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and Random Patch Convolution for Hyperspectral

Image Classification
Wei Huang , Member, IEEE, Yao Huang, Zebin Wu, Senior Member, IEEE, Junru Yin, and Qiqiang Chen

Abstract—With the development of deep learning technology,
more and more scholars have applied it to hyperspectral image
(HSI) classification to improve classification accuracy. However,
these deep-learning methods not only take a lot of time in the
pre-training phase, but also have relatively limited classification
performance when there are fewer labeled samples. In order to
improve classification performance while reducing costs, this arti-
cle proposes a multikernel method based on a local binary pattern
and random patches (LBPRP-MK), which integrates a local binary
pattern (LBP) and deep learning into a multiple-kernel framework.
First, we use LBP and hierarchical convolutional neural networks
to extract local textural features and multilayer convolutional
features, respectively. The convolution kernel for the convolution
operation is obtained from the original image using a random
strategy without training. Then, we input local textural features,
multilayer convolutional features, and spectral features obtained
from the original image into the radial basis function to obtain three
kernel functions. Finally, the three kernel functions are merged
into a multikernel function according to their optimal weights
under the composite kernel strategy. This multikernel function is
used as the input for the support vector machine to obtain the
classification result map. Experiments show that compared with
other HSI classification methods, the proposed method achieves
better classification performance on three HSI datasets.

Index Terms—Deep learning, hyperspectral image (HSI)
classification, local binary pattern (LBP), multikernel mode,
random patches.

I. INTRODUCTION

NOWADAYS, the hyperspectral images (HSIs) with high
spectral resolution have attracted much attention in the

field of remote sensing [1], [2]. Since these images have hun-
dreds of continuous observation bands across the entire elec-
tromagnetic spectrum, more spectral information can be ob-
tained when they are used. Therefore, they are widely used in
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atmospheric detection [3], [4], environmental monitoring [5],
[6], geological prospecting [7], [8], military reconnaissance [9],
[10], and other fields. HSI classification [11]–[14] uses the rich
information contained in HSI to assign unique category labels
for each pixel, which is an important aspect of HSI applications.
However, the well-known Hughes phenomenon [15] brings dif-
ficulties to HSI classification.

In order to solve this problem and obtain valuable spectral
features, many scholars have researched dimensionality reduc-
tion [16]–[18] and band selection [19], [20], both of which have
achieved good results. However, the pixel-by-pixel classifiers
[21], [22] that use spectral information only have generally low
classification accuracies due to the phenomenon of high intra-
class spectrum variability and low interclass spectral variability
in HSI [23]. Therefore, spatial features play an increasingly im-
portant role in the HSI classification. Pesaresi and Benediktsson
[24] used a variety of morphological operations to extract the
spatial information from images. Shen and Jia [25] designed a
set of complex Gabor wavelets with different frequencies and di-
rections to extract the signal variance in the spatial, spectral, and
joint spatial-spectral domains. Huang et al. [26] used a gray-level
co-occurrence matrix to extract the spatial texture information
from HSIs. A local binary pattern (LBP) is the simplest and
most effective feature description operator of the spatial feature
extraction operators. Li et al. [27] used LBP for extracting local
features from images. 3-D LBP (3-D dense LBP) [28] expands
2-D LBP to 3-D LBP to directly extract HSI features from the
spatial-spectral information. In [29], the spatial features were
extracted by LBP, then directly were stacked in a vector to realize
the joint utilization of spatial-spectral information.

Although the method of manually extracting features has
achieved good classification results, it lacks high robustness in
the face of complex situations [30]. Therefore, many scholars
employ various methods for automatically extracting features.
Deep learning can solve this problem and is widely used in the
HSI classification. For example, the earliest deep belief networks
[31] and stacked autoencoders [32] have achieved good HSI
classification results. However, these traditional deep-learning
methods also have certain shortcomings. They need to convert
3-D data into 1-D data as input, thus losing a lot of spatial
information. CNN takes the original image data as input and
does not deform the image data in anyway, which can effectively
solve this problem. Many excellent frameworks based on CNN
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have emerged, for example, in [33], the original hyperspectral
data is input into CNN to obtain the classification result graph.
Han et al. used the two-stream convolutional network and spatial
enhancement strategy to combine spatial-spectral features to
complete the HSI classification [34]. In [35], a general mul-
timodal deep learning framework was developed, and the five
fusion architectures were further unified in this framework. The
framework is not only limited to pixel classification tasks, but
also suitable for spatial information modeling with CNN, suc-
cessfully solving the limitations of single-modality applications
in deep networks. Subsequently, multiscale densely connected
network [36] and multiscale residual network [37] are used for
HSI classification and have achieved great success. In addition
to the above methods, there are some novel methods that use
layering strategies. Gao et al. [36] proposed a PCANet clas-
sification method. This method uses PCA to learn convolution
kernels from a set of patches and then utilizes a layered method to
extract convolutional features. Finally, the extracted features are
input into SVM to obtain the graph of the classification results.
Unlike in [38], a random batch classification method [39] used a
random strategy to obtain the convolution kernel in the original
HSI without training, which can greatly save running time. To
utilize the correlation between local spectral features, Sun et al.
[40] proposed a random batch and local covariance classification
framework that combined the covariance matrix with random
patches network (RPNet) on the basis of [39], thereby greatly
improving the classification accuracy.

LBP is combined with CNN to obtain more representative
spatial features due to its powerful textural feature extraction
capability. However, carrying out the combination is a difficult
problem. A kernel function uses simple linear weighting to
effectively integrate spatial-spectral information. Camps-Valls
et al. [41] proposed a composite kernel classification structure
using two kernel functions to combine spatial-spectral infor-
mation. Li et al. [42] proposed an AdaBoost framework with
weighted ELM by combining composite kernels. To obtain the
classification result map, Wang and Duan [43] integrated spatial,
spectral, and hierarchical information into the SVM classifier
in a multikernel manner. An ideal regularized discrimination
multikernel subspace alignment method is proposed in [44] for
HSI classification that uses both sample and label similarities
to ensure that the generated kernel is very suitable for adaptive
tasks. A multiple kernels-based SVM classification model is
proposed in [45] that fuses the spatial, spectral, and semantic
information in a HSI through a multikernel framework and
achieves good classification results. An active multiple kernel
Fredholm learning algorithm is proposed in [46] that effectively
improves the performance of the classifier in the target domain.
Therefore, we use a kernel function to combine CNN and LBP.

In order to alleviate the problem of time-consuming and
insufficient labeling of samples in the HSI classification method
based on deep learning, we combined the hierarchical deep
CNN with LBP and considered a multikernel method based
on LBP and random patches. The framework uses spectral
features, local textural features, and multilayer convolutional
features to complete the HSI classification. Compared with the
traditional CNN classification method, the proposed method

can improve the classification performance while reducing the
required training time for the CNN model and the number of
labeled samples. More specifically, the main contributions of
the proposed method in this article are as follows.

1) A classification model based on LBP and random patches
is proposed. The proposed method takes less time com-
pared with the existing classification frameworks.

2) The local textural features extracted by LBP, the multilayer
convolutional features extracted by the layered CNN, and
the spectral features obtained from the original HSI are in-
put into the multikernel model. This framework effectively
combines the textural features of HSI and the features of
shallow and deep convolutions, which not only retains
the advantages of layered CNN, but also requires fewer
labeled samples.

3) The convolution kernel is obtained directly from the orig-
inal HSI without training.

The remaining parts of this article are arranged as follows:
Section II introduces the related article. The proposed method
in this article is introduced in Section III. Section IV introduces
the dataset used in the experiment and undertakes a comparison
with the latest methods. Conclusion is drawn in Section V.

II. RELATED WORK

A. SVM Model and Kernel Functions

SVM is a linear classification model, its algorithm goal is to
find a hyperplane to segment data points of different categories
and maximize the minimum distance between the data points
and the hyperplane. Given a set of training data {(x1, y1), …,
(xn, yn)}, where xi ∈ RN is the training data, and yi ∈ {−1, 1}
is the labeled data, SVM mainly solves the following problems:

min
ω,ξi,b

{
1

2
ω2 + C

∑
i

ξi

}

s.t. yi (φ (xi) , ω + b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , n, (1)

where ω and b represent the linear classifier parameters in
the feature space; C is a regularization parameter, which is
used to control the classification performance and generalization
ability of the classifier; ξi is used to deal with some allowable
errors; and φ(.) is a nonlinear mapping that can map pixels to
high-dimensional space. For ease of calculation, the Lagrangian
multiplier is used to transform the abovementioned original
optimization problem into a Lagrangian dual problem, namely

max

⎧⎨
⎩
∑
i

αi − 1

2

∑
i,j

αiαjyiyj , φ (xi) , φ (xj)

⎫⎬
⎭ (2)

where αi and αj (i ∈ {1, . . .n}, j ∈ {1, . . .n}) are Lagrange
multipliers. Since φ(xi), φ(xi) requires a great deal of calcula-
tion, SVM uses the kernel method, which is a simpler mapping
calculation, defined as follows:

K (xi, xj) = φ (xi) , φ (xj) . (3)
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Then, (3) is substituted into (2) to solve the dual problem and
obtain the decision function of the test pixel x , i.e.,

f (x) =

n∑
i=1

αi yiK (xi, x) + b. (4)

The SVM can obtain the inner product of the nonlinear trans-
formation directly through the kernel function without complex
operations. However, not all functions are regarded as kernel
functions since a kernel function must satisfy Mercer’s theorem
[47] to be used in SVM. The radial basis function (RBF) kernel
is widely used, which is expressed as follows:

K (xi, xj) = exp

(
−xi − xj

2

2σ2

)
(5)

where σ is the width parameter of the kernel function. Let xSpec

and xSpat denote the spectral feature and spatial feature of the
HSI, respectively. The spectral kernel and spatial kernel are
obtained when the spectral feature and spatial feature of the
HSI are substituted into (5), i.e.,

KSpec

(
xSpec
i , xSpec

j

)
= exp

(
−xSpec

i − xSpec
j

2
/2σ2

)
(6)

KSpat

(
xSpat
i , xSpat

j

)
= exp

(
−xSpat

i − xSpat
j

2
/2σ2

)
. (7)

A composite kernel function is proposed in [41] to combine
the spectral kernel and the spatial kernel and is defined as
follows:

KCK (xi, xj) = μ1 KSpec

(
xSpec
i , xSpec

j

)
+ μ2KSpat

(
xSpat
i , xSpat

j

)
(8)

where μ1and μ2 (μ1 + μ2 = 1) are the weights used to bal-
ance the spectral kernel and the space kernel. In addition, mul-
tiple kernels are an extension of the composite kernel, which
obtains the feature information from different angles. It is de-
fined as follows:

KMK (xi, xj) = μ1 KSpec

(
xSpec
i , xSpec

j

)
+ μ2KSpat

(
xSpat
i , xSpat

j

)
+ · · ·

+ μmKother

(
xother
i , xother

j

)
s.t.

M∑
m = 1

μm = 1. (9)

Based on the SVM classifier with multiple kernels, the spec-
tral information, multilayer convolution information, and local
texture information are combined to effectively improve the
classification accuracy.

B. Local Binary Pattern

The LBP is a local textural feature descriptor with low compu-
tational complexity and strong descriptive ability that has been
widely used in the fields of texture classification, image retrieval,
and target retrieval. In view of the remarkable advantages of LBP,

many improved methods based on LBP have been proposed to
solve various practical problems.

The basic idea of LBP is embodied in the two aspects “local”
and “binary,” where “local” refers to the local neighborhood
of the central pixel, and “binary” expresses the relationship
between the neighboring pixels and the central pixel. If the gray
value of the neighboring pixel is greater than the gray value of
the center pixel, the corresponding neighboring pixel is coded as
1; otherwise, it is coded as 0. The gray values of all neighboring
pixels are quantized into a binary mode. Then, the resulting
binary string is converted to decimal, and the LBP encoding
value of the current center pixel is obtained. After calculating
the LBP encoding values of all pixels, the frequency histogram
of the LBP encoding values is used to represent image features.

Research shows that LBP can achieve a satisfactory classifi-
cation effect on typical texture databases. Due to the gray level
differences of the LBP encoded pixels, it is not affected by the
monotonous gray level changes in the image. Mathematically,
the values of circular neighborhood pixels and the bilinear
interpolation method are used, with the center pixel (x, y) being
expressed as follows:

LBPP,R (x, y) =

P−1∑
p=0

s (gp − gc) 2
p

s (z) =

{
1, z ≥ 0
0, z < 0

(10)

where P refers to the number of sampling points, R denotes
the radius of the circle, and gc and g1, . . . , gp−1 represent the
gray values of the center pixel and the pixels in the circular
neighborhood, respectively.

Although the principle of the LBP operator algorithm is a
simple and feasible method, there are still many problems, which
can be enumerated as follows.

1) The dimensionality of the binary feature coding result is
too high.

2) It does not adapt to changes in the image topology.
3) It is not robust for severe noise and illumination.
4) It does not consider the correlation between the local

texture of the image and only obtains the textural fea-
tures between the image neighborhoods; thus, it cannot
effectively handle the larger and more complex textural
features.

5) The stability of the LBP code is generally not good, and
subsequent processing cannot be performed.

To solve the problems plaguing LBP, the uniform LBP
(ULBP) method is proposed. It is an equivalent mode of LBP.
When the cyclic binary number corresponding to a certain LBP
has at most two transitions from 0 to 1 or from 1 to 0, the binary
corresponding to the LBP is called an equivalent mode class.
The specific mathematical descriptor is defined as follows:

LBPriu2
P,R (x, y)

=

⎧⎨
⎩

P−1∑
p=0

s (gp − gc) , if U (LBPP,R (x, y)) ≤ 2

P + 1 , otherwise,

(11)



4610 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 1. Proposed LBPRP-MK framework for HSI classification.

where

U (LBPP,R (x, y)) = |s (gp−1 − gc)− s (g0 − gc)|
+

P−1∑
p = 1

|s (gp − gc)− s (gp−1 − gc)| (12)

where s(·) denotes the same function defined in (10).

C. PCA and Whitening

PCA is a data dimensionality reduction algorithm that can
greatly improve the speed of unsupervised feature learning that
is based on a linear transformation. It transforms the data into
a new coordinate system so that the first large variance of
any data projection is on the first coordinate (called the first
principal component). The second-largest variance is on the
second coordinate (the second principal component), etc. More
importantly, the PCA algorithm is very helpful in whitening.

Whitening is an important preprocessing technique used in
many algorithms to reduce the redundancy of the input data.
In addition, the input data has the following properties after
whitening.

1) The correlation between features is low. The eigenvectors
of the first K eigenvalues are selected as the projection
direction in PCA. If the size of K is the data dimen-
sion n , these K eigenvectors form the selection matrix
U = [u1, u2 . . . un] (u1 is the main eigenvector, and it
corresponds to the largest eigenvalue, u2 is the secondary
eigenvector, and so on). If K < n, that is the PCA dimen-
sionality reduction; if K = n, the correlation between
features is low.

2) All features have the same variance. Here, 1√
λi

(λ1, λ2 . . . , λn are the corresponding feature vectors) is
used as the scaling factor to scale each feature xrot,i.

Then the formula xPCAwhite,i =
xrot,i√

λi
is used, and the

covariance matrix is the identity matrix I at this time.
PCA and whitening are used in the convolution process to

reduce the time spent on the convolution operation in this article.

III. PROPOSED METHOD

In this article, we propose a LBPRP-MK method for HSI
classification. First, a PCA transformation is performed on the
original HSI to obtain the first few principal components. Then,
the LBP operator and convolution operation are used on the first
few PCs to obtain local textural features and multilayer convolu-
tional features, respectively. Moreover, three single kernels are
used to represent spectral features, local textural features, and
multilayer convolutional features, which are then combined in a
weighted way to obtain a multikernel function. Finally, the final
classification result map is obtained by using the SVM classifier
with multiple kernels. The flowchart of the proposed method is
shown in Fig. 1.

A. Local Texture Feature Extraction

To reduce the redundant information in the spectral of the HSI,
PCA is first used to select the spectral band subset with salient
features. Then, the LBP operator is applied to each selected
spectral band subset, and the LBP codes are generated by (10).
The outputs of the LBP codes reflect the textural direction and
smoothness of the local area (of size w × w). After obtaining
the LBP codes of all pixels, the histogram is calculated with the
local patch centered on the pixel of interest, as shown in Fig. 2.
Finally, all the bands of the LBP histogram are connected to
form the local textural feature ILTF.

As described in Section II-B, the dimensionality of the binary
encoding result is too high, which will greatly increase the time
cost. Therefore, ULBP is utilized to simplify the feature vector.
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Fig. 2. LBP feature extraction of a single-band image.

Fig. 3. Procedure used in multilayer convolutional feature extraction.

ULBP can reduce the number of modes from the original 2P

to p(p− 1) + 2, so that the feature vector of a spectral band
reduces from 259 to 59. Thus, it creates feature vectors with
fewer dimensions and can reduce the impact of high-frequency
noise. It is worth noting that the patch size w is a user-defined
parameter. In addition, the selection of the optimal patch size
will be shown in the experimental section.

B. Multilayer Convolutional Feature Extraction

A cascade structure is utilized to combine the shallow and
deep features obtained by the convolution kernels for deter-
mining the convolutional features. The convolution kernels are
randomly selected from the input data during the convolution
operation for each layer. Fig. 3 shows the procedure used in
multilayer convolutional feature extraction. The specific steps
are given in Algorithm 1.

1) Random Patch Convolution: In order to ensure that the
selected random block is representative, we first use the K-
means algorithm to select the random center, but the algorithm
is too complex, so random projection is introduced to reduce
the dimensionality. k pixels of the whitening data IWhiten are
randomly selected, a patch of size s× s× p around each pixel
is extracted to obtain a total of k patches. If the randomly

selected pixel is located at the edge of the image, the blank
pixels around the pixel are filled by mirroring the image. The
obtained k patches are used as the convolution kernels, which
convolve the whitened data to obtain thek feature maps, denoted
as T ∈ Rr×c×k. T i represents the ith feature map, which is
calculated as follows:

Ti =

p∑
j=1

IWhiten
j ∗ P j

i , i = 1, 2, . . . , k (13)

where IWhiten
j denotes the jth dimension of IWhiten, P j

i ∈
Rs×s×p is the jth dimension of the ith patch, and ∗ refers to
2-D convolution. The step size of the 2-D convolution operation
is set to 1. The mirror filling method is still used to fill the blank
areas around the pixels located at the edge of the image in the
convolution operation.

2) Nonlinear Activation: T ∈ Rr×c×k is transformed into
the 2-D matrix T ∈ Rrc×k, which represents the input of the
rectified linear units (ReLU)/ used to obtain the first layer feature
Z(1).

3) Multilayer Convolutional Feature Extraction: I is re-
placed with Z(l) (l = 1, . . . , L), and the above-mentioned first-
layer feature extraction process is used to obtain features for dif-
ferent layers. The obtained convolutional features of each layer
are superimposed together to obtain the multilayer convolutional
feature IMCF.

Algorithm 1: Multilayer Convolutional Feature Extraction.
Input: The original HSI I , an L×1 size cell IMCF;
For l = 1, . . . , L
Step 1: Perform PCA and whitening on I to obtain
whitening data IWhiten;

Step 2: k random batches are extracted from the
whitening data IWhiten;

Step 3: These k random batches convolve with the
whitening data IWhiten to obtain k feature maps;

Step 4: The activation function is applied to k feature
maps in Step 3 to obtain the features of layer l, which
are expressed as Z(l);

Step 5: Put Z(l) into IMCF;
Step 6: If l < L, matrix I is replaced by Z(l).
End
Output: Multilayer convolutional feature IMCF.

To facilitate calculation, all layers use the same parameters,
including the number of PCs p , the number of image patches k,
and the patch size s. The selection of these parameters will be
discussed in Section IV.

C. Spectral Feature Extraction

In the framework of LBPRP-MK, we take all the spectral
pixels in the original HSI as spectral features and input them
into (5) to obtain the spectral kernel function KSpec, which is
defined as follows:

KSpec

(
xSpec
i , xSpec

j

)
= exp

(
−xSpec

i − xSpec
j

2
/2σ2

)
(14)
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where xSpec
i and xSpec

j represent the spectral information of
the ith pixel and the jth pixel in HSI, respectively.

D. LBPRP-MK

Three different types of features have been obtained, namely,
the spectral features, local textural features, and multilayer con-
volutional features. To fuse these features, multikernel methods
are utilized to construct a new HSI classification framework.
Let xi ≡ {xSPE

i , xLTF
i , xMCF

i }, then the kernel function in the
training phase is expressed as follows:

KSPE−LTF−MCF
LBPRPMK (xi, xj) = μSPE KSPE

(
xSPE
i , xSPE

j

)
+ μLTFKLTF

(
xLTF
i , xLTF

j

)
+ μMCFKMCF

(
xMCF
i , xMCF

j

)
s.t., μSPE + μLTF + μMCF = 1 (15)

where μSPE*****μLTF***** and μLTF represent the contribu-
tions of the spectral features, local textural features, and multi-
layer convolutional features in the classification of HSI, respec-
tively. KSPE(x

SPE
i , xSPE

j )*****KLTF(x
LTF
i , xLTF

j )*****
KMCF(x

MCF
i , xMCF

j ) denote the corresponding kernel
functions, which can be obtained with (5).

The main procedures of the proposed LBPRP-MK method
are summarized in Algorithm 2.

Algorithm 2: LBPRP- MK is Used in HSI Classification.
Input: Original HSI I , available training and validation
samples;

Step 1: PCA is used to reduce the dimensionality of I to
obtain the first p PCs, and the LBP operation is
performed on the first p PCs to obtain the local textural
feature ILTF;

Step 2: Perform Algorithm 1 to obtain the multilayer
convolutional feature IMCF;

Step 3: The original data of all spectral bands in I is used
as the spectral feature ISPE;

Step 4: A set of training data is randomly selected from
the original HSI, the corresponding pixels are extracted
from ISPE*****ILTF*****IMCF according to the
location of this set of training data to generate the
corresponding three sets of training data;

Step 5: The three sets of training data from step 4 are
input separately into (5) to obtain three kernel functions,
which are the spectral kernel KSPE(x

SPE
i , xSPE

j ), local
textural kernel KLTF(x

LTF
i , xLTF

j ), and multilayer
convolutional kernel KMCF(x

MCF
i , xMCF

j );
Step 6: Apply the SVM classifier with the multiple
kernels in (14) to obtain the classification result map.

Output: Classification result map.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, in order to evaluate the performance of the pro-
posed LBPRP-MK method, we conduct a series of experiments
on three real datasets. In Section IV-A, we briefly introduce the

TABLE I
STATISTICS FOR THE INDIAN PINES DATASET

three datasets. In Section IV-B, we discussed the parameters
involved in the proposed method. In Section IV-C, we verified
the effectiveness of the important parameters in the proposed
method. In Section IV-D, we compare the proposed method with
seven HSI classification methods on the three datasets, including
two traditional classification methods, namely the spatial adap-
tive total variation method based on sparse multinomial logistic
regression classifier (SMLR-SpATV) [48]; the extreme learning
machine based on LBP (LBPELM) [27]; three kernel methods,
namely, SVM composite kernel (SVMCK) [41], superpixel-
based classification via multiple kernels (SC-MK) [49], and
the adjacent superpixel-based multiscale spatial-spectral kernel
method (ASMGSSK) [50]; two deep learning methods, namely,
RPNet [39], and CNN and active learning with Markov random
field (CNN-AL-MRF) [51].

All the experiments in this article are implemented in the
MATLAB 2019 environment. The experiments use overall accu-
racy (OA), the evaluation indicators to evaluate the performances
of the different classification models used in the experiment.
The Kappa coefficient is an index to evaluate the classification
performance. The larger its value, the higher the accuracy of the
corresponding classification algorithm. Because it considers the
number of pixels correctly and incorrectly classified, it can more
comprehensively reflect the classification accuracy. All data are
average values obtained from 10 run times.

A. Data Description

1) Indian Pines: The dataset was collected by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor at the
Indian pines test field in Indiana. The data contains 145 × 145
pixels and 16 classes. There are a total of 220 spectral bands, and
the spectral bands cover a range from 0.4to 2.5 μm. However,
some of the bands cannot be reflected by water, so we eliminated
these bands and used the remaining 200 bands for the research
object. The specific land covers and training and test sets are
given in Table I.



HUANG et al.: MULTIKERNEL MODE USING AN LBP AND RANDOM PATCH CONVOLUTION FOR HSI CLASSIFICATION 4613

TABLE II
STATISTICS FOR THE PAVIA UNIVERSITY DATASET

TABLE III
STATISTICS FOR THE KSC DATASET

2) Pavia University: The dataset was obtained by the reflec-
tion optical system imaging spectrometer sensor of the Univer-
sity of Pavia. The data contains 9 classes, consisting of 103
spectral bands of 610 × 340 pixels, with the spectral bands
covering a range from 0.43 to 0.86 μm. The specific land covers
and training and test sets are given in Table II.

2) KSC: The dataset was obtained with the AVIRIS sensor
above KSC in Florida and contains 13 classes. After removing
the bands that cannot be reflected by water, there are still 176
spectral bands with 512 × 614 pixels, and the spectral bands
cover a range from 0.4 to 2.5μm. The specific land covers and
training and test sets are given in Table III.

B. Parameter Settings

In this section, we will discuss the parameter settings involved
in LBPRP-MK. The kernel function used in this article is an
RBF kernel, and the best kernel bandwidth is obtained through
a five-fold cross-validation. On the basis of a large number of
experiments, we have selected several parameters that have a
greater impact on the experimental results for analysis, namely,
patch size s , patch number k, number of PCs p, network depth
l, LBP patch size w, spectral kernel weight μSPE, local texture
kernel weight μLTF, and multilayer convolution kernel weight
μMCF.

1) Effects of Patch Size and Number: In order to evaluate
the impact of different s and k on classification performance in
LBPRP-MK, we set l to 5, w to 21, and the three kernel weights
to μSPE= 0.2, μLTF= 0.5,and μMCF= 0.3, respectively. As
shown in Fig. 4, with the increase in the number and size of
the random patches, the classification accuracy did not always
increase, which means that larger sizes and more patches cannot
achieve the best classification performance. It can be seen from
Fig. 4(a) that when s = 25 and k = 28, the Indian Pines dataset
reaches the best OA. It can be seen from Fig. 4(b) that, unlike
the Indian Pines dataset, when s = 21 and k = 12, the best
OA is achieved for the Pavia University dataset. Similarly, it
can be seen from Fig. 4(c) that the KSC dataset reaches its best
classification performance when s = 21 and k = 12.

2) Effect of the Number of PCs: In order to ensure the unifor-
mity of the experiment, all the PCA operations involved in this
article use a uniform p value. As shown in Fig. 5, the number of
PCs also affects the accuracy of the experiment. As p increases,
the classification accuracy of the three datasets tends to rise and
then decrease slightly. At the same time, for all three datasets, the
computing time increases significantly. Considering the balance
between classification accuracy and time consumption, we set p
to 3.

3). Effect of Network Depth: In order to judge the influence
of the network depth on the experimental results, we update the s
, k, and p on the three datasets based on the above experiments,
and the other parameter settings remain unchanged. Here, we
set network depths from 1 to 10 to analyze the impact on the
three datasets. As shown in Fig. 6, it can be observed that when
l increases from 1 to 3, the OAs for the three datasets rise too.
When l is between 3 and 6, the OAs for the three datasets begin to
fluctuate. In the proposed LBPRP-MK, we set the network depth
to 6. Although it may not be the best choice for all experimental
datasets, a relatively small number is selected to the hardware
allowance into consideration.

4) Effect of LBP Patch Size: In LBP feature extraction, w
denotes patch size that is a very important parameter, and its
size directly affects the classification performance. We set w
to 7, 11, 15, 19, 23, 27, 31, 35, and 39 for updating parameter
l. Meanwhile, the other parameter settings remain unchanged.
It can be seen from Fig. 7 that as w increases from 7 to 27, the
classification accuracy improves greatly. Whenw increases from
27 to 39, the classification accuracy decreases. Hence, image
patches that are too large or too small are not conducive to the
classification task. Patches that are too large may contain pixels
from other classes, and features extracted from image patches
that are too smalls may not represent the task. Therefore, in this
article, we set the image patch size for LBP feature extraction
to 27×27 pixels.

5) Effect of Kernel Weight: In order to verify the influence of
different kernel weights on the experimental results, we first
regard μSPE as a variable, as shown in Fig. 8(a). It can be
seen that when μSPE is between 0.1 and 0.3, the classification
accuracy increases. When μSPE is greater than 0.3, the OAs of
the three datasets decrease slightly. When μSPE= 1, only the
spectral features are used, and the classification effects on the
three datasets are very unsatisfactory, indicating that the spatial
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Fig. 4. Classification performance of the LBPRP-MK with different s and k values for the: (a) Indian Pines dataset; (b) Pavia University dataset; and (c) KSC
dataset.

Fig. 5. Influence of the number of principal components.

Fig. 6. Influence of network depth.

Fig. 7. Effect of LBP patch size.

features play a very important role in classification. Therefore,
in this article, we set μSPE to 0.3. It can be seen from Fig. 8(b)
that when the local texture kernel weight μLTF is less than 0.4
on the Pavia University dataset and KSC dataset, the OAs are
increasing, and when μLTF is greater than 0.4, the OA values
begin to decrease slightly. Similarly, the bestμLTF for the Indian
Pines dataset is 0.5. Therefore, we set μLTF to 0.4 and μMCF

to 0.3 for the Pavia University and KSC datasets. For the Indian
Pines dataset, we set μMCF to 0.5, and μMCF to 0.2.

C. Effectiveness Verification

In this section, we conducted an experiment to evaluate the
effectiveness of each technology, including the LBP, multilayer
CNN, and multiple kernels. In this experiment, we combine
these technologies in turn and propose the following methods.

1) RP-CK: Combination of CNN and CK.
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Fig. 8. Impact of different kernel weights.

Fig. 9. Effect of training number on the: (a) Indian Pines dataset; (b) Pavia University dataset; and (c) KSC dataset.

2) LBP-CK: Combination of LBP and CK.
3) LBPRP-MK: The proposed method in this article.
In order to compare the classification performances of these

methods, we use the sample number as a variable. Note that
in order to ensure the unity of the experiment, the parameters
p, s, k, l, and μSPE in RP-CK are all the same as those in
LBPRP-MK, and the parameters p, ω, and μSPE in LBP-CK
are also the same as those in LBPRP-MK. In Section IV-B,
we verified through experiments that when the spectral kernel
weight μSPE is 0.3, the classification effect is the best, so in this
section, we set μSPE to 0.3. Since there is no local texture kernel
in RP-CK and no multilayer convolution kernel in LBP-CK, and
μSPE + μLTF+ μMCF= 1, the weight of the other kernel is set
to 0.7.

It can be seen from Fig. 9 that the classification accuracies of
RP-CK, LBP-CK, and LBPRP-MK increase with the increase in
the number of training samples. Among them, the classification
performance of LBPRP-MK is always better than those of
the other two methods. Although the OA of LBP-CK is very
close to LBPRP-MK, it consumes more time. Meanwhile, its
classification accuracy is not as good as that of LBPRP-MK
when there are fewer training samples. It can be seen from Fig. 9
that for the Indian Pines and KSC datasets, when the number of
training samples reaches 5% of the total number of samples,
the classification accuracy tends to stabilize. Therefore, we can
conclude that 5% training samples are sufficient for learning the
representative models of the datasets. For the Pavia University
dataset, when the number of training samples reaches 1% of
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Fig. 10. Indian Pines data classification. (a) False color maps. (b) Real feature marker. (c) SVM composite kernel. (d) Sparse multinomial logistic regression
classifier. (e) Learning machine based on LBP. (f) Superpixel-based classification via multiple kernel. (g) Random patches network. (h) Adjacent superpixel-based
multiscale spatial-spectral kernel method. (i) CNN and active learning with Markov random field. (j) LBPRP-MK.

TABLE IV
CLASSIFICATION RESULTS FOR INDIAN PINES DATA

the total number of samples, the classification accuracy tends to
stabilize, so 1% training samples are used for the experiments
on this dataset. It can also be seen from Fig. 9 that even if the
training samples are only 1% on the Indian Pines dataset and the
KSC dataset, the overall classification effect can reach more than
90%. On the Pavia University dataset, only 0.2% of the training
samples can be achieved. Classification accuracy of more than
90%. It proves the effectiveness and robustness of the proposed
method under the condition of small samples.

D. Comparison With Other State-of-the-Art Methods

To evaluate the classification accuracy of the proposed
LBPRP-MK method, we introduce some the latest HSI

classification methods for comparison, including SVMCK,
SMLR-SpATV, LBPELM, SC_MK, RPNet, ASMGSSK, and
CNN-AL-MRF. The classification maps of different methods
are shown in Figs. 10 –12 and Tables IV and VI shows the
quantitative assessment.

1) Indian Pines Dataset: We randomly select 5% of the
data in each class as training samples, resulting in 520 training
samples in total, and the remaining samples are used for testing
in Indian Pines dataset. Table IV gives the experimental results
of these methods. It can be seen that the STD_OA of the LBPRP-
MK method is 0.3% and the mean_OA is 98.53%. In these
methods, the mean_OA of the SVMCK method is the smallest,
but the STD_OA of SMLR-SpATV method is the most unstable.
Compared with the OA of the ASMGSSK method with the
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Fig. 11. Pavia University data classification. (a) False color maps. (b)Real feature marker. (c) SVM composite kernel. (d) Sparse multinomial logistic regression
classifier. (e) Learning machine based on LBP. (f) Superpixel-based classification via multiple kernel. (g) Random patches network. (h) Adjacent superpixel-based
multiscale spatial-spectral kernel method. (i) CNN and active learning with Markov random field. (j) LBPRP-MK.

Fig. 12. KSC data classification. (a) False color maps. (b) Real feature marker. (c) SVM composite kernel. (d) Sparse multinomial logistic regression classifier.
(e) Learning machine based on LBP. (f) Superpixel-based classification via multiple kernel. (g) Random patches network. (h) Adjacent superpixel-based multiscale
spatial-spectral kernel method. (i) CNN and active learning with Markov random field. (j) LBPRP-MK.
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TABLE V
CLASSIFICATION RESULTS FOR PAVIA UNIVERSITY DATA

TABLE VI
CLASSIFICATION RESULTS FOR KSC DATA

highest accuracy in comparison algorithms, that of the LBPRP-
MK method is increased by 0.4%. In addition, the re-
maining methods are less than 1.21%–9.71%. Similarity, the
STD_kappa of the LBPRP-MK method is the most stable and
the mean_kappa is the highest. It is observed from Table IV
that the mean_kappa of the proposed method is more than
0.45%–11.09% compared with comparison methods. Thus, the
proposed LBPRP-MK method is superior to the other classifica-
tion methods in terms of OA and the kappa coefficient. Fig. 10
shows the classification results of the proposed method in Indian
Pines dataset. The proposed method yields the best performance
in these case. It can be seen from Fig. 10 that the classification
results of the proposed LBPRP-MK model have the least number
of misclassifications, the overall is smoother and there are only
a few noise points, which is closer to the ground truth map.

2) Pavia University Dataset: We randomly select 1% of the
data in each category as the training sample, so the number of
training samples is 429, and the remaining 42347 samples are
used for testing. Table V gives the experimental results of these
methods. It can be seen that the OA of the LBPRP-MK method
is the most stable and the mean_OA is the highest. Compared
with SMLR-SpATV method, the OA of the LBPRP-MK method
is increased by 7.45%. Even if it is the ASMGSSK method
with the highest accuracy among these methods, the OA of

the proposed method is increased by 0.67%. In addition, the
remaining methods are less than 1.16%–6.58%. Similarity, the
STD_kappa of the LBPRP-MK method is the most stable and the
mean_kappa is the highest. Therefore, the proposed LBPRP-MK
method is superior to the other classification methods in terms
of OA and the kappa coefficient. Fig. 11 shows a classification
diagram of the Pavia University dataset. It can be seen that the
proposed method shows excellent performance in terms of the
edge and adjacent-area pixel classifications.

3) KSC Dataset: We randomly select 5% of the data in
each category as training samples, and the remaining 95% are
used for testing. Table VI gives the classification accuracies
of the different methods for the KSC dataset. Compared with
RPNet method with the highest accuracy among these meth-
ods, the mean_OA of the LBPRP-MK method is increased by
6.38%. Compared with the RPNet method, the mean_kappa
of the LBPRP-MK method is increased by 7.11%. Addition-
ally, the LBPRP-MK method is very stable. The STD_OA and
STD_kappa are 0.42% and 0.53%, respectively. According to
above analyses, the proposed LBPRP-MK method have good
classification performance compared with other classification
methods. It can be seen from Fig. 12 that the various classes of the
KSC dataset are relatively scattered, and there is no difference
directly.
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TABLE VII
TIME COSTS FOR THE THREE DATASETS

E. Time cost

Table VII gives the average running-time consumption of 10
ten Monte–Carlo runs, which includes the training time and
test time, and several existing HSI classification methods for
the three datasets. Compared with the traditional kernel clas-
sification method SVMCK, superpixel-based kernel methods,
such as SC-MK and ASGMSSK, take longer. The time cost of
the deep learning-based CNN-AL-MRF method is many times
greater than the time cost of RPNet without a pre-training stage.
The proposed method combines deep learning with the kernel
method, and its time cost falls between the time costs for the two
methods, nonetheless, its classification effect is the best among
the methods investigated.

V. CONCLUSION AND FUTURE WORK

In this article, we use the kernel function to combine LBP and
CNN and propose a multikernel mode using a LBP and random
patches convolution for HSI classification. Specifically, in order
to make up for the blindness of CNN in extracting features, we
use textural features as its extension and use kernel functions to
combine them to complete the HSI classification. In addition,
we use a random strategy to select the convolutional kernel
without any training, which makes up for the shortcomings of
deep learning in terms of requiring a large number of training
samples, and achieves a good classification effect.

All the parameters used in this article are adjusted manually.
In the future, we will study a method for automatically selecting
the best parameters and reducing the time cost.
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