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Sensing Population Distribution from Satellite
Imagery Via Deep Learning: Model Selection,
Neighboring Effects, and Systematic Biases

Xiao Huang , Di Zhu, Fan Zhang, Tao Liu, Xiao Li , and Lei Zou

Abstract—The rapid development of remote sensing techniques
provides rich, large-coverage, and high-temporal information of
the ground, which can be coupled with the emerging deep learning
approaches that enable latent features and hidden geographical
patterns to be extracted. This article marks the first attempt
to cross-compare performances of popular state-of-the-art deep
learning models in estimating population distribution from remote
sensing images, investigate the contribution of neighboring effect,
and explore the potential systematic population estimation biases.
We conduct an end-to-end training of four popular deep learning
architectures, i.e., VGG, ResNet, Xception, and DenseNet, by es-
tablishing a mapping between Sentinel-2 image patches and their
corresponding population count from the LandScan population
grid. The results reveal that DenseNet outperforms the other three
models, while VGG has the worst performances in all evaluating
metrics under all selected neighboring scenarios. As for the neigh-
boring effect, contradicting existing studies, our results suggest
that the increase of neighboring sizes leads to reduced population
estimation performance, which is found universal for all four se-
lected models in all evaluating metrics. In addition, there exists a
notable, universal bias that all selected deep learning models tend to
overestimate sparsely populated image patches and underestimate
densely populated image patches, regardless of neighboring sizes.
The methodological, experimental, and contextual knowledge this
article provides is expected to benefit a wide range of future studies
that estimate population distribution via remote sensing imagery.

Index Terms—Deep learning, end-to-end architecture,
population estimation, satellite imagery, systematic biases.

I. INTRODUCTION

F INE knowledge of the spatial contribution of human activ-
ity is essential for a wide range of fields, such as public

health [1]–[3], urban planning [4]–[6], disaster management
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[7], [8], resource allocation [9], economic evaluation [10], and
migration [11], [12]. As stated by the global sustainable develop-
ment goals, understanding where and how people are distributed
is of great importance to make “cities and human settlements
inclusive, safe, resilient, and sustainable.”

Census data, when linked with accurate administrative bound-
ary data, can provide spatially explicit population distribution.
In the U.S., for instance, official population data on various
geographical levels [e.g., the Decennial Census records and the
American Community Survey (ACS)] are repetitively released
by the U.S. Census Bureau. Similar agencies that regularly
release population distribution data include the Office for Na-
tional Statistics of the U.K., the National Bureau of Statistics of
China, and the Statistics Bureau of Japan, to list a few. Despite
the authority of census-based population distribution released
by the officials, it owns several intrinsic limitations, making it
ill-suitable for many spatial problems. First, population distri-
bution is with great heterogeneity [13]; therefore, it cannot be
assumed uniformly distributed within predefined geographical
units. Second, the census-based population suffers from the
modifiable areal unit problem (MAUP) [14] due to its arbi-
trarily imposed boundaries that are rarely consistent with other
boundaries in practical applications [15]. Third, census-based
population distribution is often with poor temporal resolutions
that preclude temporal-dynamic population estimations, and
recent and reliable population data at fine scales can often be
lacking, especially in resource-poor settings [16], [17]. Given
the above limitations, scholars start to explore various means to
improve the aggregated census-based population, one notable
effort of which is to derive fine-grained, spatially-continuous
population grids.

A population grid refers to a geographically referenced lat-
tice of square cells, with the value of each cell representing a
population count at its location. Population grids are generally
constructed based on census unit-based data via dasymetric
modeling [18], [19], or other statistical approaches that intel-
ligently assign population to grids by establishing relationships
between population and supporting auxiliary variables [20],
[21]. The derived population grids not only capture the hetero-
geneity of population distribution, but also ensure the aggregated
numbers at census units match the official records [22]. Despite
that population distribution delivered in fine-grained grided
format achieves spatial heterogeneity and largely mitigates the
MAUP, the production of accurate population grids is temporally
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restricted to the release of census data [16] and is heavily
dependent on the availability of a diverse set of inputs (often
large in number), leading to its questionable sustainability. With
the development of statistical modeling techniques, questions
arise: can we obtain a mapping between the gridded population
and the gridded latent variables? If so, can we achieve a relatively
robust mapping using as few and as easily-accessible variables
as possible?

The rapid development of remote sensing techniques facil-
ities the consistency and sustainability of auxiliary variables,
which are often preferred and needed in population distribution
modeling, as remote sensing imagery, with improving imag-
ing capability over time, provides rich, large-coverage, and
high-temporal information of the ground. The advantages of
remote sensing imagery are further expended by the emerg-
ing supervised deep learning approaches with the capacity of
extracting both low- and high-level latent features and cap-
turing hidden hierarchies of geographical patterns from im-
ages [23]–[25], thus forming a stable supervised end-to-end
mapping [26]. The coupling of remote sensing imagery and
deep learning algorithms undoubtedly establishes a new venue
that potentially advances traditional population modeling. Nu-
merous efforts have been made to harvest the strong mapping
capability of deep learning in estimating both population count
and population density directly from satellite images [27]–[30].
These efforts differ in architecture design, model selection,
and evaluation metrics. Despite the aforementioned attempts,
gaps still exist in evaluating the performance of state-of-the-art
deep learning models to provide guidelines of model selec-
tion for future studies, thoroughly investigating the potential
contribution of neighboring image patches to the population
estimation in the center image patch (neighboring effects) to
provide guidance for the selection of suitable neighboring sizes,
and exploring the potential systematic population estimation
biases resulting from the intrinsic limitations of remote sensing
images.

To fill the above gaps, we perform end-to-end training on
popular deep learning architectures by establishing a mapping
between satellite image patches and their corresponding popu-
lation count from an existing gridded population product. Tak-
ing the Metropolitan Atlanta (Metro Atlanta) and Metropolitan
Dallas (Metro Dallas) as the study region, we obtain remote
sensing images from Sentinel-2 with a spatial resolution of 10
m and derive the 24-h ambient gridded population distribution
from LandScan (https://landscan.ornl.gov/). Models are trained,
validated, and tested in Metro Atlanta and further applied to
Metro Dallas to evaluate the overall generalizability. The main
contributions of this article are summarized as follows.

1) We adopt transfer learning techniques by modifying and
fine-tuning several popular deep learning architectures toward
the population estimation task. We further cross-compare es-
timated population distribution from these architectures quan-
titatively and qualitatively, providing guidelines for the model
selection in future studies.

2) We investigate the neighboring effects by progressively
extending the selection of neighboring patches to estimate the
population residing in the center image patch, offering guidance
for the selection of suitable neighboring sizes.

3) We explore the potential systematic biases in population es-
timation directly from remote sensing images via deep learning
approaches, discuss reasonable causes that lead to these biases,
and provide applicable solutions to mitigate these biases.

II. RELATED WORKS

A. Existing Population Grid Products and Their Issues

Gridded population contain regulated cells with population
count, serving as an ideal input for training a mapping between
image patches and the corresponding population statistics. Nu-
merous global- and regional-focused population grid products
have been developed and released with various spatiotemporal
scales. Popular population products that contain the U.S. in-
clude (but is not limited to): Gridded Population of the World
(GPW) [31], Global Rural Urban Mapping Project (GRUMP)
[21], Global Human Settlement–Population (GHS-POP) [32],
World Population Estimate (WPE) [33], LandScan-USA [34],
and Building-based Population Grid USA (BPG-USA) [13].
Among them, GPW, GRUMP, GHS-POP, and WPE are at a
global scale, while LandScan-USA and BPG-USA specifically
target the U.S. and Conterminous U.S., respectively. Dasymetric
techniques are often applied to allocate population count to
habitable cells within each census unit, but with different input
of auxiliary variables and weighting scenarios. Commonly used
auxiliary variables involve land use/land cover (usually derived
from remote sensing imagery), nighttime light intensity, dis-
tribution of infrastructures (e.g., roads, buildings, and point of
interest), environmental variables, and restrictions (e.g., water
body and protected areas), to list a few. Population grid products
generally ensure that aggregated numbers at census units match
the official records, at the same time, capture the heterogeneity of
population distribution using regulated cells. However, massive
inputs, especially for accurately modeled gridded population,
need to be prepared and updated in accordance with the release
of the new census population [35], posing a great challenge
to the continuous product release, as auxiliary variables with
differing spatiotemporal scales might be difficult to collect [16].
In addition, census-disaggregated population grids largely rely
on the availability of census data. Such an issue is exaggerated
in data-poor settings, where census data and required auxiliary
variables are obsolete or unavailable at all.

The development of remote sensing platforms with improv-
ing imaging capability leads to the easy acquisition of rich,
large-coverage, and high-temporal information of the ground,
serving as an ideal set of variables that benefits continuous
population distribution mapping. Deep learning techniques fur-
ther enhance the ability to extract high-level latent features
with hidden hierarchies of geographical patterns. Once a stable
mapping is established between the gridded population and the
corresponding image patch, population distribution mapping can
be achieved only with remote sensing images, which are easily
accessible and regularly updatable.

B. Popular Deep Learning Architectures and Transfer
Learning

Most modern deep learning models are based on artificial
neural networks, specifically convolutional neural networks

https://landscan.ornl.gov/
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(CNNs) that were inspired by the visual system’s structure and
hierarchically composed of input, output, and multiple hidden
layers [36]. AlexNet by Krizhevsky et al. [37] was a pioneering
CNN that transcended traditional approaches in various com-
puter vision tasks. Further, the VGG by Simonyan and Zisserman
[38] improved the performance by stacking simple convolu-
tional operations, forming a deep architecture. Diverging from
the mainstream of stacking layers via a sequential structure,
GoogLeNet [39] achieved great performance by introducing a
building block, i.e., the inception module, that largely reduces
the number of parameters and operations. Numerous updated
versions of GoogLeNet were proposed: Inception-V2 and -V3
[40]; Inception-V4 [41]; and Xception [42]. ResNet [43] is
well-known for its depths and the introduction of residual blocks
that implement identity skip connections to promote gradient
propagation. From another perspective in solving the problem
of vanishing gradient, DenseNet [44] facilitates the acquisition
of “collective knowledge” by allowing each layer to obtain
additional inputs from all preceding layers.

Training the above architectures from scratch is not often fea-
sible due to the limited sample size and the temporal inefficiency
for models with randomly initialized parameters to converge.
Studies have proved that using pretrained weights from similar
tasks greatly benefits the model training process [45], [46]. In
this article, we adopt transfer learning techniques by loading
the weights pretrained from ImageNet1 as initialization. We
select four popular deep learning architectures and compare
their performances in deducing population counts given the
corresponding remote sensing image patches. These modern
architectures, including VGG, ResNet, Xception, and DenseNet,
are widely applied in various computer vision tasks and gener-
ally diverge from each other in the overall architecture design.

C. Deriving Population Distribution Directly From Satellite
Imagery Via Deep Learning

Numerous attempts have been made to derive population
distribution from satellite imagery supported by the strong ca-
pability of feature extraction in deep learning. Doupe et al.
[30] converted satellite images into population density esti-
mates using a VGG-like architecture that includes collections of
“convolutional layer (Conv), pooling layer (Pool) and rectified
linear unit” followed by two fully-connected layers, each with
4096 neurons. They trained and implemented their model in
Tanzanian and Kenyan and found that their model achieved
great performance with decent generalizability. Robinson et al.
[29] adopted a similar VGG-like sequential architectural design
to Doupe et al. [30] but regarded the task as a classification
problem instead of a regression problem. They aimed to classify
image patches to labels that derive from the power level of the
population count (14 classes in total). The results suggested
that the predictions from their model were consistent with the
ground-truthing labels with anR2 over 0.9 in selected areas in the
U.S. Hu et al. [27] built a customized CNN architecture to predict
population density in India from multisource imagery fused by
the implementation of 1 × 1 Conv layers. Their results, again,

1Online. [Available]: http://www.image-net.org/

demonstrated the feasibility of producing accurate population
estimates directly from satellite imagery, especially for rural
areas. A more recent effort was by Xing et al. [28], who imple-
mented a ResNet-based architecture with the consideration of
neighboring effects, termed as neighbor-ResNet. The proposed
neighbor-ResNet architecture used ResNet as a backbone and
aimed to estimate the population residing in the center image
patch, with the support of the eight surrounding neighboring
patches (within a 3 × 3 patch space). The results proved the
superiority of neighbor-ResNet compared to regular ResNet that
ignores the neighboring effects.

Despite the above efforts, few studies conduct comparisons
among state-of-the-art deep learning architectures in terms of
evaluating their performances in the mapping between satellite
imagery and population. The recent effort by Xing et al. [28]
identified the positive contribution of neighboring patches but
with a fixed 3 × 3 patch space. Efforts are needed to explore the
dynamics of performance when a different size of a surrounding
region is considered.

III. DATASETS AND STUDY AREAS

A. Datasets

1) Population Grid (LandScan USA Population Database):
In this article, we selected the population grid from LandScan2

as ground-truthing population distribution, serving as a refer-
ence that allows an end-to-end mapping to be established by
deep learning architectures between satellite image patches and
the corresponding population count. LandScan belongs to Oak
Ridge National Laboratory, the largest science and energy na-
tional laboratory in the Department of Energy. LandScan’s pop-
ulation grid has been widely recognized as one of the community
standard products [47] and applied in a variety of domains
[48]–[50]. LandScan team adopts multivariate dasymetric mod-
eling frameworks using the best available demographic (census)
data, remote sensing imagery, and other supporting variables
to disaggregate census population counts into grids [34]. The
population product we selected is the LandScan USA Population
Database 2019, currently hosted by homeland infrastructure
foundation-level data. It provides estimated population counts
at 3 arc-second resolution for nighttime and daytime for Conter-
minous U.S., Hawaii, Alaska, as well as other U.S. territories.
We averaged the daytime and nighttime population grids to form
a 24-h ambient population grid, as we believe information from
remote sensing images does not target a specific category of pop-
ulation distribution (daytime or nighttime), but an ambient one.
Note that LandScan USA Population Database 2019 is a static
baseline population estimate, which does not include transitory
populations, such as business travelers and tourists [51]. Given
the fact that the population grid with a 3 arc-second resolution
presents great heterogeneity that a training patch with medium-
resolution satellite imagery might fail to capture (a 3 arc-second
grid only contains roughly 10×10 pixels of Sentinel-2 imagery),
we aggregated the original population grid to 30 arc-second
(approximately 1 km at the equator), a spatial resolution adopted

2Online. [Available]: https://landscan.ornl.gov/
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Fig. 1. Study areas with two sites. (a) Conterminous U.S. (b) Metro Atlanta (model training, validating, and testing). (c) Metro Dallas (evaluating generalizability).

by many popular population products (i.e., GPW, GRUMP,
GHS-POP, etc.) and studies similar to this article [27]–[29].

2) Satellite Imagery (Sentinel-2): The satellite imagery
used in this study was derived from Sentinel-2, a wide-swath,
fine-resolution, multispectral imaging mission of the European
Space Agency developed in the framework of the European
Union Copernicus program [52]. We selected the Sentinel-2
Level-2A product that had been atmospherically corrected (bot-
tom of atmosphere reflectance) and orthorectified. We retrieved
four bands, i.e., red (R), green (G), blue (B), and near-infrared
band (NIR), all with a spatial resolution of 10 m. Studies have
demonstrated that the physical and chemical characteristics of
various types of land use and land cover can be well reflected by
these four bands [53], [54]. Thus, we expected a stable mapping
that associates population count with these bands to be formed
by deep learning architectures through end-to-end training. In
addition, NIR and visible spectrum that includes R, G, and B
are available in most multispectral sensors. Serving as model
inputs, the easy accessibility of these bands greatly promotes
generalizability and sustainability. We queried Sentinel-2
imagery via Google Earth Engine (GEE). The imagery covers
Metro Atlanta and Metro Dallas, with a temporal coverage
from January 1 to December 31, 2019, consistent with the time
span of the 2019 LandScan population grid. We implemented a
standard Sentinel-2 cloud mask in GEE and selected the median
value for each pixel with overlapping values among different
scenes.

B. Study Areas

We selected two metropolitan regions within the Contermi-
nous U.S. [see Fig. 1(a)] as our study areas, i.e., Metro Atlanta

[see Fig. 1(b)] and Metro Dallas [see Fig. 1(c)]. The article
site that covers Metro Atlanta is bounded with latitude from
33.1750◦ N to 34.4250◦ N , and longitude from 83.5916◦ W to
85.1750◦ W. The article site that covers Metro Dallas is bounded
with latitude from 32.2325◦N to 33.4825◦N, and longitude from
96.1500◦ W to 97.7334◦ W. These two metropolitan areas are
both densely populated metroplex but with observable discrep-
ancies in their distribution patterns of land use and land cover.
Metro Atlanta is characterized by its sprawl-out urban fabrics
[see Fig. 1(b)]. In comparison, the urban fabrics in Metro Dallas
are comparably centralized, evidenced by its distinctly dense
urban core [see Fig. 1(c)]. We further divided the two study sites
into 30 arc-second grids, leading to a total of 28 500 (190 × 150)
grids in each site for model training purposes. We trained deep
learning architectures using patches from Metro Atalanta and
evaluated their generalization capability using patches from
Metro Dallas. We believe that the dissimilarity between these
two sites benefits us in observing potential overfitting issues
and systematic biases.

IV. METHODOLOGY

A. Preprocessing and Problem Formation

We first resized the daytime and nighttime population grids
from LandScan to 30 arc-second and averaged them to form
24-h ambient population grids. Let pdayi and pnighti respectively
denote the daytime and nighttime population count in grid i, the
24-h ambient population count in grid i (pi) is calculated as

pi =

{
pday
i +pnight

i

2 , if pday
i +pnight

i

2 ≥ 1
0 , else

. (1)
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Fig. 2. The distribution of the logarithmized population within each grid (plgi ) in (a1) Metro Atlanta and (b1) Metro Dallas. Histograms and examples of image
patches corresponding to the logarithmized population in (a2) Metro Atlanta and (b2) Metro Dallas.

For each grid i, there exists a corresponding image patch i,
denoted as Pchi. To investigate the potential contribution of
neighboring patches to the population residing in the center
image patch, we extended Pchi to include its neighboring
patches. Given image patch Pchi, the extension, i.e., Pchnbr(n)i ,
that includes its n× n neighborhood can be formulated as

Pch
nbr(n)
i =

⎡⎢⎣ Pchj · · · Pchj+n−1

... Pchi
...

Pchk · · · Pchk+n−1

⎤⎥⎦ (2)

where n denotes the size of the neighborhood and n ∈
{1, 3, 57, 911}.

As we observed that the distribution of pi was heavily tailed
(even excluding the value of 0), we took the logarithms of the
population count at grid i, denoted as logpi, following the works
by Xing et al. [28] and Hu et al. [27]: plgi = log10(pi). Specifi-
cally, if pi = 0, we set plgi as 0. Fig. 2 presents the distribution of
logpi in the two study areas: Metro Atlanta [see Fig. 2(a1)] and
Metro Dallas [see Fig. 2(b1)]. Their histograms and examples
of image patches corresponding to the logarithmized population
count are presented in Fig. 2(a2) and 2(b2), respectively. We
observed a spike of 0 values in both study areas, suggesting the
existence of massive uninhabited grids. The logarithm operation
flattened the curve for values above 0, leading to a considerably
balanced target set that benefits model training.

We view population distribution estimation as a mapping
problem. Given the extended image patch centered at Pchi, i.e.,
Pch

nbr(n)
i , and the logarithmized population count at grid i, i.e.,

logpi, we aim to build a mapping function between them

Pch
nbr(n)
i → plgi (3)

where symbol → denotes the mapping to be learned by deep
learning architectures. Note that Pchnbr(n)i contains four chan-
nels, i.e., R, G, B, and NIR. We detailed this end-to-end archi-
tecture in the next session.

B. End-To-End Framework

We implemented an end-to-end training framework to facil-
itate the establishment of the mapping from Pch

nbr(n)
i to plgi

(see Fig. 3). Considering the dynamic yet elusive relationship
between remotely observed imagery and population distribution,
deep neural networks are often regarded as preferred choices in
modeling such a nonlinear, complex relationship [28]. In this
article, we selected four widely-adopted deep learning archi-
tectures with diverging concepts in design: VGG (VGG-16);
ResNet (ResNet-50); Xception; and DenseNet (DenseNet-121).
We aim to compare their performances in deducing population
count given the corresponding image patches with different
neighboring considerations. As shown in Fig. 3, we first recon-
structed Pch

nbr(n)
i by considering the n by n neighborhood of

Pchi. We then resized Pch
nbr(n)
i to a fixed size of 256 × 256.

Each reconstructed Pch
nbr(n)
i has four channels, i.e., R, G,

B, and NIR. Aiming to fine-tune weights of backbone models
pre-trained from ImageNet, we implemented 1 × 1 Conv layers,
commonly-used layers for image fusion and dimensionality
reduction [43], to reduce the number of channels from four
to three, consistent with the situation where the initial weights
from ImageNet were derived. Further, we fed the rechannelized
Pch

nbr(n)
i to the backbones (with top fully connected layers

cut off) of the four selected deep learning architectures. We
appended a global average pooling layer to each architecture
backbone, flattened the resulted neurons with 0.5 as dropout
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Fig. 3. End-to-end framework to derive the mapping between remote sensing imagery and population distribution. This framework tests the performances of
popular deep learning architectures with different neighboring considerations. A dropout ratio of 0.5 is implemented after the results from the global average

pooling layers are flattened. Note that Pchnbr(n)
i contains four channels, i.e., R, G, B, and NIR.

ratio before connecting them to the output neuron, whose linear

activation suggests the estimated plgi , denoted as p̂lgi .

C. Training Strategies

We chose log hyperbolic cosine (log-cosh) loss for back-
propagation learning and weight updating

L
(
plgi , p̂lgi

)
=

s∑
i=1

log10

(
cosh

(
p̂lgi − plgi

))
(4)

where L(plgi , p̂lgi ) denotes the log-cosh loss function, given the

ground-truthing plgi and estimated p̂lgi , s demotes the batch size
(set as 32), and cosh (x) denotes the hyperbolic cosine func-
tion, i.e., ex+e−x

2 . The log-cosh is similar to the mean squared
error loss (i.e., the L2 loss), but is more tolerant of abnormal
predictions [55].

We divided the two study areas into 30 arc-second grids,
leading to a total of 28 500 (190 × 150) grids in each site. Image
patches in Metro Atlanta were randomly divided into a training
set (17 100 patches, 60%), a validating set (5700 patches, 20%),
and a testing set (5700 patches, 20%). The spatial distribution
of Metro Atlanta’s image patches in different sets is presented
in Fig. 10 (see Appendix). Image patches in Metro Dallas
were used to evaluate the framework’s generalization capability,
considering the heterogeneous patterns of land use/land cover
revealed from these two study areas.

Hyperparameters were tuned empirically based on the perfor-
mance of the validating set. Adam optimizer was adopted with
a learning rate initialized to 0.0001 (β1 = 0.9, β2 = 0.999),
the batch size was set to 32, and epochs were capped at 10
000, before which all selected architectures reached a stable
performance. The framework run on a desktop with two NVIDIA
GTX 1080Ti GPUs, a 3.20 GHz Intel Core i7-8700 CPU, and 32
GB RAM. We implemented the framework using Tensoreflow
2.0 library with Python 3.6.5 under Windows 10, CUDA 10.1,
and CUDNN 7.0 system.

D. Evaluation Metrics

We used three common quantitative indices to reveal the

discrepancy between plgi (ground-truthing) and p̂lgi (estimated)
in the testing set: coefficient of determination (R2); coefficient
of efficiency (CoE); and modified index of agreement (MIoA).
CoE, ranging from minus infinity to 1, suggests the proportion
of initial variance accounted for by a model [56]. The higher the
CoE value, the better agreement a model reaches. R2 and MIoA
are widely adopted metrics to suggest the general goodness of fit
of a model. Specifically, MIoA, less sensitive to the proportional
difference compared with R2, is a modified version of the
original index of agreement proposed by Willmott et al. [57].
With a range from 0 to 1, MIoA with a higher value indicates
better agreement. The calculations for the three indices follow:

R2 =

⎛⎜⎜⎜⎜⎝
∑m

i=1

(
plgi − plgi

)(
p̂lgi − p̂lgi

)
√∑m

i=1

(
plgi − plgi

)2

√∑m
i=1

(
p̂lgi − p̂lgi

)2

⎞⎟⎟⎟⎟⎠
2

(5)

COE = 1−
∑m

i = 1

(
plgi − p̂lgi

)2

∑m
i = 1

(
plgi − plgi

)2 (6)

MIoA = 1−
∑m

i = 1

∣∣∣∣plgi − p̂lgi

∣∣∣∣∑m
i = 1

(∣∣∣∣p̂lgi − plgi

∣∣∣∣+ ∣∣∣plgi − plgi

∣∣∣) (7)

where m denotes the number of testing patches, plgi denotes the

average value of plgi , i.e., plgi =
∑m

i=1 plg
i

m , and p̂lgi denotes the

average value of p̂lgi , i.e., p̂lgi =
∑m

i=1 p̂lg
i

m .
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Fig. 4. Scatterplot of Metro Atlanta testing patches between the true population (plgi ) and the estimated population (p̂lgi ) from VGG, ResNet, Xception, and
DenseNet, under different neighboring scenarios.

V. RESULTS

A. Model Performances of Testing Patches in Metro Atlanta

After the model training process, we applied well-trained
models to the testing patches (5700) in Metro Atlanta, aiming
to reveal the discrepancies of model performances, investigate
the influence of neighboring sizes, and identify the potential
systematic biases. The model performances of testing patches
in Metro Atlanta under different neighborhood scenarios can be
found in Table I. In general, DenseNet stands out, as it outper-
forms the other three models in all evaluation metrics under
all selected neighboring sizes. In comparison, VGG has the
worst performance, evidenced by its lowest values in evaluating
metrics among the four selected models. ResNet and Xception
have a similar performance lying between DenseNet and VGG.
The scatterplots of the true population (plgi ) and the estimated

population (p̂lgi ) (see Fig. 4) also confirm this conclusion, as the
scatterplot for DenseNet presents a more clustered pattern in
each neighboring scenario compared to the other three models.

In comparison, plgi and p̂lgi are scatteredly distributed from
the 1:1 reference line in VGG, suggesting its poor predicting
performance.

As for neighboring scenarios, the increase of neighboring
sizes leads to reduced population estimation performance, which
is found universal for all four selected models in all evaluating
metrics (see Table I). For instance, the R2 for DenseNet with
nbr(1) is 0.915, which is gradually reduced when increasing
neighboring patches: 0.904 with nbr(3) , 0.874 with nbr(5),
0.853 with nbr(7), 0.836 with nbr(9), and 0.811 with nbr(11).
Such performance reduction in DenseNet with an increased
neighboring size is also supported by CoE and MIoA metrics:
CoE gradually reduces from 0.901 to 0.773 and MIoA from
0.877 to 0.791, when neighboring size increases from 1 to 11.

The scatterplots validate this claim, as the plgi and p̂lgi in all se-
lected models present a more scattered distribution pattern when
more neighboring patches are considered (see Fig. 4), suggesting
that increasing neighboring sizes, to a certain degree, confuses
models, leading to a negative impact on model prediction. The
above results contradict the findings by Xing et al. [28], who
found an improved predicting performance can be achieved with
the consideration of more neighboring patches. We assume that
such a phenomenon can be attributed to the heterogeneous nature
of population distribution and the diminishing proportion of
information in the central patch resulting from the requirement
of a fixed input size for deep learning models.

To explore whether systematic biases exist in population es-
timation from remote sensing images via deep learning models,
we investigated the relationship between the true population, i.e.,
plgi , and the difference in estimated population and true popu-

lation, i.e., p̂lgi − plgi . Fig. 5 presents the scatterplots of plgi and

p̂lgi − plgi from VGG, ResNet, Xception, and DenseNet, under
different neighboring scenarios. The results reveal a notable,
universal bias, evidenced by the negative slope (β) and negative
Pearson’s r values significant at 0.001 significance level from
all models under all neighboring scenarios. The results reveal
a notable, universal bias, evidenced by the negative slope (β)
and negative Pearson’s r values significant at 0.001 significance
level from all models under all neighboring scenarios (Table III).
The above results demonstrate that all selected deep learning
models tend to overestimate sparsely populated image patches
and underestimate densely populated image patches, regardless
of neighboring sizes. The choice of neighboring sizes plays
a trivial role in the strength of such bias, as Pearson’s r and
β fluctuate with the increase of neighboring sizes. Among all
the neighboring scenarios from nbr(1) to nbr(11) , VGG,
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Fig. 5. Scatterplot of Metro Atlanta testing patches between the true population (plgi ) and the difference in estimated population and true population (p̂lgi − plgi )
from VGG, ResNet, Xception, and DenseNet, under different neighboring scenarios.

ResNet, and Xception have the least bias with nbr(1), i.e., the
central patch. For DenseNet, however, the least bias occurs with
nbr(3), i.e., the central patch with its eight nearby neighboring
patches. The identified systematic bias can be partly explained
by the intrinsic limitation of multispectral remote sensing im-
ages: lacking the vertical observation, which presumably leads
to the underestimation of holding capacity (volume) of high-rise
buildings in densely populated areas.

B. Model Performances in Metro Dallas

Given the observable discrepancies in distribution patterns
of land use and land cover in Metro Dallas compared with
Metro Atlanta, we evaluated the generalization capability by
applying models trained using patches from Metro Atlanta to
image patches in Metro Dallas. We aimed to investigate whether
similar patterns still hold in Metro Dallas regarding model
performances, the impact of neighboring sizes, and the identified
systematic bias.

In general, DenseNet still outperforms the other three models
in all evaluation metrics under all neighboring scenarios, while
VGG has the worst performance (see Table II). Comparing Ta-
bles I and II, there exist overall performance reductions, mostly
slight ones, for all models when they are applied to a different
metroplex. For instance, the MIoA for DenseNet with nbr(1)
in Metro Atlanta is 0.877, but it is reduced to 0.838 in Metro
Dallas. Similar patterns can be found for MIoA in DenseNet
under other neighboring scenarios: from 0.867 to 0.808 with
nbr(3), from 0.841 to 0.793 with nbr(5), from 0.831 to 0.768
with nbr(7), from 0.814 to 0.741 with nbr(9), and from 0.791
to 0.710 with nbr(11). The above findings can be confirmed by

comparing Figs. 4 and 6, where scatterplots of plgi and p̂lgi are

presented. Evidently, more scattered distribution of plgi and p̂lgi
along the 1:1 reference line can be found in Metro Dallas (see
Fig. 6) comparing to the corresponding ones in Metro Atlanta
(see Fig. 4). The above results suggest that models trained in
Metro Atlanta can be generalized to Metro Dallas. However, the
differences between these two metropolitan areas pose certain
challenges for all models in population estimation.

As for neighboring scenarios, the pattern identified from the
testing patches in Metro Atlanta still holds: increased neigh-
boring sizes lead to universal reduced population estimation
performances for all four selected models, evidenced by gradu-
ally reduced values in all evaluating metrics (see Table II) and

scattered distribution ofplgi and p̂lgi (see Fig. 6) when neighboring
scenarios move from nbr(1) to nbr(11).

The relationship between the plgi and p̂lgi − plgi in Dallas
reveals that the same bias exists in Metro Dallas (see Fig. 7 and
Table III) and the bias is, to some extent, intensified. For instance,

the Pearson’s r values between p̂lgi − plgi and plgi for DenseNet
with nbr(1) in Metro Atlanta and Metro Dallas are -0.39 and
-0.57, respectively, suggesting a strengthened negative correla-
tion. Similar intensified biases can be found for DenseNet under
other neighboring scenarios: from -0.29 to -0.68 with nbr(3),
from -0.30 to -0.45 with nbr(5), from -0.35 to -0.64 with nbr(7),
from -0.28 to -0.50 with nbr(9), and from -0.41 to -0.60 with
nbr(11). Other models that include VGG, ResNet, and Xcep-
tion, also experience intensified systematic biases under varying
neighboring scenarios when estimating population using image
patches in Metro Dallas. The intensified bias (underestimating
densely populated image patches) presumably results from the
more centralized urban pattern and the denser urban core of
Metro Dallas compared with Metro Atlanta (see Fig. 1).
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Fig. 6. Scatterplot of all Metro Dallas patches between the true population (plgi ) and the estimated population (p̂lgi ) from VGG, ResNet, Xception, and DenseNet,
under different neighboring scenarios.

Fig. 7. Scatterplot of all Metro Dallas patches between the true population (plgi ) and the difference in estimated population and true population (p̂lgi − plgi ) from
VGG, ResNet, Xception, and DenseNet, under different neighboring scenarios.

Given that all models achieve the best performance under the
neighboring scenario of nbr(1), we present the estimated pop-
ulation distribution in Metro Dallas with nbr(1) via DenseNet
[see Fig. 8(b)], ResNet [see Fig. 8(c)], Xception [see Fig. 8(d)],
VGG [see Fig. 8(e)], as well as ground-truthing population
distribution [see Fig. 8(a)]. In general, estimated population
distributions from all models present a considerably similar

pattern to that of the true population distribution, suggesting their
overall capability of capturing the heterogeneity of population
distribution from remote sensing images. However, The issue
of population underestimation in urban areas is evident for all
models, especially in the urban core (highlighted by the purple
rectangle), where densely populated grids (dark red grids) are
markedly underestimated. Our investigation reveals that the
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Fig. 8. Ground-truthing population. (a) Population estimated via DenseNet. (b) ResNet. (c) Xception. (d) VGG (e) under the neighboring scenario of nbr(1).
3-D imagery covered by the purple rectangle was derived from Google map.

Fig. 9. Ground-truthing population and population estimated via DenseNet under different neighboring scenarios: nbr(1); nbr(3); nbr(5); nbr(7); nbr(9);
and nbr(11).

underestimated grids in the urban core contain many high-rise
buildings (see Fig. 8). As remote sensing imagery (Sentinel-2
images in this study) fails to obtain information in the vertical
dimension, the holding capacity of these high-rise buildings
is significantly underestimated, responsible for the systematic
underestimation of population distribution in this region from all
deep learning models. The estimated population from the best
model, i.e., DenseNet, under different neighboring scenarios are
presented in Fig. 9. It can be observed that increased neighboring
sizes lead to blurring estimations, which is expected as the
consideration of nearby neighbors essentially applies a “filter”
by downplaying the importance of the central image patch, thus

diminishing the grid-level heterogeneity. We can also conclude
that smaller neighboring sizes are able to retain fine details in
sparsely populated areas (see areas highlighted by red rectangles
in Fig. 9).

VI. DISCUSSION

Obtaining fine-grained population distribution is of great im-
portance to a variety of fields that demand such spatial knowl-
edge. The rapid development of remote sensing techniques
provides rich, large-coverage, and high-temporal information
of the ground, which can be coupled with the emerging deep
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TABLE I
MODEL PERFORMANCES OF TESTING PATCHES IN METRO ATLANTA UNDER

DIFFERENT NEIGHBORING SCENARIOS

TABLE II
MODEL PERFORMANCES IN METRO DALLAS UNDER DIFFERENT

NEIGHBORING SCENARIOS

learning approaches that enable latent features and hidden ge-
ographical patterns to be extracted. In this article, we establish
an end-to-end framework to evaluate the performances of four
popular deep learning architectures, VGG, ResNet, Xception,
and DenseNet, in estimating population distribution directly
from remote sensing image patches via transfer learning and
fine-tuning techniques. In addition, we conduct a thorough inves-
tigation on the neighboring effects and the potential systematic
biases in population estimation using remote sensing images via
deep learning approaches.

Our results reveal that in all evaluation metrics under all se-
lected neighboring sizes, DenseNet outperforms the other three
models, while VGG has the worst performances. ResNet and
Xception have similar performance, lying between DenseNet
and VGG. We believe the superior performance of DenseNet
can be attributed to its architecture design. Layers in DenseNet
receive all preceding layers as input, thus creating diversified

features with richer patterns and facilitating the acquisition of
“collective knowledge.” These diversified features and patterns
assist in capturing the hidden mapping between image patches
and gridded population, leading to more accurate population
estimation. In addition, thanks to the channel-wise concatenation
throughout its Dense Block, DenseNet maintains both low- and
high-level complexity features (unlike the standard stacks of
ConvNets that use mostly high-level features). The capability
of DenseNet in handling multi-level features contributes to
the better summarization of the heterogeneity in population
distribution. In comparison, the poor performance of VGG is
expected, as its deep architecture formed by plainly stacking
simple convolutional operations fails to promote multi-level
complexity and diversity.

In terms of the neighboring effect, our results suggest that
the increase of neighboring sizes leads to reduced population
estimation performance, which is found universal for all four
selected models, in all evaluating metrics, and in both Metro
Atlanta and Metro Dallas, contradicting a recent study by Xing
et al. [28], who found 3 × 3 neighboring scenario outperformed
1 × 1 via ResNet architecture. Two possible reasons are re-
sponsible for the above findings. First, numerous studies have
proved that population, as a fundamental agent in urban and
suburban ecosystems, is distributed with great heterogeneity
[58], [59]. For instance, a densely populated image patch can
be surrounded by uninhabited patches, such as green space
and water bodies. Such neighboring information does not nec-
essarily benefit population estimation in the central patch but
introduces certain uncertainty (noises) to the model prediction.
Second, for the selected four deep learning models, as well as
for most existing deep learning models, a fixed input shape of
images is required. Considering neighboring patches unavoid-
ably leads to a diminishing proportion of information in the
central patch of an input image to the model. For instance, the
proportion of information contained in the central patch with
a neighboring scenario of nbr(1), i.e., 1 × 1, is 100%. This
proportion reduces to 11.11% with a neighboring scenario of
nbr(3), i.e., 3 × 3, and to 0.83% with nbr(11), i.e., 11 × 11.
Such diminishing proportion of information in the central patch
with the increase of neighboring consideration poses challenges
for models to predict the population residing in the central
patch.

In terms of biases, our results reveal a notable, universal
bias for all models under all neighboring scenarios, indicating
that all selected deep learning models tend to overestimate
sparsely populated image patches and underestimate densely
populated image patches, regardless of neighboring sizes. This
systematic bias can be attributed to the limitation of multi-
spectral remote sensing sensors that lack the ability to obtain
information in the vertical dimension. In densely populated
urban centers, there exist a large number of high-rise buildings
whose holding capacity cannot be properly measured without
the vertical information (i.e., building height), as they tend
to hold an unexpectedly larger population than their building
footprint size has suggested. Efforts have been made to extract
the vertical dimension of buildings from light detection and
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TABLE III

CORRELATION BETWEEN THE plgi AND p̂lgi − plgi IN METRO ATLANTA AND METRO DALLAS UNDER DIFFERENT NEIGHBORING SCENARIOS

All Pearson’s r values are significant at a 0.001 significance level.

ranging aerial photogrammetry, and synthetic aperture radar
[60], [61]. Future studies need to incorporate the building height
information to better estimate building volume, potentially lead-
ing to better population estimation in densely populated urban
areas.

Finally, we need to acknowledge several limitations of this
article. First, we only compared the performances of four widely-
adopted deep learning architectures with diverging concepts in
design: VGG; ResNet; Xception; and DenseNet. Despite their
popularity, future efforts are needed to explore the performances
of other deep learning architectures in population estimation
from remote sensing images. Second, we chose to estimate
population distribution at 30 arc-second grids (approximately 1
km at the equator), a spatial resolution adopted by many studies
similar to this article [27]–[29]. However, we acknowledge that
the heterogeneity of population distribution tends to vary in
different scales. Thus, the conclusion in this study may not hold
for population estimation at a different geographical scale (e.g.,
in sub-km population estimation). Future studies are needed
to investigate model performances, neighboring effects, and
potential biases by adopting a multi-scale estimation framework.
Third, we trained (17 100 patches), validated (5700 patches), and
tested (5600 patches) deep learning models in Metro Atlanta
and further applied them to Metro Dallas (28 500 patches) to
evaluate their overall generalizability. As the performance of
deep learning models largely depends on the size of training
samples, we encourage future studies to involve more training
samples from multiple study sites for better generalization capa-
bility. Finally, we established a mapping between remote sensing
imagery and population distribution using a band composition
of R, G, B, and NIR. However, it is reasonable to assume that
involving other bands will benefit the recognition of land use
and land cover types, potentially leading to improved population
distribution estimation. Thus, we encourage more investigations
on the spectral domain of remote sensing images in population
estimation.

VII. CONCLUSION

The coupling of remote sensing imagery and deep learning
algorithms undoubtedly establishes a new venue that potentially
advances traditional population modeling. This article marks the
first attempt to cross-compare performances of popular state-of-
the-art deep learning models in estimating population distribu-
tion from remote sensing images, investigate the contribution
of neighboring effects, and explore the potential systematic
population estimation biases.

The results suggest that DenseNet outperforms the other three
models, while VGG has the worst performances in all evaluating
metrics under all selected neighboring scenarios. ResNet and
Xception have similar performance, lying between DenseNet,
and VGG. The superior performance of DenseNet is presumably
due to its architectural design that facilitates diversified fea-
tures and patterns for capturing hidden mapping between image
patches and gridded population. As for the neighboring effect,
our results indicate that the increase of neighboring sizes leads
to reduced population estimation performance, which is found
universal for all four selected models, in all evaluating metrics,
and in both Metro Atlanta and Metro Dallas, which contradicts
a recent study by Xing et al. [28]. Such a phenomenon can be
attributed to the heterogeneous nature of population distribution
and the diminishing proportion of information in the central
patch resulting from the requirement of a fixed input size for deep
learning models. In addition, there exists a notable, universal
bias that all selected deep learning models tend to overestimate
sparsely populated image patches and underestimate densely
populated image patches, regardless of neighboring sizes. This
systematic bias can be explained by the intrinsic limitation of
multispectral remote sensing images: lacking the vertical ob-
servation, thus leading to underestimating the holding capacity
of high-rise buildings in densely populated urban cores. The
methodological, experimental, and contextual knowledge this
study provides is expected to benefit a wide range of future
studies that estimate population distribution via remote sensing
imagery.
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APPENDIX

Fig. 10. Spatial distribution of Metro Atlanta’s image patches in the training set (60%), validating set (20%), and testing set (20%).
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