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T-Hy-Demosaicing: Hyperspectral Reconstruction
Via Tensor Subspace Representation Under

Orthogonal Transformation
Shan-Shan Xu, Ting-Zhu Huang , Jie Lin , and Yong Chen

Abstract—This article aims to solve the problem of the hyper-
spectral imagery (HSI) demosaicing under a novel subsampling
hyperspectral sensing strategy. The existing method utilizes the
periodic structure of subsampling to estimate a fixed subspace
in matrix form from the measurement result, which reduces the
representation ability of the subspace in iterations and destroys
the intrinsic structure of the tensor. To overcome these drawbacks,
we propose a tensor-based HSI demosaicing (T-Hy-demosaicing)
model with tensor subspace representation, which takes the low-
tubal-rankness and the nonlocal self-similarity into account. In
particular, we suggest a tensor singular value decomposition based
on orthogonal transformation (Tran-based t-SVD) to learn the
tensor subspace that possesses a more powerful representation
ability. In addition, we develop an effective algorithm to solve the
proposed nonconvex model under the framework of the proximal
alternating minimization algorithm. Experiments conducted on
simulated datasets illustrate that the proposed method outperforms
other comparative methods in both visual and quantitative terms.

Index Terms—Hyperspectral demosaicing, proximal alternating
minimization (PAM), tensor subspace representation, tran-based
tensor singular value decomposition (t-SVD).

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is a third-order tensor
containing both spectral and spatial information. HSI

consists of a great amount of bands, each of which represents
the intensity of reflections measured over a narrow range of
optical frequencies. Due to the high spectral resolution of the
HSI, HSI can be widely used in environmental surveillance, mil-
itary surveillance, medical detection, and agricultural planning,
etc. [1]–[10]. However, higher spectral resolution means larger
volume, which will greatly increase the burden of transmission
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and storage. To avoid these problems, HSI is usually compressed
before transmission in actual situations. Therefore, The choice of
compression method and HSI reconstruction from compressed
observations (even with noise) are crucial for subsequent appli-
cations [11]–[15].

According to the difference in compressed direction, com-
pression methods can be classified into three categories: 1)
Spatial-based methods. 2) Spatial-Spectral-based methods. 3)
Spectral-based methods. The Spatial-based methods convert the
image of each band to a sparse domain, and then perform a
down-sampling band-by-band [16]–[18]. These methods are
only a simple extension of the compressed sensing methods of
2-D images, which cannot make full advantage of the spectral
information of the HSI and cause a heavier burden on hard-
ware devices and sensor resources. To joint utilizes the spatial
and spectral information, spatial-spectral-based methods, which
perform separable compression in multiple directions, were
proposed in [19]–[22]. Inevitably, this type of methods makes the
sampling setup more complicated. Recently, many researchers
have discovered that the spectral dimension of the HSI has better
compressibility due to the higher correlation of this dimension.
Therefore, the spectral-based methods are widely used, and its
compression process can be described as making a random
projection for every spectral vector [23]–[26]. However, this
kind of methods usually has a large-sized sensing matrice gen-
erated by random numbers or compressive operators satisfying
the restricted isometry property [27], which will occupy large
computing resources during the reconstruction process.

Recently, a novel and fast hyperspectral sensing framework
called Hy-mosaicing was discussed by Zhuang et al. [28], which
is inspired by the color filter array used in some digital cameras.
It is worth mentioning that this sensing framework has a more
special sensing matrix, which is a binary matrix composed of
random row subsets of the identity matrix. It is very lightweight
and can be better compatible with the constraints imposed by
the hardware that collects HSI information. Meanwhile, the
sensing framework has a periodic sampling structure, as shown
in Fig. 2, which means that there exist a number of pixels
sharing the same sensing matrix. This implies that the com-
plexity of sampling can be reduced. Under this framework, they
proposed a subspace-based blind reconstruction method called
Hy-demosaicing using the low-rankness and self-similarity of
HSI. According to the periodic structure of the color selector
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Fig. 1. Flow diagram of the proposed T-Hy-demosaicing method for HSI demosaicing.

Fig. 2. Sampling structure.

array, this method can get subspace basis from the measured
subsamples, and the solution is more efficient. However, this
method also has some disadvantages: The model expands the
HSI data into a 2-D matrix for processing, which cannot finely
preserve the tensor intact of the HSI. Moreover, Hy-mosaicing
method fixed the subspace matrix and cannot be self-updated. It
can be seen that the method Hy-demosaicing still has room for
improvement, and the most essential issue is how to construct a
subspace representation in the form of tensor.

In essence, the HSI is a natural tensor and has a high corre-
lation in both spatial and spectral dimensions [29]–[34]. This
implies the low-rankness of the HSI tensor and the entire tensor
corresponds to the affiliation of a tensor subspace. Finding
a proper tensor decomposition with a specific rank measure,
the HSI tensor is expected to be faithfully represented by a
tensor subspace. Recently, Kilmer et al. [35] proposed a novel
tensor singular value decomposition (t-SVD) and tensor–tensor
multiplication (t-product), which uses discrete fourier transform
(DFT) to decompose a tensor into the t-product of three tensors.
However, DFT is not necessarily applicable to all types of
data. Is it possible to construct a framework that can make the
decomposition performance of t-SVD more flexible and deeper

to preserve the original data information when on different data?
To track this problem, we suggest a t-SVD based on orthogonal
transformation (Tran-Based t-SVD) (see Section IV-C2).

In this article, we propose a T-Hy-demosaicing method. The
flowchart of the proposed method is shown in Fig. 1. Our main
contributions are as follows.

1) We design a tensor subspace representation and propose
a T-Hy-demosaicing method for HSI demosaicing. Under
the tensor subspace representation framework, the recon-
struction problem of the observation is transformed into
the estimation of the coefficient tensor, and the coefficient
tensor is achieved by nonlocal-based denoiser.

2) We suggest a t-SVD based on orthogonal transformation
to learn tensor subspace. With the new decomposition, the
transformation can be chosen more flexibly for our demo-
saicing problem, and the learned subspace has stronger
representation capability.

3) We use the proximal alternating minimization (PAM)
algorithm to efficiently solve the proposed nonconvex
model. Extensive experiments indicate that the proposed
algorithm has better results in both visual and quantitative
evaluation than existing methods.

The remainder of this article is organized as follows. Section II
introduces the basic notations and basic definitions of third-order
tensor, as well as a hyperspectral sensing framework (mosaic of
HSI). Section III proposes the model and algorithm. Section IV
gives the experimental results and analyzes the superiority of
the algorithm proposed. The final conclusions are given in
Section V. The proof is in the Appendix.

II. PRELIMINARIES AND PROBLEM BACKGROUND

We first give some notations used frequently in this article. We
denote vectors by boldface lowercase letters, e.g., a. Matrices
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are denoted by boldface capital letters, e.g., A, and tensors are
denoted by boldface Euler script letters, e.g., A. The fields of
real number and complex number are denoted as R and C.
For a third-order tensor A ∈ Rn1×n2×n3 , we denote A(k) as
the kth frontal slice of A, A(i, j, :) as its tubal obtained by
fixing the first two dimensions and varying the third dimension,
and Aijk as its (i, j, k) th entry and its Frobenius norm is

‖A‖F =
√∑

ijk A2
ijk.

A. Framework of the t-SVD With Orthogonal Transformation

Different from using DFT matrix to define t-product and
t-SVD in [35], we develop a novel tensor t-SVD based on
orthogonal transformation [36], [37].

For any third-order tensor X ∈ Cn1×n2×n3 , X̄Φ is a third-
order tensor, which is obtained via multiplying by Φ on each
tube along the third-dimension of X

X̄Φ(i, j, :) = Φ · (X (i, j, :))

where Φ ∈ Cn3×n3 is an orthogonal transformation matrix with
ΦΦT = ΦTΦ = I, and I ∈ Cn3×n3 is an identity matrix. Obvi-
ously, we can get X by multiplying ΦT along each tube of X̄Φ,
i.e., X = ΦT[X̄Φ], which is a reversible operation.

We use the frontal slices of X̄Φ to construct a block diagonal
matrix as follows:

bdiag
(X̄Φ

)
:=

⎛
⎜⎜⎜⎜⎝

X̄ (1)
Φ

X̄ (2)
Φ

. . .

X̄ (n3)
Φ

⎞
⎟⎟⎟⎟⎠

where bdiag is the operator that maps the tensor to a block
diagonal matrix. Moreover, we can convert the block diagonal
matrix to a tensor through the following fold operator:

fold
(
bdiag

(X̄Φ

))
= X̄Φ

Definition 1 (Tran-based t-product [36]): Set X ∈
Cn1×n2×n3 and Y ∈ Cn2×l×n3 , then the Tran-based t-product
is defined as

C = X � Y = ΦT [fold (bdiag (X̄Φ

) · bdiag (ȲΦ

))]
(1)

where C ∈ Cn1×l×n3 .
Definition 2 (Tensor transpose [36]): The transpose of X ∈

Cn1×n2×n3 is denoted as X T ∈ Cn2×n1×n3 , which satisfies
(X̄ T

Φ)
(i) = (X̄ (i)

Φ )T, i = 1, . . . , n3.
Definition 3 (Identity tensor [36]): Let I ∈ Rn×n×n3 is a

tensor, whose each frontal slice is a n× n identity matrix. Then
IΦ = ΦT[I] is called the identity tensor.

Definition 4 (Orthogonal tensor [36]): A tensor Q ∈
Cn×n×n3 is orthogonal if it has

QT � Q = Q � QT = IΦ
where IΦ is an identity tensor.

Based on the above t-product, the corresponding t-SVD can
be defined as follows.

Definition 5 (Tran-based t-SVD [36]): For any third-order
tensor X ∈ Cn1×n2×n3 , its Tran-based t-SVD is defined as

X = U � S � VT

where U ∈ Cn1×n1×n3 and V ∈ Cn2×n2×n3 are third-order or-
thogonal tensors with respect to the Tran-based t-product, S ∈
Cn1×n2×n3 is f-diagonal tensor whose frontal slices are diagonal
matrices, and VT is the tensor transpose of V .

Definition 6 (Tensor tubal rank [36]): For any third-order
tensor X ∈ Cn1×n2×n3 , the tensor tubal rank of X , denoted as
rankt(X ), is defined as the number of nonzero singular tubes
of S, i.e.,

rankt(X ) = #{i,S(i, i, :) �= 0}
where S is from the Tran-based t-SVD of X = U � S � VT.

Remark 1: The above definitions are applicable to any orthog-
onal transformation, but for different problems, it is particularly
important to choose a suitable orthogonal transformation matrix.
For the following reasons, the demosaicing problem for this
article is to employ the tensor decomposition and product based
on the discrete cosine transform (DCT). First, for the compres-
sion problem, DCT can retain the most relevant information
(low-frequency information) of HSI. Second, DCT uses the
intrinsic reflexive boundary conditions along the mode-3 of the
tensor, which has a better reconstruction effect at the image
boundary. Finally, DCT does not involve the calculation of the
complex part, theoretically speaking, it can reduce a certain
calculation cost.

B. Sampling Strategy: Hy-Mosaicing

Based on the color filter array used in color images, our
hyperspectral sensing strategy is to randomly select samples in
the spectral dimension as measurement data for each pixel in
the spatial dimension. The subsampling process of the ith pixel
xi ∈ Rb can be described in the following mathematical form:

yi = Mixi (2)

where yi ∈ Rq(q � b) is measured vector, and Mi ∈ Rq×b is
the measurement matrix used for color subsampling. It is a
binary matrix consisting of a random row subset of the identity
matrix. However, we do not use a different measurement matrix
for each pixel in space. We divide the HSI into several nonover-
lapping square windows of size K in the spatial dimension, and
then generate a color selector array of sizeK, each pixel of which
corresponds to a different measurement matrix (color). Finally,
we copy the color pattern in the unit of size K to generate our
measurement matrix. The sampling structure is shown in Fig. 2.

To better maintain the structure of HSI, the HSI is expressed
as a third-order tensor. Assuming that X ∈ Rm×n×b is the clean
HSI, when it is contaminated by the additive Gaussian noise
N ∈ Rm×n×b, then the noisy HSI Y ∈ Rm×n×b is formulated
as

Y = X +N . (3)

We perform subsampling on each pixel in X as (2). Under the
condition of knowing the mask corresponding to each pixel, we
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Fig. 3. Mask matrix to tensor.

can fill in the unsampled position of the measured vector with
0. Then, the sensing process can be formulated as

Y = M�X +N (4)

whereM ∈ Rm×n×b is a binary tensor that can be obtained from
the Mi of each pixel and � denotes the Hadamard (entrywise)
product. In each tube of M, there is

∑M(i, j, :) = q. The
corresponding relationship between Mi and M is shown in
Fig. 3. q/b stands for the sampling rate. Moreover, we mainly
consider the reconstruction of the HSI in this article. The pixel
values of the image are scaled and usually belong to the interval
[0 255].

III. DEMOSAICING: THE PROPOSED MODEL AND THE

PAM ALGORITHM

In this section, under the abovementioned sampling strategy
called Hy-mosaicing, we propose an HSI demosaicing model
based on tensor subspace representation and develop an effective
algorithm to solve it under the framework of the PAM algorithm.

A. Proposed Model

Since it is an ill-posed issue to reconstruct X under the
conditions of known M and Y in (4), and it is difficult to solve
directly. Therefore, according to the special properties of HSI
data, we can add some prior conditions [38]–[44]. Based on the
new tensor decomposition, we represent an original tensor data
as the Tran-based t-product of a tensor basis and a coefficient
tensor. In particular, we found that the obtained coefficient tensor
in the subspace can well inherit the nonlocal self-similarity of
the original HSI, which can be well characterized by the ‖.‖NL

regularity, as shown in Fig. 4. From the above, the proposed
HSI demosaicing model by tensor factorization with a nonlocal

Fig. 4. Nonlocal self-similarity property of coefficient tensor.

low-rank regularizer is described as follows:

min
Z,A,X

1
2 ‖M�X − Y‖2F + λ1 ‖X −A � Z‖2F + λ2‖Z‖NL

such that AT � A = IΦ
(5)

where A is a semi-orthogonal basis tensor with respect to an or-
thogonal transformation matrix Φ, which captures the common
subspace of different spectrums, and Z is the coefficient tensor.
Since the permuted HSI has better low-tubal-rank property than
the original data, we all perform permutation operations for M,
X , andY , so thatM,X ,Y ∈ Rb×m×n. It is assumed that there is
an optimal tubal rank p � b such thatX can be decomposed into
subspaces with the size of p, then A ∈ Rb×p×n, Z ∈ Rp×m×n.

B. PAM Algorithm

Since (5) is nonconvex, we develop the PAM algorithm to
solve it efficiently, which can guarantee numerical stability, see,
e.g., [45], [46]. Therefore, the solution of model (5) is to split
the original problem into three subproblems and solve them
alternately. Given an initial guess (X k,Ak,Zk) for the problem
(5), the PAM iteration steps are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zk+1 = argmin
Z

λ1

∥∥X k −Ak � Z∥∥2
F
+ λ2‖Z‖NL

+ ρ
∥∥Z − Zk

∥∥2
F

Ak+1 = argmin
AT�A=IΦ

λ2

∥∥X k −A � Zk+1
∥∥2
F
+ ρ

∥∥A−Ak
∥∥2
F

X k+1 = argmin
X

1

2
‖M�X − Y‖2F + ρ

∥∥X − X k
∥∥2
F

+ λ1

∥∥X −Ak+1 � Zk+1
∥∥2
F
.

1) Z Subproblem: Z subproblem is formulated as follows:

Zk+1 = argmin
Z

λ1

∥∥X k −Ak � Z∥∥2
F
+ λ2‖Z‖NL

+ ρ
∥∥Z − Zk

∥∥2
F

= argmin
Z

λ1

∥∥(Ak)T � X k −Z∥∥2
F
+ λ2‖Z‖NL

+ ρ
∥∥Z − Zk

∥∥2
F

= argmin
Z

λ1 + ρ

λ2

∥∥∥Z − λ1(A
k)T � X k + ρZk

λ1 + ρ

∥∥∥2
F

+ ‖Z‖NL.

(6)
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TABLE I
VALUE OF THE SUBSPACE DIMENSION p UNDER DIFFERENT SPECTRAL SAMPLING NUMBERS q AND NOISE LEVELS

Regarding the derivation of (6), we need to prove that the
following equation holds:

argmin
Z

λ1

∥∥X k −Ak � Z∥∥2
F

= argmin
Z

λ1

∥∥(Ak)T � X k −Z∥∥2
F
. (7)

We perform a specific orthogonal transformation along the
mode-3 for all variables in (7), each frontal slice of them can
be written as

argmin
Z̄(i)

λ1

∥∥X̄(i) − Ā(i)Z̄(i)
∥∥2
F

= argmin
Z̄(i)

λ1

∥∥(Ā(i))TX̄(i) − Z̄(i)
∥∥2
F

then (7) is valid combined with the following Theorem 1. This
problem can be solved by the state-of-the-art plug-and-play
(PnP) denoiser (such as WNNM method, BM3D method, etc.),
see [47]–[50] for their specific solution process.

Theorem 1: LetA be a semiorthogonal matrix, i.e.ATA = I,
where I is the identity matrix. Then,

argmin
Z

‖X−AZ‖2F = argmin
Z

∥∥ATX− Z
∥∥2
F
.

2) A Sub-Problem: A sub-problem is formulated as follows:

Ak+1 = argmin
AT�A=IΦ

λ2

∥∥X k −A � Zk+1
∥∥2
F
+ ρ
∥∥A−Ak

∥∥2
F
.

(8)
According to Theorem 2, the closed-form solution of A is given
as

Ak+1 = V � UT (9)

where U and V are obtained by performing Tran-based t-SVD

of λ2Zk+1 � X T + ρAkT
, that is, λ2Zk+1 � X T + ρAkT

= U �
S � VT.

Theorem 2 ([51]): For a semiorthogonal tensor A ∈
Rn1×n2×n3 , the following problem:

min
A

λ2‖X −A � Z‖2F + ρ‖A − B‖2F , s.t. AT � A = IΦ
(10)

has the closed-form solution A∗ = V � UT, where U and V are
obtained by performing Tran-based t-SVD of λ2Z � X T + ρBT,
that is, λ2Z � X T + ρBT = U � S � VT.

3) X Subproblem: X subproblem is formulated as follows:

X k+1 = argmin
X

1

2
‖M�X − Y‖2F + ρ‖X − X k‖2F

+ λ1‖X −Ak+1 � Zk+1‖2F .
(11)

Let J = 1
2‖M�X − Y‖2F + λ1‖X −Ak+1 � Zk+1‖2F +

ρ‖X − X k‖2F , we have the partial derivative of J with respect

TABLE II
CRITICAL PARAMETERS OF COMPARED METHODS

to X as
∂J
∂X = (M+ 2λ1 + 2ρ)�X

− (M�Y + 2λ1Ak+1 � Zk+1 + 2ρX k).

Take ∂J
∂X = 0, X can be given by

X k+1 = (M�Y + 2λ1Ak+1 � Zk+1

+ 2ρX k)∅ (M+ 2λ1 + 2ρ) . (12)

In summary, we propose a new demosaicing algorithm for HSI
as follows:

Algorithm 1: T-Hy-Demosaicing.
Input: Sampling mask M, measurements Y , a
preprocessed HSI X 0 using TNN method, parameters
λ1, λ2, p, ρ.

1: Initialize: Estimate A0 and Z0 via Tran-based t-SVD
on X 0.

2: for k = 1 : M do
3: update Z via solving (6) with the PnP denoiser.
4: update A via (9).
5: update X via (12).
6: if ‖X k −X k−1‖/‖X k−1‖ ≤ ε then
7: break.
8: end if
9: end for
Output: Reconstructed HSI X .

IV. EXPERIMENTAL RESULTS

In this section, to verify the effectiveness and superiority of the
proposed method for the demosaicing problem, we conduct sim-
ulation experiments on real HSI data. Since the Hy-demosaicing
problem can be regarded as a completion problem, the existing
completion methods are also suitable for solving this problem.
Thus, the compared methods include: HaLRTC [52], LRTC-
TV-I [53], TNN [54], KBR [55], and Hy-demosaicing [28]. The
experimental results are compared with these methods in terms
of quantitative indices and visual effects.
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TABLE III
QUANTITATIVE COMPARISON OF COMPARED METHODS ON SIMULATED DATA

HSI data: All our experiments are performed on two HSI
datasets, namely Washington DC (WDC) with the size of
256 × 256 × 191 and Pavia University (PaU) with the size of
200 × 200 × 80. These HSIs are used as benchmark test datasets
for HSI reconstruction problems [56]–[60]. In the experiment,
we add Gaussian independent and uniformly distributed noise

with signal-to-noise ratio (SNR) {20 dB, 30 dB} under different
sampling rates {5%, 15%, 25%, 50%}.

Parameter Setting: It is very important to set appropriate
parameters for each algorithm. In this article, the model param-
eters of the proposed algorithm are λ1, λ2, and p, the proximal
parameter is ρ, and the maximum number of outer iterations
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TABLE IV
AVERAGE COMPUTATIONAL TIMES (IN SECONDS) OF COMPARED METHODS ON TWO DATASETS

Fig. 5. Visual reconstructed results on pseudo-color images (R: 70 G: 100 B: 160) of the Washington DC from the compared methods under noise SNR = 30 dB.
Top to bottom row represents the sampling rate of 5%, 15%, 25%, and 50%.

Fig. 6. Visual reconstructed results on pseudo-color images (R: 60 G: 40 B: 20) of the Pavia University from the compared methods under noise SNR = 30 dB.
Top to bottom row represents the sampling rate of 5%, 15%, 25%, and 50%.
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is M . The spectral dimension p is highly correlated with the
number of spectrum samples and noise level, and its value is
shown in Table I. The regularization parameters λ1 and λ2 need
to be adjusted based on experience, and the tuning range is
{10−4, 10−3, 10−2, 10−1, 1, 10}. The algorithm parameters are
set to ρ = 10−5, M = 50. We adjust the parameter settings of
the compared methods according to the author’s paper or code
suggestions to get the best results. The critical parameters of
compared methods are in Table II.

Reconstruction Quality Indices: We use the mean of peak-
signal-to-noise ratio (MPSNR), mean of structural similarity
index measure (MSSIM), spectral angle mapper (MSAM), and
normalized mean squared error (NMSE) to measure the qual-
ity of the reconstruction results. Let X ∈ Rm×n×b and Xr ∈
Rm×n×b represent the original clean HSI and reconstructed HSI,
respectively. These four indices are defined as follows:

MPSNR (Xr,X ) =
1

b

b∑
k=1

10log10

(
2552mn

‖Xr(:, :, k)−X (:, :, k)‖2F

)

MSSIM (Xr,X ) =
1

b

b∑
k=1

SSIM (Xr (:, :, k) ,X (:, :, k))

NMSE (Xr,X ) =
‖X − Xr‖2F

‖X‖2F

MSAM (Xr,X ) =
1

mn

m∑
i=1

n∑
j=1

cos−1 xTxr

(xTx)1/2(xr
Txr)

1/2

where the definition of SSIM(Xr(:, :, k),X (:, :, k)) can be seen
in [61] and x = vec(X (i, j, :)), xr = vec(Xr(i, j, :)). Gener-
ally, high-quality reconstructed HSI has larger MPSNR and
MSSIM values, and smaller NMSE and MSAM values.

A. Quantitative Comparision

Table III lists the quantitative performance of different meth-
ods in simulating HSI demosaicing. It can be observed that com-
pared with other methods, our method always produces best per-
formance in terms of MPSNR, MSSIM, MSAM, and NMSE in
most cases (in the case of low sampling, while the index gap with
the first best method is very small). Specifically, compared with
the classic demosaicing method Hy-demosaicing, the proposed
method achieves a competitive performance. This verifies the
advantages of our self-updated tensor subspace compared to the
traditional matrix subspace. Compared with KBR, our method
can also improve 0.6 dB or more in most cases. Moreover,
compared with the traditional completion methods, our method
can handle a certain range of Gaussian noise, which enhances the
robustness of the algorithm. In addition, we report the average
computational times (in seconds) of compared methods on both
WDC and PaU datasets as shown in Table IV. We can observe
that the Hy-demosaicing method is faster and KBR is slower
with the guarantee of getting a good reconstruction. Overall, the
proposed method achieves the efficiency tradeoff.

Fig. 7. MPSNR values achieved by the proposed method with different
parameter p with SNR = 40 dB or sampling rate 25% on the WDC dataset.

Fig. 8. MPSNR and MSSIM values of the results with respect to λ1 and λ2
on the WDC dataset for the sampling rate 25%, respectively.

Fig. 9. MPSNR values with respect to ρ at sampling rate 25% on the WDC
dataset.

B. Visual Comparison

Figs. 5 and 6 show the visual results obtained by adding noise
level SNR = 30 dB to the above two datasets under different
sampling rates. Including five compared methods, we also give
the original clean image as a reference. We can see that the
mosaic images retain limited image information, especially in
cases below 15% sampling rate. For the low sampling rate
cases, the demosaicing results from compared methods show
that HaLRTC and LRTC-TV-I cannot cope with such severe
degradation; TNN leaves some relatively obvious noise in the
whole image; Hy-demosaicing can eliminate more noise, but
overprocessing will lose tiny image details and its reconstructed
images have subtle color distortion visual perception as a whole.
It is worth noting that the KBR method and our proposed T-Hy-
demosaicing method have obtained relatively good visual effects
on several experimental datasets. In fact, the visual compared
results are not very obvious in the display of the more detailed
parts. However, in view of the above reconstruction quality
indices, our proposed algorithm still has a relatively superior
performance.
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Fig. 10. Spectrum profiles of pixels (256,25) on the WDC dataset with SNR = 20 dB and sampling rate 25% obtained by DCT, DWT, and DFT.

C. Discussions

1) Parameter Analysis: The proposed T-Hy-demosaicing
method involves three important parameters: the subspace di-
mension p, and the regularization parameters λ1 and λ2, and
the proximal parameter ρ. In the following, we will discuss the
sensitivity analysis of these parameters.

a) The subspace dimension pmainly characterizes the spatial
and spectral information of HSI. The sensitivity analysis
of p is shown in Fig. 7. It can be seen that the setting of the
subspace dimension p-value has a higher correlation with
the sampling rate and noise level. Generally, the higher
the sampling rate, the lower the noise level, the larger the
p-value. However, the proposed algorithm shows stable
and superior performance in the specific range of p. Con-
sidering that a larger p will lead to higher computational
complexity, we set the value of p according to the number
of sampled spectra and the noise level, as shown in Table I.

b) The parameters λ1 and λ2, respectively, determine the
weights of the tensor subspace decomposition term and
the nonlocal low-tubal-rank regularization term. In addi-
tion, they are also used to estimate the noise level in the
WNNM denoiser. Fig. 8 shows their sensitivity analysis of
T-Hy-demosaicing on the WDC, with a fixed sampling rate
of 25% and a noise level of SNR = 40 dB. As observed,
when the values of λ1 and λ2 are as consistent as possible,
the experimental results obtained are better, and the best
reconstruction effect is achieved when λ1 = 10−2 and
λ2 = 10−2.

c) The proximal parameter ρ is the primal parame-
ter that guarantees the convergence of the PAM al-
gorithm. We select the ρ from the candidate set
{10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}. Fig. 9
shows the MPSNR of the proposed method for different
noise levels at sampling rate 25% on the WDC dataset.
We can observe that the MPSNR is maintained at a high
value under different noise levels when ρ is smaller than
10−3. Considering the effect and the convergence, we set
ρ = 10−5 in our method.

2) Influence of Transformation: We analyze the effect of the
reconstruction results from using tensor decomposition based
on different orthogonal transformations on the demosaicing
problem. Fig. 10 plots the spectrum profiles of pixels (256,25)
on the WDC dataset with SNR = 20 dB and sampling rate 25%
obtained by DCT, DFT, and discrete wavelet transform (DWT).

Fig. 11. PSNR and SSIM values of each band of the recovered HSI WDC
dataset with SNR = 20 dB and sampling rate 25% obtained by DCT, DWT, and
DFT.

Fig. 12. PSNR and SSIM values of each band of the recovered HSI WDC
dataset with SNR = 20 dB and sampling rate 25% obtained by WNNM and
BM3D.

Among them, DCT deviates less from the original curve in some
frequency bands and can retain more spectrum information,
especially at the boundary. In addition, Fig. 11 shows the PSNR
value and SSIM value of each band of the HSI recovered through
the DCT, DFT, and DWT. We can observe that the results
of DCT are higher than those of DFT and DWT, which also
indicates to some extent that the representation capability of the
subspace learned based on DCT is better than that based on
DFT and DWT. In summary, DCT is a relatively better choice
for the demosaicing problem that belongs to the category of
compression problems, and can retain more information of the
HSI.

3) Influence of Denoiser: We analyze the reconstruction ef-
fect of using various denoisers for solving the Z subproblem in
the Hy-demosaicing method. Fig. 12 presents the PSNR value
and SSIM value of each band obtained by using WNNM and
BM3D, respectively, on the WDC dataset with SNR= 20 dB and
sampling rate 25%. It can be seen that, compared with the BM3D
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Fig. 13. Convergence behavior of the PAM algorithm under different sampling
rates on the WDC dataset.

method, the WNNM method can obtain a better reconstruction
effect. Therefore, the entire experimental part of our article uses
the WNNM denoiser to solve theZ subproblem in the algorithm.

4) Convergence Behavior: We analyze the convergence of
the proposed PAM algorithm. In Fig 13, we use the T-Hy-
demosaicing algorithm to process the HSI WDC, showing the
relative change curve with respect to the number of iterations,
and the sampling rates are 5%, 15%, 25%, and 50%, respectively.
It can be observed that for different sampling rates, as the number
of iterations increases, the relative change value obtained at each
step of the algorithm decreases monotonically and gradually
tends to zero. This verifies the strong numerical convergence of
the proposed PAM-based T-Hy-demosaicing algorithm.

V. CONCLUSION

In this article, we propose a hyperspectral demosaicing
method based on a new hyperspectral sensing framework, which
exploits both low-tubal-rankness and nonlocal self-similarity.
Based on the low-tubal-rankness, the HSI can be naturally repre-
sented by the subspace basis and coefficient tensor. For learning
subspace basis, we suggest a novel t-SVD based on orthogonal
transformation. Under the decomposition, we flexibly choose
appropriate transformation to learn subspaces, and the learned
subspace has better representation ability. Moreover, through the
subspace representation, the original high-dimensional problem
is converted to deal with the low-dimensional coefficient ten-
sor, and its inherited nonlocal self-similarity can be exploited
by the PnP denoiser, which greatly reduces the computational
complexity. Numerical experiments show the superiority of the
proposed T-Hy-demosaicing method.

APPENDIX

Theorem 1: Let A be a semiorthogonal matrix, i.e. ATA = I,
where I is the identity matrix. Then, we have

argmin
Z

‖X−AZ‖2F = argmin
Z

∥∥ATX− Z
∥∥2
F
.

Proof: From A is a semiorthogonal matrix, it follows that

‖AX‖2F = trace
(
(AX)TAX

)
= trace

(
XTATAX

)
= trace(XTX) = ‖X‖2F .

(13)

Moreover, we have the following equation:

Z = argmin
Z

‖X−AZ‖2F

= argmin
Z

∥∥AATX−AZ− (AAT − I
)
X
∥∥2
F
. (14)

Set B1 = AATX−AZ, B2 = (AAT − I)X. From (14), we
obtain

‖B1 −B2‖2F = trace
(
(B1 −B2)

T(B1 −B2)
)

= trace
(
BT

1B1 +BT
2B2 −BT

1B2 −BT
2B1

)
and

trace(BT
1B2) = trace

((
AATX−AZ

)T (
AAT − I

)
X
)

= trace
(
XTAAT (AAT−I

)
X− ZTAT (AAT−I

)
X
)

= trace
(
XTAATX−XTAATX−ZTATX+ZTATX

)
= 0.

Since trace(BT
1B2) = trace(BT

2B1) = 0, we have

‖B1 −B2‖2F = trace(BT
1B1 +BT

2B2) = ‖B1‖2F + ‖B2‖2F
which combining with the definition of B1 and (13) yields that

argmin
B1

‖B1 −B2‖2F = argmin
B1

‖B1‖2F

= argmin
Z

∥∥AATX−AZ
∥∥2
F

= argmin
Z

∥∥ATX− Z
∥∥2
F
.

The proof is completed. �
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