly
surpasses other approaches mentioned previously.

Although new DL techniques have made great contributions
in LUM for HSR-RSIs in recent years, to the best of au-
thors’ knowledge, there is still lacking a relatively general and
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Fig. 1. Examples of remote sensing images (left) and corresponding land use
labels (right) from the ISPRS Vaihingen dataset.

systematic survey that covers the existing methods of this field.
This article, therefore, aims to summarize the development of
DL-based LUM methods for HSR-RSIs. Most recently, there
also have been a series of reviews related to DL [22]–[25]
in remote sensing. These papers and our review all present
basic DL models of current-state-of-the-art DL methods and
classifiers for remote sensing data. However, the aforementioned
reviews [22]–[24] focus on reviewing remotely sensed hyper-
spectral image classification. The review of [25] mainly con-
centrates on providing a general framework of DL for RS data
analysis, including image processing, high-level semantic fea-
ture extraction, scene understanding, etc. Moreover, this article
mainly focuses on considering optical HSR-RSIs and providing
an updated review about widely used DL models for LUM. We
further compare several semantic segmentation models that are
related to LUM based on two largely used datasets. The main
contributions of this article are summarized as follows.

1) A detailed and in-depth review of the DL-based LUM
methods is provided. We also summarize the DL-based methods
that are mainly described in this article from two LUM criteria.

2) We provide an extensive survey of existing datasets, which
may be useful for the LUM of HSR-RSIs.

3) The performance evaluation of representative semantic
segmentation models is given. The overall performance of LUM
has gradually improved, and the U-Net performs best both on
the Vaihingen and Potsdam datasets.

This article (as shown in Fig. 2) is organized as follows.
Section II introduces high spatial resolution datasets commonly
used in the literature for semantic segmentation. In Section III,
the related basic DL models for computer vision are given.
We then exhaustively review the DL-based LUM methods for
HSR-RSIs. In Section IV, we summarize these aforementioned
methods based on two criteria. The developments of semantic
segmentation and single-object segmentation related to LUM
are described in Section V. In Section VI, the performances
of several current-state-of-the-art DL models are compared and
discussed on two widely used semantic segmentation bench-
marks. In Section VII, we conclude this article and the emerging
research trend.

II. DATASETS FOR DL-BASED LUM

The increasing number of HSR-RSIs enable building large-
scale segmentation datasets that play an indispensable part in
advance of semantic segmentation. In the past few years, several
publicly available HSR-RSIs benchmark datasets have been pro-
posed by different research groups for LUM of remote sensing
images [26]–[35].

As a matter of fact, in the following, we first illustrate publicly
available and the most popular semantic segmentation datasets
currently for LUM of HSR-RSIs. Then, we describe several
single-object segmentation datasets for road and building detec-
tion. Single-object segmentation, a branch of semantic segmen-
tation, extracts a certain kind of object from HSR-RSIs. In order
to review datasets comprehensively and clearly, we list these
kinds of datasets separately. All datasets pointed here to provide
proper pixel-based ground truths. Table I lists eight publicly
available semantic segmentation datasets for LUM of HSR-
RSIs. Table II describes single-object segmentation datasets
for road and building detection especially. Some examples of
semantic segmentation and single-object segmentation datasets
can be found in Fig. 3.

Zurich Summer Dataset: [32] is taken from the Quickbird
images of Zurich city in 2002. It contains 20 multispectral
images at a high resolution of 0.62 m and is classified into eight
classes. The size of the images is 1000×1150 approximate.

EvLab-SS Dataset: [31] contains 35 satellite images and 25
aerial images with a different resolution from 0.1 to 2 m. The
average size of the images is 4500×4500 approximate. It is
classified into 11 major classes.

DeepGlobe Land Cover Classification Dataset: [36] is a
public dataset that focuses on rural areas. It comprises a total
of 1146 satellite images, the size of 2448×2448. It is divided
into training/validation/test sets (803/171/172).

RIT-18 Dataset [37] is taken by an unmanned aircraft system
in Hamlin Beach State Park, New York. The average size of the
images is 10 000×7000 approximately. Each image (0.047 m of
resolution) comprises six bands: near-infrared, red, green, blue,
and two other infrared bands.

Gaofen Image Dataset (GID): [38] contains 150 Gaofen-2
images (4 m) acquired from China. The size of the images is
6800×7200 approximately.

2018 IEEE GRSS Data Fusion Contest Dataset: [36] is ob-
tained from the National Center for Airborne Laser Mapping at
a resolution of 0.05 m. It is classified into 20 classes.

Massachusetts Dataset: [39], aiming to detect roads and
buildings, utilizes images released by the state of Massachusetts
state. All images were three-channel at a resolution of 1 m
and 2250 Km2 of coverage. The input images and the target
maps generated from OpenStreetMap are publicly available.
The Massachusetts Building dataset is composed of 151 aerial
images, and the roads datasets contain 1171 aerial images.

Buffalo Dataset: [39] is composed of 30 aerial images of
Buffalo city at a resolution of 1 m and all with a size of 609×914.

Inria Aerial Image Labeling Dataset: [40] covers 810 Km2.
The ground truth is labeled into the following two semantic
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Fig. 2. Framework of this article.

TABLE I
EIGHT PUBLICLY AVAILABLE SEMANTIC SEGMENTATION DATASETS FOR LUM OF HSR-RSIS

TABLE II
SINGLE-OBJECT SEGMENTATION DATASETS FOR ROAD AND BUILDING DETECTION
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Fig. 3. Some examples of semantic segmentation and single-object segmentation datasets.

categories: buildings or not buildings. It contains 180 aerial
images (0.3 m). The size of the images is 5000×5000.

SpaceNet Dataset: [41] comes from five SpaceNet regions,
and the image size is 650×650. These five areas are Rio (0.5
m), Las Vegas (0.3 m), Paris (0.3 m), Shanghai (0.3 m), and
Khartoum (0.3 m).

AIRS Dataset: [42] is taken from the city of Christchurch
with a very high ground resolution of 0.075 m. It is composed
of 226 342 labeled buildings. The ground truth is labeled into
the following two semantic classes: roof and not the roof.

WHU Dataset: [43] comprises an aerial dataset, satellite
dataset I, and satellite II, all with a size 512×512 at a spatial
resolution of 0.075 m. It contains about 22 000 independent
buildings. The satellite dataset I contains 204 images with a
different resolution from 0.3 to 2.5 m. The satellite dataset II is
cropped into 29 085 buildings with a 2.7 m ground resolution.

III. REVIEW ON BASIC DL METHODS AND LUM METHODS

In this section, we first discuss three basic DL methods (i.e.,
DBN, stacked autoencoder, and CNN) that have been used for
LUM. We next review DL-based LUM methods comprehen-
sively. As we all know, there are two criteria to determine, which
type the LUM method belongs to. As a result, we then compare
and summarize the mentioned DL-based LUM methods accord-
ing to the two criteria.

A. Basic DL Methods

For achieving better segmentation results of remote sensing, it
cannot lack the related leading approaches to provide solutions.
Recently, DL algorithms can offer basic tools for solving this
problem. DL has a wide application in varieties of computing
vision challenges now, such as semantic segmentation [44], [45],
image classification [46], [47], image retrieval [48], [49], and
object detection [50], [51]. To distinguish the land-use category
of each pixel of the HSR-RSIs (e.g., building, road, and water),
LUM is regarded as multilevel semantic segmentation [52].
Three related DL approaches for computer vision are listed
below, namely deep belief network (DBN) [53], stacked (De-
noising) autoencoder [54], and CNN [55], all of which have
made major contributions to the LUM of HSR-RSIs.

1) DBN: DBN [53] proposed by Hinton et al. has demon-
strated robust unsupervised characteristic learning capability in
the field of computer vision. Classic DBN structure contains
multilayer restricted Boltzmann machines (RBMs) and a back-
propagation (BP) network. Fig. 4 presents the graph architecture
of an RBM. RBM is a two-layer neural network that including
visible layer and hidden layer. Vector V and H represents the
value of the neurons in the visible layer and hidden layer, respec-
tively. The visible layer and the hidden layer are fully connected,
which is similar to deep CNN (DCNN). Fig. 5 illustrates a classic
DBN comprised of stacking multilayer RBMs and a BP network.
W represents the RBM weight matrix. The training process of
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Fig. 4. Graph architecture of RBM.

Fig. 5. Graph architecture of classic DBN.

DBN contains pretraining and fine-tuning. Pretraining is carried
out through unlabeled samples in an unsupervised manner. The
greedy algorithm is used to optimize each layer during training.
The parameters of each layer of RBM are adjusted, respectively.
After training one layer, the output of this layer is regarded as
the input of the next layer to continue training the next RBM.
After pretraining, supervised learning is used to train the last
layer of the BP network. The error is propagated back layer by
layer. Finally, the weight of the entire DBN network is fine-tuned
through the BP method. It overcomes two problems of long
training time and easily falls into local optimal.

2) Stacked (Denoising) Autoencoder: Stacked autoencoder,
the main idea is to train the input of every level of the encoder to

Fig. 6. Graph architecture of Autoencoder.

learn more powerful feature expression [56]. It contains a multi-
layer unsupervised autoencoder presented in Fig. 6, similarly to
the way that DBN utilizes a BP network and RBMs. Autoencoder
consists of the following two parts: an encoder and a decoder.
The encoder creates a hidden layer (i.e., h(xi)) containing a
low-dimensional vector of the information of the input data. The
decoder reconstructs the input data from the low-dimensional
vector of the hidden layer. The theory of training stacked au-
toencoder is equal to that previously illustrated for DBN, except
that autoencoders are used instead of RBM as the main building
block. Unlike RBM, one obvious advantage of the autoencoder
is to allow nearly any layers to be parameterized [57]. Some
variants of autoencoder include sparse autoencoder (SAE) [58],
denoising autoencoder (DAE) [54], [59], and contractive autoen-
coder [60].

3) CNN: CNN that imitates the biological visual percep-
tion mechanism is a kind of neural network model with a
deep architecture [20]. It has shown a strong feature learning
ability in the computing vision domain. After [61] proposed
the AlexNet that outperforms previously proposed models and
makes a breakthrough in the contest, there has emerged a series
of superior CNN models, such as VGGNet [62], GoogleNet [63],
ResNet [64], MoblieNet [65], DenseNet [66], SENet [67], and
SKNet [68].

A CNN model usually contains various layers of different
functions (see Fig. 7), where conv, pool, and F denote convolu-
tional, pooling, and fully connected layer. Convolutional layers
play a significant role in feature extraction from HSR-RSIs. The
operation of the pooling layer can down-sampling the feature
map spatially. The fully connected layer aims to perform global
features extraction and classification.

In recent years, inspired by the successful breakthrough of
DL and the development of computer vision, DCNN, among
the related computer vision methods, has gradually become the
leading model in semantic segmentation field [69] and has a
significant impact on HSR-RSIs for LUM. As a result, we mainly
focus on reviewing CNN-based approaches of LUM for HSR-
RSIs in the following content of this article.
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Fig. 7. Graph architecture of a conventional CNN, which contains two convolutional layers (conv1, conv2) followed, respectively, by a rectified linear units to
process the output, two pooling layers (pool1, pool2), two fully connected layers, and a SoftMax layer.

B. DL-Based LUM Methods

Recently, many researchers have made significant contri-
butions to LUM for HSR-RSIs, driven by its wide range of
applications. From DBN to stacked autoencoder and then to
CNN, DL models constantly update LUM records. These deep
architectures that extract image information in terms of com-
puter vision can greatly improve the accuracy of LUM for
HSR-RSIs with a large amount of unknown information, thereby
have achieved outstanding performance [4]. Compared with the
previously mentioned LUM methods, CNN has the superiority
of end-to-end feature learning and the potentiality of learning
relevant contextual features automatically. Just being given the
input data and output, the end-to-end network can automatically
learn “hand-crafted” features that traditional methods have to
get from the input data. Meanwhile, CNN explores the com-
plex and high-level visual features hidden in the image, which
cannot be extracted by hand-craft features-based approaches.
After successfully applying CNN with a strong generalization
and transferability to large-scale computer vision classification
tasks, by 2015, the use of CNN finally stands out in the remote
sensing data analysis domain [25], [70]. A great number of
CNNs that are considered the most successful DL models have
produced the best LUM performance.

Currently, most of the CNN-based LUM approaches can
generally be assigned to the following two main categories: 1)
extracting high-level image features through DCNN; 2) semantic
segmentation through the deep end-to-end model. The second
method uses the category probability output by the deep model
to predict the category of land cover. Specifically, this section is
devoted to reviewing LUM approaches for HSR-RSIs based on
five kinds of architectures, including DBN or stacked autoen-
coder, combining CNN and shallow classifier such as support
vector machine (SVM) and logistic regression (LR), category
probability generated by CNN, FCN, also including recently
popular transfer learning. Table III gives a summary of LUM
methods based on DL.

1) LUM Based on DBN or Stacked Autoencoder: Due to
their own limitations, DBN and stacked autoencoder are not
widely applied to LUM for HSR-RSIs, and the architectures
of these two models are similar, so we review them together.

In practical applications, the depth of the DBN network has a
significant impact on the classification effect. Higher network
depth can discover more abstract feature representations and
improve the classification performance [71]. However, too many
layers may increase training time, reduce network generalization
performance and training efficiency. The appropriate network
depth is often related to specific applications and datasets. There
also is a phenomenon of overfitting [72].

We can also find some works proposed to tempt to tackle these
problems. Mnih et al. [73] used DBN detecting roads in high-
resolution aerial images, which initially applies the DL model to
remote sensing. A method in [74] based on DBN that combines
the advantage of supervised learning and unsupervised learn-
ing achieved better homogenous mapping results than SVM,
neural networks, and stochastic expectation–maximization in
polarimetric synthetic aperture radar data. However, this based
on the DBN method cannot directly extract high-dimensional
image features, and the learning process is slow [75]. The
original stacked autoencoder [76] focused on extracting 1-D
spectral features that are widely used in hyperspectral images
and not enough to support HSR-RSIs classification. Chen et al.
applied a stacked autoencoder to hyperspectral remote sensing
image LUM [77]. Applied stacked autoencoder to African LUM
and got the conclusion that stacked autoencoder has obvious
superiority in classification accuracy, predicted time, and the
LUM performance was done by [78].

2) LUM Based on Combining CNN and Shallow Classifier:
This kind of approach uses CNN as an image feature exactor
to extract high-level semantic information of HSR-RSIs and
combines a shallow structure classifier, such as RF and mul-
tilayer perceptron (MLP) for feature classification [79]–[84].
Razavian et al. [85] showed that training linear SVM classifier
on CNN deep feature representation performs better than highly
tuned most advanced algorithms in all classification tasks of
computer vision on all kinds of datasets. Zhao et al. [79] uti-
lized multiscale CNN (MCNN) to train LR classifier for initial
LUM. MCNN can learn spatial-related deep features combined
with spectral features. The ability to learn new spatial features
performs better than existing methods such as a multi-index
learning approach [86]. Paisitkriangkrai et al. [82] introduced an
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TABLE III
SUMMARY OF LUM METHODS BASED ON DL

effecting semantic pixel labeling approach. They used multires-
olution CNN deep features, hand-crafted features extracted by
RF classifier, and a pixel-level conditional random fields (CRFs)
that is applied to the label probabilities for pixel classification in
HRS-RSIs. However, these methods are suitable for the situation
where the number of samples is limited. Because they do not
need to adjust the parameters of the model, they only need
to train the shallow classifier that cannot discriminate complex
information well.

3) LUM Based on Category Probability Generated by CNN:
The CNN-based methods use pixels or grids as the unit to
assign category labels of HSR-RSIs and combine segmentation
or CRF to extract accurate feature edge information. They can
make up for the inaccuracy of traditional classifiers in classi-
fying complex HSR-RSIs [87]–[91]. Maggiori et al. [87] used
input images to produce classification maps. They train CNN
directly and conclude that CNN can be utilized end-to-end to
process a great number of satellite images. A multilayer DL
architecture for multisource multitemporal image classification
presented by [88] is based on a pixel level. Volpi et al. [89]
introduced a CNN-based approach labeling each pixel on the
initial resolution of HSR-RSIs. The novel architecture proposed
by [91] follows an hourglass-shaped network (HSN) designed
for the per-pixel semantic segmentation of HRS-RSIs. HSN
uses down-sampling and up-sampling, respectively, predicting
LUM results. Maggiori et al. [90] designed a novel semantic
labeling network architecture called MLP (after MLP). Their
experiment shows that such appropriate architecture leads to a
win-win situation. An attentive spatial temporal graph convolu-
tional neural network (GCNN) proposed by [92] utilizes spatio-
temporal information. It is the first spatial temporal GCNN
strategy specifically designed to deal with specific features

characterizing HSR-RSIs. However, these CNN-based ap-
proaches lack in extracting boundary features accurately [87],
[90].

4) LUM Based on FCN: As an alternative to the above-
mentioned method, end-to-end CNN models [88], [90] such as
FCN [87], [93] do not need to use other classifiers to label the
land use of HSR-RSIs. FCN that consists of an encoder–decoder
architecture and removes a fully connected layer can predict the
correct label maps of the entire input image directly. It also
can restrain the fine structure of spatial information without
segmentation postprocessing. Thus, such a model is more suit-
able for the LUM of submeter-level ultrahigh remote sensing
images [94], [95]. Recently, there have emerged a variety of
FCN-based LUM methods by exploiting different strategies of
FCN. Fu et al. [96] introduced an HSR-RSIs LUM approach
based on an improved FCN model. In order to reduce the noise
generated by pixel-based LUM, the region boundaries were re-
fined utilizing fully connected CRFs according to the approaches
of [82], [97] and so on. Guo et al. [93] coupled a supervised
LUM method that relied on an atrous spatial pyramid pooling
(ASPP) network with postprocessing. This method outperforms
the basic FCN and FCN-8 s methods of [98], the MLP approach
presented in [99], and the ASPP approach introduced by [100]
that all performed HRS-RSIs land-use classification and image
segmentation successfully. Persello et al. [95] delved into a deep
FCN that outperforms state-of-the-art CNNs. They use dilated
convolutions of increasing spatial support to detect informal
settlements in HRS-RSIs. Sherrah et al. [94] used FCN with
no down-sampling to predict aerial imagery labels. To make
better use of imagery features, they experiment with fine-tuning
a pretrained CNN. In [101], a nonoverlapping grid-based method
is proposed to train FCN-8 s, which develops a novel framework
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for better boundary segmentation. A time and memory efficient
LUM approach named FastFCN was designed by [102], which
also has not a great loss of accuracy than other existing methods
when experiments on GID.

However, FCN techniques usually depend on deep MCNN
frameworks, which need numerous trainable parameters [27]
and cause a loss of fine resolution details. There also exists
lots of redundancy that often lead to vanish gradients in BP
and diminish features reutilize in forwarding propagation [103].
In addition, FCN-based LUM approaches do not consider the
relationship among pixels and spatial regularity [93]. To re-
solve these problems, an effective approach is to retain the
structure of detailed spatial information [95], [104] obtained
through a complementary classification framework instead of
the down-sampling process. A hybrid classification method that
uses a rule-based fusion scheme, which combines CNN and
MLP, was devised by [81]. The integrated classifier MLP-CNN,
respectively, compensates for the restrictions of CNN and MLP.
To improve the segmentation accuracy, an object-based CNN
(OCNN) combined with small and large windows that mapping
on very fine spatial resolution images was introduced by [14].
In practical LUM applications, the number of parameters in
the DCNN increases with layers, which causes ground-truth
samples insufficient to train high-quality classifiers.

5) LUM Based on Transfer Learning: Since per-pixel la-
beled HSR-RSIs are not publicly accessible, they are difficult
to get. To decrease the number of images need for training,
transfer learning is recognized as a potential method [105]. It
can make trained models resolve specific tasks and adapt them
to new but related tasks. Therefore, a method based on the
semishifted DCNN (STDCNN) was devised for multispectral
image classification [4]. An unsupervised restricted deconvolu-
tion neural network framework that uses an FCN and few labeled
pixels was designed by [106]. This model learns pixel-to-pixel
LUM for HSR-RSIs. However, there are still some problems
in applying deep models to multisource HSR-RSIs, such as
the lack of transferability of the model. To solve this problem,
Tong et al. [107] introduced the approach of pseudo-labeling and
sample selection. They formulate a hybrid mapping scheme by
combining hierarchical segmentation and patch-based mapping.

IV. SUMMARY OF DL-BASED LUM METHODS

In what follows, an in-depth summary of the abovementioned
LUM approaches, according to two criteria, is carried out.
The first criterion is whether the mentioned method belongs to
supervised learning, semisupervised learning, or unsupervised
learning. The other one is whether the method is pixel-based or
object-based.

A. Supervised Learning, Semisupervised Learning, or
Unsupervised Learning

There are three related primary types of LUM algorithms
applied to HSR-RSIs. A supervised DL model [9], [10], [90],
[95] generally requires a massive number of labeled images input
for training. Although the CNN model [81], [110] that relied on
supervised learning has greatly improved the LUM performance

of HSR-RSI. An unsupervised learning approach [111]–[113]
that utilizes small amounts of images with no labels is still
aroused attention continuously as labeled training samples are
not largely available until now. It is used for pretraining that can
initialize the parameters to the local minimum. In the domain
of remote sensing, the supervised learning approaches used for
semantic segmentation are costly in labeling images, while a
small amount of labels leads to a decline in the performance of
the trained network. Semisupervised learning techniques [114]–
[116], the combination of supervised learning and unsupervised
learning, can solve this problem.

1) Supervised Learning: In [56], Ding et al. proposed a
stacked encoder-based LUM approach. Their experiments show
that stacked encoder outperforms artificial neural networks,
SVM, decision trees, and a series of nonparametric classi-
fiers [117], [118] verified by the image of GF-1. Paisitkriangkrai
et al. [82] used massively available training data to train CNN
for learning features. However, pixel-wise labeled HSR-RSIs
are not publicly accessible. They are cost-intensive and time-
consuming. To overcome these problems, some augmentation
techniques such as transfer learning [119], [120] and active
learning [121], [122] have been developed. Two main transfer
learning methods have been studied: supervised learning and
semisupervised learning methods. In the former method, the
training dataset can be used both in the source and target domains
is presumed.

In comparison, if only use unlabeled data in the target do-
main, these methods are defined as semisupervised. However,
semisupervised approaches do not need strict and standard
matching between the domains of source and target [123], [124]
but largely rely on the ability of the classifier to learn the
structural information of the target domain. Moreover, a lot of
complex models contain a huge number of parameters, which
easily lead to overfitting and bring greater challenges to train a
high-performance classifier.

2) Unsupervised Learning: Some unsupervised learning ap-
proaches, such as DBN and stacked autoencoder, have been
successfully applied to LUM. However, the characteristics of
unsupervised learning, training samples with no label bring lots
of challenges and limits for the LUM of HSR-RSIs. Fortunately,
domain adaptation [125]–[128], a particularly representative
approach of transfer learning that tries to harness information
from the dataset of other areas where have available labels, aims
to compensate for the mismatch between the training images
and testing image distributions [129]. Its purpose is to use
informative source and fully labeled domain samples to improve
the performance on an unlabeled target domain [130].

Domain adaption approaches have been applied to unsuper-
vised classification problems [131]. In [132], a domain adapta-
tion algorithm was designed for the LUM of remote sensing im-
ages. This framework is based on class centroid and covariance
alignment that incorporates spatial knowledge of images. Liu et
al. [133] proposed a novel domain adaptation for unsupervised
transfer learning, named multikernel jointly domain match-
ing. They perform their experiments on HSR-RSIs and multi-
modal remote sensing datasets, which shows the performance of
LUM is improved than other state-of-the-art domain results. In
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TABLE IV
TRAINING AND CLASSIFICATION PROCESS OF SEVERAL TYPICAL APPROACHES FOR LUM OF HSR-RSIS

addition, more recently explored methods [134]–[136] have
adopted the adversarial training framework, where the feature
network generates domain-invariant features to fool the dis-
criminator that works on image-level. Another method of se-
mantic segmentation based on unsupervised domain adaptation
is pseudo-label retraining [137], which finetunes the trained
model on the source images by taking high-confident predic-
tions as pseudo ground truth for the unlabeled images. Other
approaches for working in an unsupervised manner, such as
the framework based on robust manifold matrix factorization
and its out-of-sample extension, which achieves competitive
clustering accuracy and running time for hyperspectral image
classification [138].

3) Semisupervised Learning: These techniques based on
semisupervised learning require few labeled data and plenty of
unlabeled data to train the classifier. The core idea of semisuper-
vised is to try to find a more precise classification criterion than
utilizing merely labeled samples [139]–[141]. Laine et al. [142]
presented a simple CNN-based approach for training CNN in a
semisupervised way that effectively reduces the classification er-
ror. Self-training and cotraining are widely used semisupervised
learning techniques [143]. In general, semisupervised-based
learning approaches are well-suited for LUM as a great number
of unlabeled HSR-RSIs exist.

At present, the research on unsupervised LUM of HSR-RSIs
based on DL is still in the development stage. In addition to the
difficulty of the problem, its research progress is not as good as
other computer vision directions. At the same time, experiments
are only performed on some simple datasets and have not been
applied to actual scenes on a large scale. Table IV summarizes
the training process and classification process of several typical
approaches for LUM of HSR-RSIs.

Fig. 8. Comparing patch-based LUM and pixel-to-pixel semantic labeling.

B. Pixel-Based or Object-Based

The pixel-based LUM approaches act on a single pixel. In
contrast, the object-based LUM approaches split an HSR-RSI
into segmented objects or separated regions as its functional
units. As for HSR-RSIs that contain complex details and small
objects, it is using the pixel-based LUM approaches may cause
poorer interpretation effects owing to the “salt and pepper ef-
fect” and lack of semantic meaning of the objects. As a result,
pixel-based semantic classification unable to meet the increasing
demand for HSR-RSIs. It makes more sense to identify ground
objects to efficiently classify HSR-RSIs rather than pixels.

1) Pixel-Based: Recently, CNN has been adjusted to perform
pixel-based LUM (i.e., semantic segmentation) of HSR-RSIs. In
practical applications, there are two methods that use CNN for
HSR-RSIs segmentation, as shown in Fig. 8. The first one is a
patch-based approach [82], [107], [145] that trains CNN to infer
the central pixel of patches segmented from the original input
image by looking over the surrounding area.

This usually trains small HSR-RSIs patches and then to clas-
sify every pixel by utilizing a sliding window way. So obviously,
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TABLE V
COMPARISON OF PATCH-BASED AND PIXEL-TO-PIXEL BASED SEMANTIC LABELING FOR HSR-RSIS

TABLE VI
TWO STEPS OF OBJECT-BASED CLASSIFICATION

Bold entities highlight the key points.

this kind of approach does not apply the whole image as input,
which leads to redundant processing and decrease efficiency
when predicting labels of large scale HSR-RSIs. The second seg-
mentation method is based on pixel-to-pixel and end-to-end [33],
[95], [110], [146]. It can directly infer pixel-based labels of the
whole patch or image. Deconvolution, the inverse process of
convolution, realizes directly generates the results of per-pixel
classification [87], [98], [147]. It takes advantage of the idea of
FCN and converts the feature map from a convolutional layer
to the original size [106]. Table V illustrates the comparison of
patch-based and pixel-to-pixel-based LUM for HSR-RSIs.

2) Object-Based: Compared with patch-based LUM meth-
ods, the object-based approaches can use the segmented image
with precise boundaries to classify image objects efficiently.
Segmented images have more useful information (e.g., objects’
shape and topologies) than pixels and patches of image [10].
An object-based LUM method [4], [10], [14], [17], [82], [93],
[148]–[150] consists of the following two steps [151]: (i) HSR-
RSIs segmentation to generate a segmented image (i.e., objects)
and (ii) semantic segmentation of the segmented image. The
results of semantic segmentation are, therefore, influenced by the
performance of the HSR-RSIs segmentation process. Table VI
presents two steps of the object-based classification of several
representative papers.

V. SEMANTIC SEGMENTATION RELATED TO DL-BASED LUM

Semantic segmentation (or scene segmentation), the essence
of LUM for HSR-RSIs, is dedicated to split an input scene
or image into its various object components associated with
semantic categories that including discrete objects (e.g., car,
tree) and stuff (e.g., forest, grass, water, and so on) in computer
vision research [152], [153]. The performance of semantic seg-
mentation in natural datasets has been continuously improving,
and research outcomes have gradually been applied to the field
of remote sensing, especially LUM for HSR-RSIs. It is one of
the long-standing and challenging problems. Recently, it has
been dramatically improved over the past years thanks to huge
breakthroughs of DL models [154]–[157].

The most advanced end-to-end semantic segmentation models
have been encouraged mainly by FCN [98], in which the con-
volutional layer replaces the fully connected layer in standard
CNN. They have achieved perfect results on lots of natural
datasets, for example, Cityscapes [158]. To mitigate the is-
sue of spatial information loss caused by FCN, Ronneberger
et al. [159] presented U-Net that adopts skip connections be-
tween each encoder and decoder module. There also are some
model variants introduced to enhance contextual aggregation.
Noh et al. [44] introduced a deconvolution network to predict
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TABLE VII
EXTENDING CNN ARCHITECTURES FOR SEMANTIC SEGMENTATION APPLIED

TO REMOTE SENSING DATA

∗ The idea of DenseNet is used.

segmentation masks. Chen et al. [100] exploited ASPP that cap-
tures object and image context to segment object at multiscale.
Based on DeepLabv3 [160], another recent DeepLabv3+ [161]
was added a functional decoder module to optimize the segmen-
tation performance. Jegou et al. [162] extended DenseNet [163],
namely fully convolutional DenseNet, to handle the problem of
semantic segmentation issues, which do not need any pretraining
and further postprocessing module. To decrease the number of
training parameters and computational time, Badrinarayanan
et al. [164] designed a deep FCN architecture termed SegNet.
The SegNet provides a better performance in inference memory-
wise than the well-known FCN [98], DeepLab-LargeFOV [97],
and DeconvNet [44]. The pyramid scene parsing network pro-
vided by [165] achieves the most advanced results on the scene
parsing task. To address the problem of lacking pixel-level
annotated data, Souly et al. [166] introduced a semisupervised
architecture that contained a generator network to give addi-
tional training images. This architecture relies on the generative
adversarial network. To increase feature similarity of the same
object, Ding et al. [167] explored to spread information in
the entire image under the control of the object boundary and
proposed unidirectional acyclic graphs (UAGs). Du et al. [168]
first incorporated DeepLabv3+ and object-based image anal-
ysis strategy to label HSR-RSIs, which achieves completive
accuracy. Table VII shows the extending CNN architectures for
semantic segmentation applied to remote sensing data.

Single-object segmentation is a branch of semantic segmen-
tation. It extracts a certain kind of object (e.g., building, road,
vehicle, and car) from HSR-RSIs based on the given specific
features and rules. Building segmentation [173], [176], [177]
uses specific criteria of building characteristics such as the
shadow that they cast [178], the uniform spectral reflectance
values [179], full resolution binary building mask [37], and so
on. HSR-RSIs also provide a possibility for segmenting linear
features such as road [180]–[182]. There have been proposed
a series of CNN-based road segmentation models such as Stix-
elNet [183], FCN [175], and MAP [184]. In the past several
years, numerous models for segmenting road, building, and
vehicle have been used for practical applications. Amit et al.
detected building changes via semantic segmentation to update
maps [185]. Mnih et al. [73] proposed to detect the road by
using RBMs to initialize the feature detectors. In [186], a novel
algorithm that classifies on-board images was presented. This
method trains a general dataset to generate training labels and
segments road areas in an individual image. Buslaev et al. [187]

proposed an FCN that consists of ResNet-34 and the decoder to
automatic extract road. Nicolas et al. [188] applied SegNet to
vehicle detection and segmentation in remote sensing images.
In [189], a global context based dilated CNN that is similar to
the structure of U-Net was proposed, which aims to address
the challenges of complex backgrounds and view occlusions of
buildings and trees around a road when segmenting road.

The essential difference between semantic segmentation and
single-object segmentation is that single-object segmentation
belongs to binary classification. Their data input and network
architecture are the same. The activation function of the last
layer of semantic segmentation is softmax, while single-object
segmentation is sigmoid. The loss functions of these two kinds
of segmentation are also different. The loss function of seman-
tic segmentation is categorical_crossentropy, while the other
loss function is binary_crossentropy. A comparison of semantic
segmentation and single-object segmentation can be concisely
illustrated in Table VIII.

VI. PERFORMANCE COMPARISON AND DISCUSSION

In recent years, a variety of semantic segmentation models
have been proposed. We select four state-of-the-art architec-
tures, including SegNet [164], U-Net [159], FCN-32s [98], and
FCN-8s [98] to compare segmentation performance. They all
take VGG-16 as the backbone. We evaluate them on two widely
used datasets of ISPRS Vaihingen and Potsdam. Because DL-
based semantic segmentation models rely on large-scale data,
we augment training samples.

A. Datasets

The ISPRS 2-D semantic labeling contest dataset contains
aerial images of Vaihingen and Potsdam cities in Germany.
Each dataset is labeled into the following six categories: im-
pervious surfaces, buildings, low vegetation, trees, cars, and
clutter/background. The background category contains water
bodies and other objects (such as containers) that are different
from other defined categories. These objects usually belong to
uninteresting semantic objects in urban scenes.

The Vaihingen dataset: It comprises 33 or thophoto titles at
a ground resolution of 9 cm. In total, 16 of them are labeled.
In total, 17 of them are used as the test image. The size of the
images is 2100×2100 approximate. The single image comprises
the following three bands: near-infrared, red, and green.

The Potsdam dataset: It contains 38 orthophoto titles (5 cm).
In total, 24 of them are labeled. In total, 14 of them are used as
the test images. The size of the tiles is 6000×6000. The single
image comprises the following four bands: red, green, blue, and
near-infrared bands.

B. Evaluation Metrics

we use three confusion metrics, including Kappa coefficient,
overall accuracy (OA), and user’s accuracy [190]. Let k denote
the number of categories, and letN be the total number of pixels,
let Nij denote the number of pixels that should be of class i but
are predicted to be of class j, let Ni+ be the total number of
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TABLE VIII
COMPARISON OF SEMANTIC SEGMENTATION AND SINGLE-OBJECT SEGMENTATION

pixels of class i in the test images, let N+j be the number of
pixels predicted to class j. The metrics are defined as follows:

Kappa coefficient: It evaluates the inter-rater consistency and
reliability for the segmentation result

Kappa =

N
k∑

i=1

Nii −
k∑

i=1

Ni+ ∗N+j

N2 −
k∑

i=1

Ni+ ∗N+j

(1)

where

Ni+ =
k∑

j=1

Nij (2)

N+j =
k∑

i=1

Nij . (3)

OA: It is a metric that measures the number of truly classified
pixels divided by the total pixels of the whole test image.

OA =

k∑
i=1

Nii

N
. (4)

User’s accuracy: It refers to the possibility that the cor-
responding ground truth category is i when the classifier is
assumed to classify pixels into category i

user′s accuracy =
Nii

Ni+
. (5)

C. Implementation Details

We split the labeled images of the Vaihingen dataset into a
training dataset (12 images of ID 1, 3, 5, 7, 11, 13, 15, 17, 21,
23, 26, 28) and a test dataset (4 images of ID 30, 32, 34, 37). We
randomly crop the training images into a size of 256×256 and
flip and rotation images for data augmentation. Thus, we can
obtain 12000 patches for the process of training. We train these
four models with a batch size of 16 and other same hyperpa-
rameters setting, except that we use different learning rates for
different models. For the Potsdam dataset, we also divided the
labeled images into a test dataset (6 images of ID 2_10, 3_10,
4_10, 5_10, 6_10, 7_10) and a training dataset (the remaining
18 images). Then, we can obtain 14 000 256×256 patches
for training when performs the same process as the Vaihingen
dataset. Pixels of clutter/background occupy a tiny percentage.
Therefore, we report the accuracy of the remaining five classes
merely. We are training from scratch of models without bells
and whistles. All performed experiments are conducted in the

Fig. 9. Visualization results of the ID 30 of the Vaihingen dataset. (a) Raw
image. (b) Corresponding ground truth. (c)–(f) Semantic segmentation results
of SegNet, FCN-32 s, FCN-8 s, and U-Net, respectively.

TensorFlow framework with the platform of an NVIDIA 2080Ti
GPU.

D. Experimental Results

1) Vaihingen Dataset: The accuracy results of the semantic
segmentation of the four models are listed in Table IX. We
also visualize the results of ID 30, as displayed in Fig. 9, to
more easily compare the semantic segmentation performance
of different models. As can we see from Table IX, the over-
all performance of LUM of the ISPRS Vaihingen dataset has
gradually improved, though small objects such as cars show a
relatively low accuracy. We observe that the U-Net achieved the
best OA of 86.08% and Kappa of 0.740, but the segmentation
maps of the building are jagged at the edge. As for FCN, the
boundary of the object is blurred, and the result is reduced
visually, so it is usually impossible to detect objects that are
small or with many boundaries. But the performance of the car
category in FCN-8 s (user’s accuracy: 50.55%) is higher than in
FCN-32 s (user’s accuracy: 13.05%), which demonstrates it is
significant for segmenting small areas of low-level features. The
category of impervious (user’s accuracy: 85.93%) also illustrates
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TABLE IX
SEMANTIC MAPPING RESULTS OF THE ISPRS VAIHINGEN DATASET

TABLE X
SEMANTIC MAPPING RESULTS OF THE ISPRS POTSDAM DATASET

Fig. 10. Visualization results of the ID 3_10 of the Potsdam dataset. (a) Raw
image. (b) Corresponding ground truth. (c)–(f) Semantic segmentation results
of SegNet, FCN-32 s, FCN-8 s, and U-Net, respectively.

a definite response that probably interferes with the car region
in the SegNet network (OA:79.73%, Kappa: 0.727).

2) Potsdam Dataset: In order to compare these four models
comprehensively, we also experiment on the ISPRS Potsdam
dataset, and quantitative maps are listed in Table X. We also
visualize the results of ID 3_10, as displayed in Fig. 10. The
LUM results of the Potsdam dataset are slightly worse than
those of Vaihingen in general. The difference between these four
models is mainly reflected in the performance of segmenting

small objects such as car, which is the case for both datasets, as
shown in Fig. 11. The U-Net (OA:80.86%, Kappa: 0.524) model
is superior to the other three models, but it cannot completely
recognize the boundaries of the car category with various appear-
ances of vision. The FCN-8 s (OA:76.54%, Kappa: 0.702), the
best accurate model in the FCN series [96], is a bit more accurate
than SegNet (OA:75.32%, Kappa: 0.693) in this experiment.
However, it mistakes certain impervious surface regions for
buildings. The predicted mapping results outputted by FCN-32 s
(OA:75.24%, Kappa: 0.665) are rough and easy to lose relatively
small objects (car: 15.40% and tree: 65.61% user’s accuracy).

E. Discussion

As we have observed from Table IX, Table X, and Fig. 11,
the performance of LUM for HSR-RSIs has been success-
fully advanced as the continuous breakthrough of semantic
segmentation models. DL-based LUM methods were mainly
based on FCN during the early stages, and researchers often
utilize the ISPRS Vaihingen and Potsdam datasets [94], [169],
[174], [191]–[193] and the DeepGlobe land cover classification
dataset [194]–[199] to perform FCN extended algorithms eval-
uation. Until now, FCN-based approaches are still promising
on the semantic segmentation datasets of HSR-RSIs for directly
predict semantic labels of input images, which shows end-to-end
networks have got exceeding success under the BP. Nevertheless,
if the amounts of test images are much smaller or larger than
the training images, the mapping results are worse because the
fusion strategy adds pool features of the previous layer, which
results in high-level features not being used well. Blurry object
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Fig. 11. Visualization analysis results of car category. The first row is in the Vaihingen dataset, while the second row is the results of the Potsdam dataset.

boundary is also a usual problem in the mapping results of FCN
owing to downsampling operations ignore local information.
Moreover, though FCN-8 s performs better than FCN-16 s and
FCN-32 s, which indicates that the shallow predicted results
contain more detailed features, the labeling maps of FCN-8 s
and FCN-32 s are relatively rough than SegNet and U-Net, as
shown in Figs. 9 and 10. Therefore, some researchers illustrated
a series of approaches to improve the LUM results, such as
combining with DSM [146], [200].

Fortunately, other modified and extended variants based
on FCN, such as encoder–decoder structures (notably SegNet
and U-Net), are remarkable, aiming to make transforms more
suitable for semantic segmentation. Furthermore, researchers
demonstrate that encoder–decoder structures trained with Ima-
geNet weights are more easily transferred to the remote sensing
domains [171]. To restore the feature map to the original input
image size, SegNet utilizes max-pooling indices for nonlinear
upsampling, while FCN uses deconvolution. SegNet that adopts
dilated convolution to decrease local information loss can also
balance performance and computational cost. As a result, Seg-
Net takes up less memory and provides a competitive inference
time than FCN. However, the edge problem is serious when the
sliding window is too large in segmentation. Specifically, the
splicing edges of the predicted labels are obvious. When SegNet
performs semantic segmentation, a CRF module is usually used
to refine the output results.

As for U-Net, skip connection can concatenate high-level
semantic and low-level fine-grained information, which meets
the requirements of semantic segmentation. To increases output
resolution, it also uses unsampled operators to replace pooling
operators. The biggest advantage of U-Net is that it can be
trained well with small scale datasets, which is more suitable
for the current lacking sufficient training labeled HSR-RSIs of
semantic segmentation. But it still needs data augmentation, just
like the comparative experiment in this article. U-Net also cannot
expand the difference between classes because it does not fully
explore all level semantic information. This results in limiting
its applications in semantic segmentation for HSR-RSIs. Hence,
novel end-to-end models such as CSE-UNet [201] are proposed
to resolve these interclass homogeneity challenges.

With several publicly available datasets (e.g., Zurich Summer
dataset, EvLab-SS, and GID) releasing, it becomes easier to
compare semantic segmentation models comprehensively. And
the performance of DL-based approaches also highly lies in the
amounts of training images. Therefore, sample-driven semantic
segmentation schemes can be further promoted by construct-
ing large scale and challenging HSR-RSIs datasets. Generally,
transferring the successful experience of semantic segmentation
models from computer vision to the remote sensing domain is
also an urgent and challenging task for improving the perfor-
mance of LUM for HSR-RSIs.

VII. CONCLUSION

LUM of HSR-RSIs has obtained significant achievements
through several decades of rapid development. To the best of au-
thors’ knowledge, the number of papers on LUM of HSR-RSIs,
especially about DL-based methods, is breathtaking. This article
is the first one that focuses on exhaustively reviewing LUM
approaches based on the rising topic of DL, covering this work in
this field. We have also compared and discussed the quantitative
performance of such representative models. The performance
of these models proves their effectiveness in resolving practi-
cal issues, though it has not yet reflected the full potential of
DL.

Due to the increased availability of the HSR-RSIs dataset and
computational resources of DL, it is expected that DL rapidly
develops in the LUM of HSR-RSIs in the next few years. Nev-
ertheless, the research in DL-based LUM for HSR-RSIs is still
immature and remains many unanswered questions. It is quite a
long way to reach its full potential when addressing numerous
unsolved challenges. Currently, the difficulties and key points
of LUM focus on the lack of labeled training samples, small
object segmentation, and accurate edge segmentation. Thus, the
following are several potentially interesting topics in the LUM
for HSR-RSIs.

1) The complexity of HSR-RSIs: Unlike natural scene im-
ages, each land parcel used for one purpose of HSR-RSIs often
includes multiple categories of land-use with distinct charac-
teristics. The complexity of HSR-RSIs increases, leading to the
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difficulties of learning discriminative features from image scenes
with DL algorithms.

2) The number of labeled training images: The existing
datasets for LUM mostly cover a small area and concentrated lo-
cations, which cannot fully reflect the true distribution of ground
truth. It also limits the discriminative ability of the CNN model
that relies heavily on the quality and quantity of the training im-
ages. In addition, the labeled training HSR-RSIs are not largely
available until now. In this case, maintaining the representation
learning performance of the DL-based approaches with fewer
labeled training samples is still a huge challenge. Based on this
problem, semisupervised learning, weakly supervised learning,
and unsupervised learning methods have great potential.

3) Small object segmentation and edge segmentation: This
work to improve accuracy is close to saturation, and as a result,
research works mainly focus on obtaining accurate small object
segmentation performance and high-quality boundaries [202]–
[204].
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