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A Hierarchical Approach for Point Cloud
Classification With 3D Contextual Features

Chen-Chieh Feng and Zhou Guo

Abstract—Classifying point cloud of urban landscapes plays
essential roles in many urban applications. However, automating
such a task is challenging due to irregular point distribution and
complex urban scenes. Incorporating contextual information is
crucial in improving classification accuracy of point clouds. In this
article, we propose a hierarchical approach for point cloud classi-
fication with 3-D contextual features, which comprises three steps:
segment-based classification with primitive features and a random
forest classifier; extracting novel 3-D contextual features from the
initial labels considering spatial relationships between neighboring
segments and semantic dependencies; and refining classification
with a combination of primitive features and spatial contextual
features, and a hierarchical multilayer perceptron classifier that
considers primitive features and spatial contextual features at
different levels. The proposed method was tested on two point
cloud datasets: the National University of Singapore (NUS) dataset
and the Vaihingen benchmark dataset of the International Society
of Photogrammetry and Remote Sensing. The evaluation results
showed that the proposed method achieved an overall accuracy of
92.51% and 82.34% for the NUS dataset and Vaihingen dataset,
respectively. The feature importance evaluation showed that 3-D
spatial contextual features contributed useful information for dis-
criminating different classes, such as roof, facade, grassland, tree,
and ground. Quantitative comparisons further showed that the
proposed method is more advantageous, especially in the detection
of class roof and facade.

Index Terms—Classification, contextual feature, hierarchical
classifier, point cloud.

I. INTRODUCTION

THE drive toward smart cities around the world has neces-
sitated the development of 3-D spatial data infrastructures

given that they provide precise descriptions of the man-made
structures and representations of natural resources in 3-D, and
quantifiable pieces of evidence into urban dynamics when armed
with Internet-of-Things and social media feeds. Point cloud data
generated by light detection and ranging (LiDAR) is one of
the most popular methods to develop such 3-D spatial infras-
tructures. LiDAR point cloud data have been utilized in many
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applications and research topics, e.g., creation of large-scale city
models [1], generation of digital terrain model [2], mapping of
vegetation [3], reconstruction of 3-D buildings [4], and detection
of road markings [5] or changes [6]. Most of these applications
require point cloud classification as a basic LiDAR processing
step, which is to assign each point a semantic label such as
ground and grassland [7]. Due to the enormous number of points
in the point cloud data, automatic classification approaches are
often adopted. However, the automation of point cloud classifi-
cation in urban areas is challenging because of the complexity
of urban scenes and a high level of heterogeneity.

Existing LiDAR classification approaches can be categorized
into point- or segment-based [8]. For both types of approaches,
various standard supervised methods have been adopted, such
as decision trees [9], random forests [10], support vector ma-
chines [11], Gaussian Mixture Models [12], AdaBoost [13], and
Bayesian discriminant classifiers [14]. Two important factors
affecting these standard supervised classification are represen-
tative samples and discriminant features. The former, despite its
importance, received minor attention because most published
studies verify their performances using benchmark point cloud
where labels of training data are often available. An exception
is the article in Feng and Guo [15] where an automatic method
for sample selection with the aid of 2-D land cover maps and
a built topological graph is provided. For the latter, spectral,
geometrical, and eigen-based features are commonly used [7],
[15]. Both point- and segment-based approaches extract eigen-
based features from a 3-D covariance matrix, which comprises
3-D coordinates of a cluster of points, to represent local char-
acteristics of points. The discriminant features are chosen either
manually or through a variety of feature selection approaches
[16]–[18]. However, these discriminant features often result in
unsatisfactory classification results for complex urban scenes
because each classified entity (point or segment) is treated
independently, i.e., without considering labels of its neighbors
or contextual information. Such deficiency has led to point cloud
classification approaches to incorporate contextual information
by either adding a smooth constraint in a probabilistic graphical
model, adopting contextual information in a post-processing
step, or defining contextual features for classification.

For the first approach, i.e., adding a smooth constraint in a
probabilistic graphical model, the most commonly used prob-
abilistic graphical models are Markov random fields (MRF)
and condition random fields (CRF). In both models, spatial
contextual information is expressed by the pairwise potentials
in a posterior energy function, and penalties are imposed on
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neighboring entities (points or segments) with different labels
[19], [20]. Munoz et al. [21] applied associate Markov network
(AMN) and adopted a functional gradient approach to learn
high-dimensional parameters of random fields. The shortcoming
of AMNs is that the pairwise potential function is constant (i.e.,
NULL) when a pair of entities have different labels, which is too
rigorous in many cases and often results in over smoothing and
error propagation. To overcome this shortcoming, non-AMNs
(non-AMNs) are adopted. Shapovalov et al. [22] proposed a
non-AMNs technique with three contextual features for the
pairwise potentials for laser scanning data classification and
showed that non-AMN models performed better than AMN
models. CRF is a more general model for considering the context
in classification and providing a flexible statistical framework
[23]. It differs from MRF in how potentials are modeled. Laible
et al. [24] adopted a CRF-based model for classifying fused 3-D
LiDAR and camera data and showed that CRF achieved better
performance than an MRF-based approach. For the pairwise
potentials of CRF, arbitrary classifiers can be used, and the
earlier research efforts tended to adopt simple models, such as
Potts model [25], the linear model of Generalized linear model
[26], and the random forest classifier [20]. Despite the simplicity
and better performance than the MRF-based approaches, the
probabilistic graphical models in CRF oversimplify spatial con-
textual information in two respects. First, the spatial relationship
considered is restricted to neighboring relationship. Distance
and directional relationships, which can be equally important for
point cloud classification, are not well captured. Second, these
models are semantic independent regarding the spatial relations
considered because they only concern whether two neighboring
entities have the same labels, ignoring the possibility that the
spatial relationships between different pairs of entities vary
greatly and are highly dependent on the labels of entity pairs.

The second approach, i.e., adopting contextual information in
the postclassification step, involves first obtaining initial label-
ing through a pointwise probabilistic classification, and second
improving the initial labeling with contextual information. They
can normally be divided into local or global optimization based
on the dependent range of neighboring points. Local optimiza-
tion methods generally apply filters in the local neighborhood.
For example, Li et al. [27] optimized the initial labeling by
a local optimization approach of decision tree based on weak
priors. Although the initial classification results were greatly
improved by the local optimization, the rules of weak priors
including thresholds are handcrafted by experience, which can
be subjective and lack extensibility to other environments, let
alone the challenges involving the identification of thresholds for
complex scenes. Global optimization methods find the solution
for the lowest energy cost in a global context. Based on global
optimization, Landrieu et al. [28] proposed a structured regu-
larization framework for spatially smoothing semantic labeling
of 3-D point clouds. Similar work was conducted in Huang
et al. [29], where a global graph-based optimization based on
MRF was performed to optimize the initial classification results
obtained using embedded deep features. Li et al. [30] proposed
a probabilistic label relaxation (PLR) approach, which includes
two stages. In the first stage, the optimal local neighborhood

was estimated, thus collecting neighboring point information for
each point to identify initial label probabilities. In the second
stage, the initial label probabilities were iteratively enhanced
with PLR by incorporating spatial contextual information and
contextual constraints. The two stage process was able to detect
most wrongly labeled regions in the initial classification and
correct the misclassification to improve significantly the overall
classification accuracy. The main limitation of global optimiza-
tion is that it may not work very well with points of incomplete
objects or occluded objects.

The last approach, i.e., defining contextual features for classi-
fication, differs from the above two types of methods in abstract-
ing the contextual information into features and subsequently
employing them in point cloud classification. It was first used
in 2-D image classification [31] and later extended to point
clouds [32] where the contextual feature of the distance between
objects and the nearest street was extracted and OpenStreetMap
was incorporated to indicate the existence of roads. Instead of
incorporating other data sources, Yang et al. [33] first extracted
road surfaces from point clouds, and subsequently segmented
the remaining points into individual candidate objects. For each
candidate object, three types of contextual features–relative
position, relative direction, and spatial distribution pattern–were
then defined and calculated based on the extracted road surfaces.
The contextual features, along with other features such as ge-
ometric features, were fed into an SVM classifier to label the
candidate objects. While useful, the efficacy of such contextual
features highly depends on the precision of the reference objects,
i.e., the extracted road surfaces.

More recently, deep learning approaches have increasingly
been adopted to extract features suited for 3-D point cloud
classification. Zhou and Tuzel [34] divided the point clouds
into regular voxels and encoded each voxel via voxel feature
encoding layers based on the statistical attributes of contained
points. Qi et al. [35] proposed PointNet, which operates di-
rectly on raw points but is limited to capturing local structures.
PointNet++ [36] extended PointNet by learning local structures
at multiple scales. Although deep learning techniques can also
capture contextual information with hierarchical and multi-scale
convolutional layers, its black box nature makes it challenging
to account for the spatial relations between different semantic
objects with deep features.

This article aims to improve point cloud classification results
by incorporating 3-D spatial contextual information. It does
so by using novel contextual features, which incorporate 3-D
spatial relationships in addition to the commonly used neigh-
borhood relationship, and at the same time leverage semantic
dependencies between neighboring objects. To obtain semantic
information, initial classification of point clouds with primitive
(non-contextual) features and a standard supervised classifier
is conducted. In this article, primitive features refer to features
that are extracted from single objects without considering spatial
relationships between two or multiple objects, while spatial
contextual features are features derived from spatial relation-
ships of neighboring objects with the initial labels. Further
classification is conducted by combining the newly extracted
spatial contextual features and the primitive features to refine the
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Fig. 1. Framework of the proposed approach for point cloud classification
with 3-D contextual features.

initial classification results. Recognizing that contextual features
are high-level features and should be treated separately from
primitive features for classification, we develop a hierarchical
classifier that handles features at different levels. Our main
contributions are as follows.

1) We propose novel 3-D spatial contextual features, which
consider, on top of neighborhood relationships, the addi-
tional spatial relationships of topology, distance, direction,
and semantic dependencies. The proposed 3-D spatial con-
textual features are extracted based on initial classification
results, which can be improved iteratively by incorporat-
ing spatial contextual features and refined classification.
Additionally, the reference objects for the 3-D contextual
features can be associated with any category instead of one
specific category considered in existing research efforts,
so that they can apply to scenes where reference objects
are unknown or missing.

2) We develop a hierarchical classifier, which separates prim-
itive features and spatial contextual features to different
levels for point cloud classification. The evaluation con-
ducted in this article shows that the hierarchical classifier
achieves a higher overall accuracy (OA) of point cloud
classification than the nonhierarchical counterpart.

The remainder of this article is organized as follows. In
Section II, we introduce our method in detail. The performance
evaluation is provided in Section III. Section IV discusses the
experiment and Section V summarizes with conclusions and
future work.

II. HIERARCHICAL POINT CLOUD CLASSIFICATION WITH

SPATIAL CONTEXTUAL FEATURES

Fig. 1 illustrates the overall framework of the proposed
method. It consists of three main steps.

1) Initial segment-based point cloud classification.
2) 3-D spatial contextual feature extraction.
3) Classification refinement with 3-D contextual features and

a hierarchical multilayer perceptron (H-MLP) network.

A. Initial Segment-Based Point Cloud Classification

This step aims to provide the initial labeling of the input
3-D point cloud. It adopts a segment-based method due to
its advantages in contextual classification. The classification
involves three components: point cloud segmentation, extraction
of primitive features, and random forest classification.

1) Point Cloud Segmentation: Segmentation groups the
neighboring points with the same labels and divides the point
cloud into meaningful and nonoverlapping subsets, i.e., seg-
ments. In this article, the segmentation process is conducted
by region growing from seed points to neighboring points. For
the selection of seed points, first, the curvature value of each
point is computed using the method of [48]. The curvature
values are then sorted and the points with minimum curvature
are chosen and placed in a seed list. Second, the seed list is
inserted with neighboring points of the current point before the
current point is removed. For the insertion process, a similarity
index based on the homogeneity of geometric characteristics is
computed. It terminates when no neighboring points meeting
the homogeneity criteria are found. For the definition of neigh-
borhood for points, this article adopts k-nearest-neighborhood
(KNN), which is based on a fixed number of nearest points
and approximates the density-adaptive search in an unevenly
distributed point cloud, because point clouds are characterized
by varying point densities. To identify the optimal number of
nearest points k, the two-step approach proposed by [15] is
employed. In the first step, a series of segmentation with different
k values are conducted. In the second step, segmentation results
are quantitatively evaluated using degree of oversegmentation
and degree of undersegmentation. The k value corresponding to
the optimal segmentation performance, i.e., the lowest overseg-
mentation and undersegmentation, is then selected.

2) Extraction of Primitive Features: Features are extracted
based on the 3-D segments generated in the previous section.
For colored point clouds, a total of 24 segment features, which
are either eigen-based, spectral, or geometrical features (see
Table I), are extracted. For eigen-based features, λ1, λ2, and
λ3 are the eigenvalues of a point segment (λ1>λ2>λ3) and
computed by a covariance matrix comprised of 3-D coordinates
of points within the segments. nx, ny, and nz are values of
the normal vector of a segment, which corresponds to the
eigenvector of the smallest eigenvalue λ3. The other eigen-
based features, including the sum, omnivariance, eigenentropy,
anisotropy, planarity, linearity, surface variation, and sphericity,
are arithmetic combinations of λ1, λ2, and λ3. The spectral
features are specific for colored point clouds. Mean and standard
deviational values of red, green, and blue bands are computed.
For geometrical features, they include the number of points
within a segment, projective area of the segment on its best-fitted
surface plane, local point density of a segment defined by divid-
ing the number of points with the projective area of the segment,
and average height of a segment. For non-colored point clouds,
the only color information is intensity, and the segment-based
spectral features are mean and standard deviational values of
intensity, thus reducing the total number of primitive features
to 20.
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TABLE I
THE PRIMITIVE FEATURE SET BASED ON 3-D POINT SEGMENTS

B. 3-D Spatial Contextual Feature Extraction

As the primitive features are extracted from individual seg-
ments, the spatial relationships between different classes in a
3-D environment are not reflected in the initial classification. To
address this limitation, new 3-D contextual features are defined
and extracted. The novelties of these 3-D contextual features are
reflected in two aspects: multiple spatial relationships including
topology, distance and direction, instead of the simple neighbor-
ing relationship adopted in most of existing contextual classifi-
cation approaches of point clouds, are taken into account; and the
proposed 3-D contextual features are semantic-dependent, i.e.,
the pairwise intersections take semantic labels of two neighbor-
ing segments into account. For each type of spatial relationship
and each pair of semantic labels, a 3-D spatial contextual feature
is developed. Below the definition of neighborhood between
3-D candidate segments will be introduced first, followed by the
definition of 3-D contextual features in terms of different spatial
relationships.

1) Definition of Neighborhood for Candidate Segments: Ex-
isting literature has suggested at least three approaches to define
neighborhood of 3-D point clouds through adjacency. The first
approach describes the neighborhood between individual 3-D
points using either a sphere, a cylinder, or KNN [37]. The
second approach is by supervoxel in 3-D [8], [38]. The neigh-
borhood of a supervoxel is identified through adjacency, which
is unambiguous as supervoxels have regular shapes. The third

approach to define the neighborhood of point clouds is through
3-D point segments. The neighboring relationship defined this
way is, however, vague and thus seldomly been used because
segments are neither organized in regular shapes nor share the
same contours as 2-D image segments do. In this article, we
adopt cylindrical neighborhood but extend it from single points
to segments by the following steps. First, for each point, its
cylindrical neighboring points, i.e., those points who are within a
radius search r of the center point on the XOY plane, are identified
and stored. Second, two point segments are neighbors if at least
one point each from the two segments are neighbors.

2) Definition of 3-D Contextual Features: The 3-D contex-
tual features of a segment are defined based on its neighboring
segments and are related to their semantic labels. As stated
above, our 3-D spatial contextual features consider multiple
spatial relationships, including topology, distance, and direc-
tion, and are semantic dependent. The number of defined 3-D
contextual features for each segment is thus N∗C, where N is the
number of metrics measuring spatial relationships, and C the
number of semantic classes. Each contextual feature measures
a spatial relationship with one class. Below we explain how to
define 3-D contextual features in terms of three types of spatial
relationships: topology; distance; and direction.

To capture topological relationships while considering se-
mantics, the degree of overlap (DoV) is defined. Let Si and Sj

be two neighboring point segments and Si is the target segment,
the DoV between Si and Sj is defined as

DoV (Si, Sj) =
AreaXOY (Si ∩ Sj)

AreaXOY (Si)
(1)

where AreaXOY (Si ∩ Sj) is the overlapping area of Si and Sj

on the XOY plane, AreaXOY (Si) is the projective area of Si on
the XOY plane. Assume there are M neighboring segments of
Si with semantic label c, the measure of DoV for segment Si

in terms of class c is defined as the total DoV values of the M
segments

Dovci =

M∑
j=1

DoV (Si, Sj) . (2)

For distance, two metrics measuring the horizontal and ver-
tical distances are defined. Let Ni and Nj be the number of
points in segment Si and Sj , and Sr

i and St
j are the rth and tth

point, horizontal and vertical distances between Si and Sj are
represented by DisH(Si, Sj) and Disz(Si, Sj) and defined as

DisH (Si, Sj)

=

∑Ni

r=1

∑Nj

t=1

√(
Sr
i (x)− St

j (x)
)2

+
(
Sr
i (y)− St

j (y)
)2

Ni∗Nj

(3)

Disz (Si, Sj) =

∑Ni

r=1

∑Nj

t=1

(
St
j (z)− Sr

i (z)
)

Ni∗Nj
(4)

where Sr
i (x), S

r
i (y), and Sr

i (z) are the x, y, and z coordinates
of point Sr

i individually. Note that the vertical distance can
be negative when segment Si is under segment Sj . Similarly,
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measures of horizontal and vertical distance for segment Si in
terms of class c is defined as the average DisH and Disz values
of the M neighboring segments with label of c

Dis_Hc
i =

∑M
j=1 DisH (Si, Sj)

M
(5)

Dis_Zc
i =

∑M
j=1 DisZ (Si, Sj)

M
. (6)

For direction, two metrics measuring the horizontal and verti-
cal direction are also defined. The horizontal direction of two 3-D
point segments is measured based on the direction of their pro-
jective polygons on the XOY plane. The vertical direction of two
3-D point segments is measured based on the direction of their
normal vectors. The horizontal and vertical direction betweenSi

and Sj are represented by DirH(Si, Sj) and Dirz(Si, Sj) and
defined as

DirH (Si, Sj) =

⎧⎪⎨
⎪⎩

tan−1 Sj(y)−Si(y)

Sj(x)−Si(x)
Sj (x) �= Si (x)

π
2 Sj (x) = Si (x) and Sj (y) > Si (y)
−π

2 Sj (x) = Si (x) and Sj (y) < Si (y)

(7)

Dirz (Si, Sj) = cos−1

∣∣∣−−→NSi
.
−−→
NSj

∣∣∣∣∣∣−−→NSi

∣∣∣
∣∣∣−−→NSj

∣∣∣ (8)

where Si and Sj are the center points of segment Si and Sj on

the XOY plane,
−−→
NSi

and
−−→
NSj

the normal vectors of Si and Sj .
Similarly, the measure of horizontal and vertical direction for
segment Si in terms of class c is defined as the average DisH
and Disz values of the M neighboring segments with the label
of c

Dir_Hc
i =

∑M
j=1 DirH (Si, Sj)

M
(9)

Dir_Zc
i =

∑M
j=1 DirZ (Si, Sj)

M
. (10)

In summary, for a point cloud with n different classes, a total
of 5 ∗ n 3-D contextual features are computed for each segment.

C. Classification Refinement With 3-D Contextual Features
and a Hierarchical-MLP Network

The set of 3-D contextual features, once developed, are com-
bined with primitive segment features as input to refine the
initial classification results. Supervised classification is adopted
for this purpose. According to Aksoy et al. [46], features de-
rived from single objects belong to basic level of information,
while features derived from spatial relationships between two
or multiple objects are considered as a higher representation
of spatial information. The 3-D spatial contextual features are
deemed higher level features than the primitive segment features.
In addition, Qiao et al. [47] pointed out that typically, lower
level features are employed in the early classification stages for
finding basic landscape information, while spatial relationships
are used in the later stages for determining the final classes.

Fig. 2. Structure of (a) MLP network and (b) H-MLP network.

Standard supervised classifiers that treat all features equally are
not suitable to handle such cases. To address this issue, we build
a H-MLP network, which is an improvement of MLP network
with the ability to handle different levels of features for both
training and classification.

Fig. 2(a) and (b) shows the traditional MLP and the proposed
H-MLP networks. Both networks contain one input layer, one
output layer, and two hidden layers. The H-MLP network differs
from the traditional MLP network in its input layer and the
first hidden layer. In an H-MLP network, the input features are
divided into primitive features and 3-D contextual features. The
input layer imports only the primitive features, with each feature
connecting to a neuron in the input layer. In the first hidden
layer, the 3-D contextual features are incorporated as individual
neurons along with all the primitive features, also as individual
neurons that are fully connected to the neurons in the input layer.
Aside from the input layer, all neurons in other layers are fully
connected to neurons in the next layer.

Assume X0 = (Xt, Xs) is the input feature vector, in which
Xt represents primitive features defined in Section II-B-2 and
Xs represents 3-D contextual features defined in Section II-
C-2. For MLP network, the output of the first hidden layer is
f(W1X0 + b1), where W1 and b1 are the weight matrices and
the bias term of the first hidden layer in the MLP network,
and f(x) is an activation function. For H-MLP network, the
output of the first hidden layer is [f(W ′

1Xt + b′1), Xs], which
concatenates the transformation of primitive features and the
higher level 3-D contextual features into one feature vector. W ′

1

and b′1 are the weight matrices and bias term of the first hidden
layer in the H-MLP network. The output of the (i− 1)th hidden
layer (i > 1) is linked to the input of the ith hidden layer, whose
output is Xi = f(W ′

iXi−1 + b′i). To sum up, the output of the
ith hidden layer can be represented as:

Xi =

{
[f

(
W

′
iXt + b

′
i

)
, Xs] i = 1

f
(
W

′
iXi−1 + b

′
i

)
i > 1

(11)

where Xi is the output of the i-th hidden layer, W ′
i and b′i

the weight matrices and bias term of the ith hidden layer in the
H-MLP network. In this study, f(x) is set as the rectified linear
unit function, which is a commonly used activation function in
a neural network. The number of hidden layers is at least two in
the H-MLP network.

Assume that there are k (k > 1) hidden layers in the H-MLP
network, the output of the last hidden layer should be Xk, which
forms the input to the network’s output layer. The output of the
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Fig. 3. NUS dataset.

output layer is connected to softmax(W
′
k+1Xk + b

′
k+1), where

softmax(x) is a generalization of logistic regression function
that can be used for multilabel classification. Each neuron in the
output layer of H-MLP is linked with a semantic class, therefore,
the number of neurons in the output layer equals to that of
semantic classes to be classified. Let τ = {τ i}ci=1 be the set of
semantic classes with c being the total number of classes. For
a point segment j, assume δj = W

′
k+1Xk + b

′
k+1 is the vector

input to the softmax function, with δij linking to the ith neuron
in the output layer, the probability of segment j belonging to
class τ i is denoted by p(y = τ i |δj), which can be modeled by
the softmax function:

p
(
y = τ i δj

)
=

eδ
i
j∑c

i=1 e
δij
. (12)

Segment j is assigned the predicted label of τ i with the highest
probability, i.e., yj = argmax p(τ i).

To train the H-MLP network, a large number of sample
segments with reference labels are needed. The predicted labels
are compared with the reference labels, and the level of misclas-
sification is evaluated with the cross-entropy loss function

L = −
N∑

i = 1

c∑
r = 1

y′i,rlog (p ( yi = τ r)) (13)

where N is the number of point segments, c the number of classes,
y′i,r the reference label value (0 or 1) of the ith segment in terms
of class τ r, p(yi = τ r) the computed probability that the ith
segment belongs to class τ r. Once the loss function is defined,
parameters in the H-MLP network including the weight matrices
W ′ and the bias vector b′ are to be learned. These parameters
are optimized by minimizing the cross-entropy loss with the
stochastic gradient descent algorithm. The network is trained
iteratively until the stopping criterion is met.

III. EXPERIMENT ANALYSIS

A. Study Area and Datasets

Two datasets are adopted to verify the effectiveness of the
proposed approach. The first dataset covers part of the Na-
tional University of Singapore (NUS), Singapore. Hereafter, it
is referred to as NUS dataset. The NUS dataset (see Fig. 3)
was acquired by a terrestrial laser scanner (TLS) during the

Fig. 4. ISPRS benchmark dataset of Vaihingen, Germany. (a) Orthoimage of
area 1. (b) LiDAR point cloud of area 1. (c) Orthoimage of area 2. (d) LiDAR
point cloud of area 2.

leaf-on season. The NUS campus has a very large coverage of
greeneries, leading to the prevalence of occlusions during the
process of collecting point clouds. Buildings in NUS dataset
are generally lower than 30 m. However, the NUS site sits on
a terrain with a relief of more than 60 m, making it possible to
place TLS on high grounds to capture a comprehensive view of
the site, including roofs of buildings. The dataset has 14 452 784
points and comes with color information. The study discerns the
following five classes in NUS dataset: roof; wall; grass; tree; and
ground.

The second dataset covers Vaihingen, Germany, which is
provided by International Society of Photogrammetry and Re-
mote Sensing (ISPRS) benchmark. Hereafter, it is referred to as
Vaihingen dataset. This dataset contains two sites (areas 1 and
2), which represent two typical scenes in Vaihingen. Area 1 is
a residential community with small detached houses and a few
high-rise buildings, which are surrounded by trees. Area 2 is
situated in the center of the city and consists of dense buildings
with complex shapes. Fig. 4 shows the neighborhoods of areas
1 and 2, and the LiDAR point clouds used in this article. The
LiDAR points were acquired by an airborne laser scanner in
August 2008. All points in the two areas have been manually
labeled as one of the following six categories: grassland; imper-
vious surface (IS); roof; facade; shrub/tree; and clutter. It has
1165598 points.

B. Results of 3-D Spatial Contextual Features

After point cloud segmentation and initial classification, the
3-D contextual features of each point segment were extracted.
These features were analyzed by averaging feature values of
training samples of each class. Figs. 5 and 6 show the 3-D
contextual features by semantic classes of NUS dataset and
Vaihingen dataset, respectively. Each figure has five subfigures
illustrating



5042 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 5. 3-D contextual features of NUS dataset.

Fig. 6. 3-D contextual features of Vaihingen dataset.

1) DoV between a target segment and its neighboring seg-
ments.

2) Horizontal distances from a target segment to its neigh-
boring segments.

3) vertical distances from a target segment to its neighboring
segments.

4) Normal directions (i.e., the angle between the normal
vectors of a target segment and of certain neighboring
segments).

5) Horizontal directions (i.e., the angle of the horizontal
direction of a target segment to neighboring segments.

The range of the vertical direction is [0, 90], while the range
of the horizontal direction is [0, 360).

1) 3-D Contextual Features of NUS Dataset: For NUS
dataset, a total of 25 (5 relationships × 5 classes) 3-D con-
textual features were extracted. The analysis results suggest the
followings (see Fig. 5). First, a wall segment usually has high
degrees of overlap with its neighboring segments, especially
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grass segments. The same is found for tree segments. A segment
of roof, ground, or grass also has high degrees of overlap with
its neighboring segments but with ground segments only [see
Fig. 5(a)]. Second, the segments of all classes except tree are
distant, horizontally, from their neighboring ground segments
[see Fig. 5(b)], which is consistent with the observation of rich
vegetation within the NUS campus. Third, a roof segment is
usually the highest among its neighboring segments, and has
large vertical distances with its neighboring ground and grass
segments and small vertical distances with its neighboring wall
and tree segments [see Fig. 5(c)]. Fourth, a roof segment has
an approximate 90° of normal direction to its neighboring wall
segments, indicating that the neighboring wall objects are nearly
perpendicular to the roof object. Similarly, for a wall segment,
it is usually perpendicular to its neighboring roof and grass
segments. For a ground segment, it is also usually perpendic-
ular to its neighboring wall objects [see Fig. 5(d)]. Last, there
exist alignment patterns for different classes in NUS dataset,
which can be mined using the horizontal direction features [see
Fig. 5(e)].

2) 3-D Contextual Features for Vaihingen Dataset: For Vai-
hingen dataset, a total of 30 (5 relationships × 6 classes) 3-D
contextual features were extracted for each segment. Although
the classification and the environment of Vaihingen dataset are
different from that of NUS dataset, there are common charac-
teristics. First, segments of all classes except facade have large
degrees of overlap with their neighboring IS segments. Facade
segments have large degrees of overlap with neighboring roof
segments [see Fig. 6(a)]. Second, a clutter segment usually has
a short horizontal distance with its neighboring segments while
a segment of roof usually has a long horizontal distance with
its neighboring segments. A short horizontal distance is also
observed between segments of clutter and shrub/tree, indicat-
ing a strong spatial correlation between the two classes [see
Fig. 6(b)]. Third, segments of roof, facade, and shrub/tree are
usually higher than the neighboring segments of the remaining
classes (i.e., clutter, grassland and IS) [see Fig. 6(c)]. Fourth,
facade segments are nearly perpendicular to the neighboring
segments of all classes except clutter [see Fig. 6(d)]. Fifth, the
horizontal direction information in Vaihingen dataset is similar
to that of the NUS dataset, which will be further mined and
employed in the process of refined classification [see Fig. 6(e)].

The analysis of 3-D contextual features confirmed the use-
fulness of these features in distinguishing different classes. We
also find that much of the obtained information from the 3-D
contextual features concurs with commonsense knowledge. Al-
though existing studies have attempted to adopt such heuristics
for classifying point clouds (e.g., [15]), the presented approach
extracts the information automatically and utilizes it quantita-
tively. The 3-D contextual information mined by the proposed
method is also more comprehensive and robust.

C. Classification Results

A total of 11 584 and 14 024 segments were generated for the
NUS and Vaihingen dataset. The two datasets were trained and
classified separately as they have different category systems and

Fig. 7. Refined classification results of NUS dataset by the proposed method.

Fig. 8. Detailed classification results of certain areas in NUS dataset. (a) and
(b) Misclassifications between grass and tree. (c) and (d) Misclassifications
between grass and ground. (e) and (f) Misclassifications between tree and roof.

point characteristics. To train each dataset, 3475 segments and
4207 segments were chosen from NUS dataset and Vaihingen
dataset individually. The two datasets were evaluated at differ-
ent levels. For NUS dataset, the evaluation was conducted at
segment level because it is large and we do not have standard
labels for each point. Instead of checking individual points, the
classification result was assessed quantitatively at segment level
by randomly selecting about 1200 segments and comparing their
predicted labels with referenced labels identified manually. For
Vaihingen dataset, as the standard label of each point is known,
point-level evaluation, which is based on the comparison of
the predicted label of each point in the test data (more than
800 000 points) with its reference label, was conducted. The
refined results of 3-D point cloud classification of NUS dataset
and Vaihingen dataset are shown in Figs. 7 –9, respectively. Both
completeness and correctness for each class were evaluated, and
F1-score (F1) was computed as a combination of the above two
measures.

1) Classification Results of NUS Dataset: As can be seen
in Fig.7, the refined classification result of NUS dataset is
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Fig. 9. Classification results of Vaihingen dataset by H-MLP.

TABLE II
QUANTITATIVE CLASSIFICATION RESULTS OF NUS DATASET AT SEGMENT

LEVEL

satisfactory. The quantitative evaluation, given in Table II, shows
that the proposed method achieves an OA of 92.51% and a Kappa
index of 0.90. The correctness, completeness, and F1 values
for each class show that classes of man-made objects such as
roof, wall, and ground have higher classification accuracies,
while classes of natural objects such as grass and tree have
lower classification accuracies. The class wall has the highest
completeness (97.05%) and F1(96.26%) and the second highest
correctness (95.48%). The high classification accuracy can be
explained easily as most wall segments are vertical and thus
they are unlikely misclassified as other categories. The class roof
has the second highest F1 (94.56%). Generally, roof segments
have several distinctive geometrical features, specifically area
and height, and most roof segments are flat in NUS dataset.
However, with only these primitive features, misclassification

between roof and other categories is frequent [15]. By incor-
porating spatial contextual features, many misclassifications are
avoided. With the accurately classified wall segments, and the
perpendicular relationships between neighboring wall and roof
segments, the accuracy of classifying roof segments can be
significantly improved. The lowest and second lowest F1 were
obtained by the grass (82.81%) and the tree class (91.52%).

According to Fig. 7 and the detailed classification results
shown in Fig.8, we found some misclassifications. The first
type of misclassification occurred between the grass and the
tree class [see Fig. 8(a) and 8(b)], which was because these
two classes have very similar spectral features. Aside from the
above confusions, some grass segments were wrongly labeled
as ground [see Fig. 8(c) and 8(d)], and some roof segments were
wrongly labeled as tree [see Fig. 8(e)] or ground [see Fig. 8(f)].
We found that many of the above confusions were caused
by some similar geometrical features these classes share. For
example, both grass and ground usually have low heights, and
roof and tree segments generally have larger heights. Another
reason for the misclassification between the tree and roof class
might be the occlusions of roof because of the nearby trees,
which would result in incomplete geometries of roof segments.

2) Effectiveness of 3-D Contextual Features in NUS Dataset
Classification: In this section, the refined classification results
with contextual features and the initial classification results with-
out contextual features are compared. The initial classification
by random forest achieved an OA of 87.46% and a kappa index of
0.84 (see Table II). The results indicate that the additional spatial
contextual features improve overall classification accuracy by
around 5%. The improvement for individual classes measured
by F1 is between 1.97% and 8.5%, where the class grass has
the highest improvement percentage while the class wall has
the least improvement. The result suggests that incorporating
spatial contextual features benefits more for classifying natural
than man-made objects, which differs somewhat from those
by Niemeyer et al. [20] where the highest improvement was
achieved for the class facade.

3) Classification Results of Vaihingen Dataset: Fig. 9(a) and
(b) shows classification results in Area 1 and Area 2 of Vaihingen
dataset. Fig. 10 shows discrepancies between H-MLP and initial
classification, in which red represents points that were recog-
nized correctly by H-MLP but incorrectly in the results of initial
classification that did not consider spatial contextual features.
As can be seen in Figs. 9 and 10, most of the points are correctly
classified. Quantitatively, the proposed method achieved an OA
of 82.34% and a kappa index of 0.74 (see Table III). The lower
OA of Vaihingen dataset than that of NUS dataset might be due to
evaluation levels (point- versus segment-level). It is worth men-
tioning that misclassification due to the imperfect segmentation
results is unavoidable, thus causing the segment-level evaluation
scores generally higher than those of point-level evaluation. The
correctness, completeness, and F1 of each class is also given in
Table III. The highest F -score was obtained for the class roof
(94.75%), with both correctness and completeness above 90%.
The lowestF1 was obtained for the class clutter (55.18%), which
can be largely attributed to its low completeness of only 40.11%.
As the class clutter represents a combination of powerline, car,
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Fig. 10. Discrepancies between H-MLP and initial classification for Vaihingen
dataset.

TABLE III
QUANTITATIVE CLASSIFICATION RESULTS OF VAIHINGEN DATASET AT POINT

LEVEL

and fence/hedge, its intraheterogeneity is large, and thereby
low evaluation scores. Another example is the relatively low
F1 of class facade (70.82%) compared to the F1 of the same
class in NUS dataset (96.26%), which reflects the sparse points
issue of airborne LiDAR and thus incomplete structures for
facades. Nonetheless, the detection of facades can be considered
good compared to its much lower evaluation scores achieved by
other published methods (see Table VI). In addition, significant
confusions between grassland and IS are observed. We consider
spectral features are crucial in differentiating these two classes.
However, the only spectral features in Vaihingen dataset are
mean intensity and standard intensity scores.

4) Effectiveness of 3-D Contextual Features in Vaihingen
Dataset Classification: Similar to NUS dataset, the refined
classification results with contextual features and the initial
classification results without contextual features are compared.
The quantitative evaluations show that the initial classification
achieved an OA of 79.22% and a kappa index of 0.69 (see
Table III). The proposed method improved OA by 3.12% and

TABLE IV
OVERVIEW OF THE 15 MOST IMPORTANT FEATURES BASED ON GAIN RATIO

VALUES

TABLE V
OVERVIEW OF THE 20 MOST IMPORTANT BUT UNCORRELATED FEATURES

BASED ON CFS

TABLE VI
QUANTIFICATION COMPARISON OF THE PROPOSED METHOD (H-MLP) AND

MLP AND OTHER PUBLISHED APPROACHES ON THE ISPRS BENCHMARK

DATASET

F1 of Each Class Together With OA are Presented in percentage. The Highest and
Second Highest Scores are in Bold. (∗Results Acquired From http://www2.isprs.org/
commissions/comm2/wg4/vaihingen-3d-semantic-labeling.html).

http://www2.isprs.org/commissions/comm2/wg4/vaihingen-3d-semantic-labeling.html
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the kappa index by 0.05. The improvement does not seem to be
significant at the first glance. However, the evaluation scores for
some classes are greatly improved. The highestF1 improvement
of 18.56% was obtained by the class clutter, while the least F1

improvement of 0.44% was obtained by the class facade. Aside
from the class clutter, evaluation scores of the class roof are
greatly improved with an increase of 5.90% in F1. Although
most correctness and completeness values obtained from the
results of the proposed approach improved from the initial
classification, the correctness of facade dropped from 77.49%
to 70.82%. At the same time, the completeness of facade is
increased from 64.66% to 66.64%. Overall, the proposed method
and the additional 3-D spatial contextual features have indeed
improved the results of the 3-D point cloud classification for
typical urban classes.

5) Computational Performance: A prototype based on C++
and Python was developed for the proposed method. All of the
experiments were performed on a desktop computer with a CPU
Intel Core i7-6700 processor, with 3.4 GHz and 32-GB RAM.
For NUS dataset with 14452784 points, the elapsed time for
point segmentation, initial classification and H-MLP training is
nearly 16.3 min, 3.7 min, and 4.8 h.

IV. DISCUSSIONS

A. Importance Evaluation of Contextual Features

To further verify the effectiveness of additional 3-D spatial
contextual features, the importance of these features is assessed
using gain ratio [39] as it is commonly used for assessing
the importance of a single feature, and has been successfully
employed in previous studies [15], [40]. Here, we evaluate the
feature importance on Vaihingen dataset.

A total of 50 features were extracted in the Vaihingen dataset,
in which 30 were 3-D spatial contextual features and 20 were
primitive features. Table IV gives the top 15 most important
features based on their gain ratio values in percentage. Among
these features, height above grassland is the most important,
contributing 5.45% to the classification. Almost half of these
features (7 out of 15) are 3-D spatial contextual features. In ad-
dition, the total contribution of the seven 3-D spatial contextual
features (27.0%) is larger than that of the eight primitive features
(25.76%). The large ratio and high contribution of 3-D spatial
contextual features demonstrate their importance in the classifi-
cation of point clouds. Aside from height above grassland, height
above roof, shrub/tree, roof and IS are included in the 15 most
important features, indicating the importance of vertical distance
features in distinguishing different classes. However, the feature
of absolute height does not seem to contribute a lot (rank 34 with
an importance of 1.4%). The reason might be that the study area
of the Vaihingen dataset sits on an uneven terrain where height
is not able to function well in distinguishing different objects.
Among the seven contextual features in Table IV, the numbers
of topological, distance and directional features are 1, 4, and
2, and their accumulated contributions are 3.87%, 15.8% and
7.34%.

In addition to the assessment of single feature contribution,
the correlation between features is another important factor

for evaluating feature importance. In this article, we used
correlation-based feature selection (CFS) [40] to select the
most important but uncorrelated features from the full feature
set. A total of 20 most important features were selected (see
Table V). Most of these features overlap with the features in
Table IV, except for overlapping degree with façade on XOY
plane, the third eigenvalue, vertical direction with grassland,
sphericity and eigentropy. This is because these features have
high correlations with other more important features. Of all the
20 features selected by CFS, 12 of them are contextual features,
in which the numbers of topological, distance and directional
features are 2, 7, and 3. The correlation analysis verified that
the 3-D spatial contextual features can indeed bring additional
information and contribution for discerning different classes in
point cloud classification.

B. Comparisons Between H-MLP and MLP

The quantitative classification results in Section III-C and
feature importance evaluation results in Section IV-A have both
indicated the great significance of incorporating additional 3-D
spatial contextual features. To validate the performance of H-
MLP, we compared the classification results of Vaihingen dataset
obtained by separating contextual features and primitive features
to different levels using the proposed H-MLP network to those
by treating all features equally in the MLP network.

Table VI gives the quantitative results by H-MLP and
MLP. Concerning OA, the H-MLP (82.3%) outperformed MLP
(80.3%) by 2.0%. In addition, the proposed method achieved
a higher F1 than MLP for almost all classes, except for facade
whoseF1 is lower than that by MLP by merely 0.1%. The results
demonstrate that the hierarchical structure of primitive and 3D
contextual features helps improve the classification accuracy.

C. Comparisons With Other Published Methods using
Vaihingen Dataset

For further evaluation, we compared our results with the
results of existing methods including supervoxel-based spectro-
spatial approach (S3) by Ramiya et al. [41]; multiscale, mul-
titype neighborhood (MSMTN) by Blomley et al. [42]; hierar-
chical higher order CRF (HHO-CRF) [43]; convolutional neural
network (CNN) by Yang et al. [44]; and multiscale convolutional
neural network (MCNN) by Zhao et al. [45]. S3 first segments
3-D point cloud into supervoxels, which are further classified
by different machine learning techniques with spectral and
geometrical features. MSMTN extracts complementary types
of geometric features from multiscale and multitype neighbor-
hoods. The extracted features are set as input to several classifiers
with different learning principles. HHO-CRF is an improved
version of the work in Niemeyer et al. [20], which integrates
a Random Forest classifier into a CRF framework. The HHO-
CRF incorporates spatial and semantic context via a two-layer
CRF: the first layer operates on a point level and the second
layer operates on a segment level. The MCNN is a CNN-based
method that extracts high-level representation of features and
labels each 3-D point individually. MCNN first creates a group
of multiscale contextual images for each point. Second, these
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contextual images are input to a multi-scale neural network to
learn deep features. Finally, the data with a combination of deep
features from multiple scales is trained and classified using a
softmax regression classifier.

The results by the above existing methods are shown in
Table VI. The category system of our study is slightly different
from that of others in class clutter and shrub/tree (see Table VI),
in which we discern a total of six classes, while they discern nine
classes. The OA of the proposed method ranks second (82.3%),
and is 2.9% lower than the highest OA achieved by MCNN.
Additionally, our method achieves the highest F1 in terms of
class roof and facade. The F1 of class facade by our method
(70.8%) is 14.5% higher than the second best (56.3%) produced
by HHO-CRF. The F1 of class roof by our method (94.7%) has
a slight increase of 1.1% from the second best (93.6%), again
achieved by MCNN. It is also worth noting that F1 of other
classes by our method are lower than those by other methods,
especially for class grassland and IS, which are 20.6% and 7.9%
lower than the best one. By visual inspection, we find that the
relatively low F1 of the two classes are largely attributed to the
mis-segmentation results (see Fig. 9). The individual F1 and OA
can expect higher scores by improving the segmentation results
in the future.

V. CONCLUSION

In this article, a novel approach, which adopts a hierarchical
classifier and 3-D contextual features to improve the classifi-
cation accuracy of 3-D point cloud was proposed. It comprises
three main steps. First, initial segment-based classification was
conducted by extracting primitive features of individual seg-
ments and adopting a conventional RF classifier. Second, based
on the initial classification results, novel 3-D contextual features
for each point segment were extracted, which consider multiple
types of spatial relationships between neighboring segments
and semantic dependencies. Third, an H-MLP classifier, which
considers primitive features and spatial contextual features at
different levels, was proposed to reclassify the point cloud data
and refine the initial classification results.

Two experiments were performed with a terrestrial laser scan-
ning based NUS dataset and an aerial laser scanning based Vai-
hingen dataset provided by ISPRS. The quantitative evaluation
showed that the additional 3-D spatial contextual features im-
prove the classification accuracy significantly. The OA for NUS
dataset increased by 5.05% when discerning five typical classes,
while an improvement of 3.12% was observed on the more
complex Vaihingen dataset discerning six classes. Additionally,
the contribution of 3-D contextual features to classification was
evaluated. By evaluating the importance of single features, the
results showed that the total contribution of contextual features
almost equaled those of the primitive features. The importance
of the feature set was also evaluated, which considers the corre-
lation between features. The results showed that the correlation
between spatial contextual features and primitive features was
minimal, and the contextual features indeed brought additional
information useful for discriminating different classes of point
clouds. Quantitative classification results of Vaihingen dataset

by the proposed H-MLP were compared with the conventional
MLP network and other existing methods. The OA increased by
2.0% from the conventional MLP classifier, indicating the ad-
vantage of the proposed hierarchical network. The comparisons
with other existing methods showed that the OA by the proposed
method ranked second (82.3%), which was 2.8% lower than the
state-of-art performance. However, the F1 of class roof (94.7%)
and façade (70.8%) achieved the best results.

While the quantitative evaluation demonstrated the effective-
ness of the proposed method, there are still three limitations.
First, the classification results are highly dependent on the seg-
mentation results, and undersegmentation or oversegmentation
are unavoidable. Second, the accuracy of the 3-D spatial con-
textual features highly relies on the initial classification results.
Third, some contextual features are ineffective for distinguishing
different categories, and it may help improve the efficiency and
accuracy of the final classification by automatically removing
those contextual features. In the future, we will extend our
research to overcome these limitations.
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