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Abstract—Semantic segmentation for very-high-resolution re-
mote sensing images has been a research hotspot in the field of
remote sensing image analysis. However, most existing methods
still suffer from a challenge that object boundaries cannot be
finely recovered. To tackle the problem, we develop a dual-stream
network based on the U-Net architecture, Instead of the tradi-
tional skip connections, a boundary attention module is proposed
to introduce the boundary information from the EDN module to
the SSN module. Experiments on ISPRS Potsdam and Vaihingen
datasets show the effectiveness of the proposed network, especially
in man-made objects with distinct boundaries.

Index Terms—Attention module, edge detection subnetwork,
semantic segmentation, very high spatial resolution.

I. INTRODUCTION

N THE field of remote sensing, semantic segmentation of
Ivery-high-resolution (VHR) remote sensing images is of
significance to many applications, such as land cover mapping,
urban change detection, and environmental monitoring [1]-[3].
Automatic semantic segmentation for remote sensing image has
thus become a fundamental problem for a long time.

Early methods, including unsupervised classification (such as
K-means [5]) and supervised classification (such as SVM [6]),
mainly rely on spectral information of each individual pixel and
ignore spatial information, which is inapplicable for the case of
VHR remote sensing images. As the outstanding performance
of convolutional neural networks (CNNs) in computer vision,
recent researches have proven CNNs very successful tools for
VHR remote sensing images semantic segmentation [4]. FCN
[7] is a milestone for semantic segmentation and many FCN-
based methods [8]-[10] have also been developed. Despite their
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promising performance in semantic segmentation tasks, FCN
and its extensions may fail on the segmentation of complex
objects with intraclass inconsistency and interclass indistinction
issues in VHR remote sensing images. To tackle the problem,
a larger receptive field should be used to mine rich contextual
information, instead of extracting feature in a small region or
even isolated pixel. Many methods use complex feature extrac-
tors to expand the receptive field and get high-level semantic
information [36], such as replacing the feature extractor of VGG
with the feature extractor of ResNet. These feature extractors use
downsampling operations and complex connections to ensure
large receptive fields.

However, downsampling operations lead to the loss of spatial
resolution. In order to recover deep heat maps to the same
size of the input data, upsampling layers are often used in
the semantic segmentation networks. However, the upsampling
operation cannot recover the details caused by the pooling layers,
which may lead to fuzzy boundaries in the segmentation results.
In other words, there is a trade-off between deep feature and
fine boundaries [10]. Obviously, the results of the networks with
excessive downsampling layers tend to blur object boundaries
and ignore small objects. It could worsen for VHR remote
sensing images, which include more boundaries.

In this article, we propose a boundary-aware dual-stream net-
work based on U-Net [25], in which an auxiliary edge detection
stream is introduced to improve the result of boundaries by ex-
plicit supervision of object boundaries. Correspondingly, to bet-
ter fuse the boundary information with the semantic information
and the shallow feature with the deep feature, spatial and channel
attention modules (AMs) instead of direct skip connections are
used in the proposed dual-stream network. The contributions of
this article can be summarized as follows: 1) A boundary-aware
dual-stream network is proposed to combine the edge detection
network and the semantic segmentation network, which recover
finer object boundaries in the results of semantic segmentation;
2) Spatial and channel AMs are used to replace the classic skip
connections for U-Net to capture local details and the result
shows promising benefit; 3) The experimental results show
that the combination of the proposed two modules yields finer
boundaries in VHR data semantic segmentation, especially in
man-made objects.

The remaining parts of the article are as follows. Section IT in-
troduces some related work and the intuition behind our method.
A detailed description of the proposed method is then presented
in Section III. We later describe the setup of experiments and
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evaluate our method in Section IV. Finally, conclusions are
drawn in Section V.

II. RELATED WORK

A. Semantic Segmentation

FCN [7] opens new avenues for semantic segmentation by
using CNNs. Applications in remote sensing draw on the em-
pirical works in computer vision and combine them with the
multiscale characteristic of the objects in remote sensing data.
Fu et al. [11] improve FCN by using multiscale classification.
In order to reduce spatial ambiguities, Liu et al. [12] apply skip
connections with residual units to feed encoding-stage informa-
tion to the decoder. Wang er al. [13] utilize gate mechanism
to automatically select features when merging different-scale
feature maps. Considering the scale inconsistency of objects in
remote sensing image, Liu et al. [14] propose a self-cascaded
convolution module. Most of the networks use the high-to-low
and low-to-high-resolution framework [15], without reusing
spatial information from low-level feature. However, these net-
works designed for natural images may fail when dealing with
VHR remote sensing data with more boundaries.

To alleviate the loss of image details and spatial resolution
caused by pooling layers and/or strided convolutions, some
methods have been proposed. These methods can be categorized
into two groups. One is to use atrous convolutions [23] that ex-
pand the receptive field without reducing the spatial resolution.
In consideration of global context information, global average
pooling is first used in ParseNet [16]. PSPNet [37] applies
spatial pyramid pooling [17] to capture multiscale information
and then Deeplab v3 [18], [42]-[44] extends it to atrous spatial
pyramid pooling. However, since the atrous convolution is a kind
of sparse operation, successive atrous convolutions may cause
grid artifacts [24] and ignore small objects. The other group
of methods is to reintroduce low-level features to the decoder
by skip connections, which brings high-resolution information
(e.g., details and boundaries) to the decoder. Unpooling operator
in SegNet [19] saves the max pooling indices and makes use
of the indices in upsampling layers, which help to recover the
spatial information. U-Net [25] and its variants have shown their
advantages in VHR remote sensing images semantic segmenta-
tion [26]. However, the simple skip connection also brings some
weak semantic information from low-level features to deep ones,
which may lend to some misclassification inside an object.

B. Edge Detection

Semantic segmentation has been coincided with edge detec-
tion, since ideal semantic segmentation results are with effec-
tive edges. Motivated by the synergies between edge detection
and semantic segmentation, some studies make use of edge
detection to enhance object boundaries in the result of semantic
segmentation. Bertasius et al. [20] and Kokkinos [21] utilize
the edge learned from CNN to enhance the performance of
semantic segmentation, the two tasks however are independent,
and they are not end-to-end frameworks. Extended Deeplab
[22] employs intermediate features for semantic segmentation
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to predict edges and optimize the target semantic segmentation
quality by domain transform. Marmanis et al. [10] make edge
detection and semantic segmentation in series and perform a
higher semantic segmentation accuracy in VHR remote sensing
data. EANet [41] designs an end-to-end edge-aware multitask
learning network and EALoss for the extraction of buildings. Yu
et al. [33] design a network to learn these two tasks simultane-
ously by sharing weights in the feature extractor (encoder) but
using different decoders. However, considering that these two
tasks need different level features, the feature for one task may
not be suitable for the other one. Single-stream network thus
may not be the optimal solution for this multitask learning.

C. Attention Module

AMs have been widely used in various tasks using deep
learning methods in recent year [27], since they improve the
performance with introducing few network parameters [33].
Channel AM in SENet [28] adaptively enhances beneficial chan-
nels and suppresses useless channels by different weights. Based
on SENet, CBAM [29] applies AM both in channel domain and
spatial domain. Residual attention network [30] proposes resid-
ual attention learning, which solves the performance degradation
caused by the stack of AMs. PAN [31] combines spatial pyramid
structure with attention mechanism, instead of a series of atrous
convolution. In the field of semantic segmentation, AMs are
usually employed to generate enhanced feature, e.g., local details
and boundary information are fed into AMs and attend the origin
feature in the semantic segmentation network.

Thus, in order to further take advantage of reweighted low-
level feature and alleviate the problems of insufficient semantic
information in low-level feature in U-Net, we utilize AMs to
enhance local information for low-level feature and to re-weight
low-level feature and high-level feature. Besides, in contrast to
other studies, we use a dual-stream network to learn the two tasks
respectively. In addition, boundary attention modules (BAMs)
are introduced into our dual streams to enhance boundary infor-
mation for the semantic segmentation stream. Boundary feature
learned in edge detection stream is treated as boundary weight
map to attend feature in semantic segmentation stream. With
the two types of AMs, the feature in the semantic segmentation
stream is further enhanced by boundary information to get finer
boundaries and higher classification accuracy.

III. METHODOLOGY

In this section, we first present the overview of the proposed
dual-network for semantic segmentation of VHR remote sensing
images. Then, the two AMs, i.e., the AMs for the sematic seg-
mentation subnetwork and the BAMs between the edge detection
subnetwork (EDN) and the sematic segmentation subnetwork,
are introduced in detail.

A. Network Architecture

The structure of our network is shown in Fig. 1, which consists
of two subnetworks, i.e., the semantic segmentation subnetwork
(SSN) and the EDN. The SSN subnetwork is built upon the
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Fig. 1.
(EDN).

classic U-Net. As mentioned in ection II, semantic segmentation
methods are also effective tools for edge detection. Thus, we
design another lighter U-shape network that performs as an
auxiliary subnetwork to detect edges. As shown in Fig. 1, each
blue arrow represents a pooling layer (or an upsampling layer)
and a convolution group (the first and last blue arrows do not in-
clude any pooling or upsampling layer). Each convolution group
consists of two 3 x 3 convolution layers, and each convolution
layer is followed by a batch normalization layer and a ReLU
activation function. Thus, the spatial size of the feature map
after the four pooling layers in the encoder is reduced to 1/16
of the input size in our UNet-AM. In the EDN subnetwork,
there are three pooling layers in the encoder, so the spatial size
of the feature map after encoder is reduced to 1/8 of the input
size. In addition, between the decoders of the two subnetwork,
three BAMs are utilized (BAM — i(i € {1,2,3})) to enhance
the boundary information for the SSN subnetwork in different
scales. The structure of the proposed BAM is described in detail
in Section III-C.

The supervisory label of the edge detection task is generated
from the ground truth of the VHR semantic segmentation dataset
by traditional edge detection operators, such as Canny [32].
Since boundaries are in the minority in an image, edge detection
is a class-imbalanced problem. The binary cross entropy loss
tends to submerge the boundaries with fewer samples into the
background. Hence, a weighted binary cross-entropy loss is used
in the EDN subnetwork, which can be formulated as

Lwsce = — (aylogy’ + (1 —a) (1 —y)log (1 —1v')) (1)

where y = 0 or 1 is the true label of boundaries. 3’ € [0, 1]
is the estimated probability for the corresponding pixel to be
boundary category. Parameter « is introduced to deal with the
class-imbalanced problem in the edge detection task, which is
selected manually according to the experiment performance.
For the semantic segmentation task, we use the traditional
cross-entropy loss in the SSN subnetwork. To balance the loss
of the two subnetworks, we select a parameter /3 to balance
Lcr and Lwicg. Thus, the total loss L of our network can be

Overview framework of the proposed method. It consists of two streams: (a) semantic segmentation network (SSN), and (b) edge detection network

formulated as

L = Lce + BLwicE- (2)

B. Attention Modules for SSN Subnetwork

In the classic U-Net network, skip connections are used to
reintroduce local details from the encoder to the decoder. More
precisely, the feature map f. in the encoder is concatenated
to its corresponding feature map f; in the decoder, as shown
in Fig. 2(a). However, direct skip connections fusing low-level
feature and high-level feature may introduce some confusing
information that leads to misclassifications. To further develop
the idea of reusing low-level feature in U-Net and alleviate the
problem of introducing weak semantic information, an AM,
namely AM-s, is introduced to capture local details in the
skip connection stage without introducing insufficient semantic
information, as shown in Fig. 2(b). Different from the direct
skip connections in the original U-Net, we exploit f, as spatial
attention weights for itself by employing a 1 x 1 convolution
layer to generate one-channel spatial weights. Such spatial AM
is formulated as

fé:fe S'Lg(h(fe))fe 3)
fa=Con(f., fa) 4)

where h(-) denotes 1 x 1 convolution with one kernel, A(f.)
is of shape 1 x H x W. Sig(-) denotes a sigmoid activa-
tion function that generates spatial weights. ® denotes spatial
element-wise multiplication. It applies the element-wise mul-
tiplication between Sig(h(f.)) and each channel slice of f.,
where Sig(h(f.)) € [0, 1]. Different from the traditional AMs,
we utilize an element-wise addition to compute the value of

!, instead of excessively suppressing f, by the multiplication.
Con(-) donates the concatenation operation between the en-
coder and the decoder.

Low-level feature f; is with less semantic information but
more local details. In contrary, high-level feature f. is with
more semantic information but less local details. To balance the
contributions of fy and f7 for the semantic segmentation task,
we use a channel AM to adaptively reweight each channel in
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Attention modules [(a)—(c) are for U-Net, (d) is for the two streams]. Blue cubes represent that the feature maps come from SSN, and green cubes represent

that the feature maps come from EDN. (a) Skip connection in U-Net. (b) AM-s attention module. (c) AM-sc attention module. (d) BAM attention module.

17, after the concatenation operation, as shown in Fig. 2(c). The
proposed AM, namely AM-sc, can be formulated as (5)

0 = J4Sig (9 (Gap (f})) ® fi. 5)

Gap(-) denotes global average pooling. Gap(f}) is of size
(C1 4+ C3) x 1 x 1. g() denotes 1 x 1 convolution with Cy +
Cs kernels, which is used to generate a channel weight vector.
Here, & denotes the multiplication of each element in the chan-
nel weight vector and each channel of f;. Finally, by spatial
and channel attention, we get a refine feature f/] with sufficient
semantic information and local details.

As shown in Fig. 2(b) and (c), the AM-s corresponds (3)
and (4), and AM-sc corresponds (3), (4), and (5). As shown in
Fig. 1, AM —i(i € {1,2,3,4}) represents the four AMs used
in our SSN subnetwork. The effectiveness of the two modules
is discussed in detail in Section III.

C. BAMs Between SSN and EDN Subnetworks

As mentioned before, edge learning is used to guide the
semantic segmentation learning for finer boundary recovery in
our dual-stream network. To further combine the two branches,
we treat the feature in the EDN subnetwork as attention maps
to attend the origin feature in the SSN subnetwork. The BAM
introduces the boundary information from EDN subnetwork to
SSN subnetwork, which is formulated as

fésn = fssn Sig (h(fepn)) (6)
Ssn = fssn Sig (9 (Gap (fssn))) fesn- (7)

The feature map in SSN subnetwork is defined as fssn, and
the feature map in EDN subnetwork as fgpn, wWhere fsgn,
féSN’ and fé/SN c R(01+CQ)XM><N’ fEDN c ROsXMxN e
use fepn to enhance boundary information of fssn and generate
boundary-enhanced feature fiqy. Then, fiqy is used to gen-
erate channel-reweighted feature fggy. The structure of BAM
module looks like AM-sc module introduced in Section III-B;
however, the differences are as follows. First, in (6), we ex-
ploit a one-channel feature map produced by fgpn as spatial
attention weights for fsgyn. Since the attention map for SSN
subnetwork comes from the EDN subnetwork, BAM is not a
self-AM. Second, as mentioned in [40], the direct concatenation
of feature maps from different task streams may reduce the
distinguishability of features. So, we design BAM, which is not
of the same architecture with AM-sc. The complete structure of
BAM is shown in Fig. 2(d).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the implementation details and
evaluate the performance of the proposed dual-stream network
on the semantic segmentation task of VHR remote sensing
images. The results are discussed in the subsequent sections.

A. Datasets and Evaluation Metrics

We carried out experiments on two ISPRS 2D semantic la-
beling challenge datasets, namely Potsdam and Vaihingen [34].
The Potsdam dataset is composed of 38 images with a spatial
resolution of 5 cm. The image size of Potsdam is 6000 x 6000
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pixels, and each pixel is manually annotated with a certain cat-
egory of six categories, including impervious surface, building,
low vegetation, tree, car, and clutter/background. Each image
has four bands, near infrared (NIR), red (R), green (G), and
blue (B). The corresponding digital surface models (DSMs) are
provided as complementary data. For the network training and
testing, all the 38 images in the Potsdam dataset are divided into
train set (17 images, IDs: 2_10,3_10,3_11,3_12,4_11,4_12,
5.10,5.12,6.8,6.9,6_10,6_11,6_12,7_7,7_9,7_11,7_12),
validation set (7 images, IDs: 2_11,2_12,4_10,5_11,6_7,7_8,
7_10), and test set (the remaining images), which are following
the setup in [35] and [36]. The Vaihingen dataset consists of 33
images (with average image size of 2494 x 2064) with a spatial
resolution of 9 cm. As same as the Potsdam dataset, each pixel
in the Vaihingen dataset is manually annotated with one of the
six categories. Each image has three bands, i.e., NIR, R, G, with
DSMs as well. Similarly, we follow the setup in [35] and [36],
where 33 images divide into train set (11 images, IDs: 1, 3, 5,
7,13, 17, 21, 23, 26, 32, 37), validation set (5 images, IDs: 11,
15, 28, 30, 34), and test set (the remaining images).

To compute the loss in the EDN sub-network, we evaluate
the edge detection accuracy on object boundaries. Note that the
boundaries of objects are eroded by three pixels, and the eroded
areas are ignored during evaluation to relieve the impact caused
by uncertain boundaries. To evaluate the performance of every
pixel, overall accuracy (OA) is used, which represents the per-
centage of correctly classified pixels. In addition, to evaluate the
performance of each class, Fl-score is tested, which considers
both the recall and the precision. Because of the insensitivity for
minority classes of OA, we also calculate mean-F1 score among
all classes.

2 X precision x recall

= . 8
! precision + recall ®)

B. Implementation Details

In this article, the corresponding DSM data of Potsdam and
Vaihingen dataset is normalized and considered as an extra band.
Thus, there are five bands in Potsdam dataset and four bands in
Vaihingen dataset. The training data is augmented to eight times
by flips and rotations. Following the most works on the two
datasets, in the case of Potsdam, all six classes are predicted.
However, in the case of Vaihingen, the clutter/background class
is ignored, due to the lack of training data for this category [8].

The channel numbers of convolution groups in U-Net are
32, 64, 128, 256, 512, 256, 128, 64, 32. In the proposed EDN
subnetwork, channel numbers of convolution groups are 32,
64, 128, 256, 128, 64, 32. Adam optimizer is used to train the
networks. The pixel resolution of the input image is 512 x 512.
The initial learning rate is set as 2e—04, and decays by 0.2 when
the validation loss does not decrease in 3 epochs. The batch size
is 5. Training is finished when the loss fails to decrease.

Before training the dual-stream network, we separately train
the EDN using the loss in (1). The parameter « in (1) is set as
a series of {0.1, 0.2, 0.3, 0.4, 0.5}. When « is set as 0.4, the
EDN yields the best boundary IoU. Thus, the parameter « is
determined as 0.4 in the following experiments. Finally, we set
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a = 0.4in(1)and § = 0.2 in (2) by a series of experiments.
The experiments on the effect of different 3 values are discussed
in detail in Section IV-D.

C. Comparing With Existing Works

In this section, the proposed method is compared with some
state-of-the-art methods, including the baseline network U-Net
[25], U-net with CBAM module for the heat map (UNet-CBAM)
[37], FCN [7], FCN with feature rearrangement (FCN-FR) [8],
FCN with relation-augmented module (RA-FCN) [34], RotE-
gNet [36], PSPNet [37] with ResNet101, Deeplab v3+ [38],
DST-2 [9], and ONE-7 [38].

The results of the Vaihingen dataset are shown in Table I. Our
methods are implemented as U-Net with the AM-sc, namely
“UNet-sc,” and the dual-stream network with EDN and UNet-sc,
namely “BAM-UNet-sc.” It is demonstrated that our method
outperforms other methods in terms of mean F1-score and OA.
The proposed BAM-UNet-sc yields a gain of 3.54% and 2.14%
in mean F1 and OA compared to U-Net.

Compared with UNet-CBAM, the proposed UNet-sc reaches
an improvement of 2.55% in mean F1-score and 1.11% in OA.
It shows that the AM-sc exploits more effect local details from
the low-level feature by the AMs than only using AMs for the
heat map. Besides, by using the proposed BAMs module and the
EDN subnetwork, our method contributes to an improvement of
0.34% in the mean F1-score with respect to the UNet-sc, which
shows that our EDN subnetwork and BAMs module further
benefit the sematic segmentation subnetwork to recover fine
boundaries.

Furthermore, the proposed method has an obvious advantage
in man-made objects compared with the other methods. In
Fig. 4(a), the proposed method accurately identifies cars and
their boundaries. In Fig. 4(b), our method remarkably recovers
more accuracy boundaries of buildings.

However, the Fl-score in low vegetation and tree has less
improvement. The reason is that our network improves object
with regular boundaries, e.g., cars, buildings. However, low
vegetation and tree have inherent fuzzy boundaries, which may
have no underlying patterns that can be learned by the network.
In such situation, accurate boundaries cannot be found. Then,
inaccurate boundary information is passed to the semantic seg-
mentation subnetwork, which leads to misclassifications. Fig. 3
shows four typical classes of objects and their corresponding
ground truth.

As shown in Table 11, similar results on the Potsdam dataset
are obtained. The proposed BAM-UNet-sc performs the best
performance, outperforming the classic U-Net by 3.01% in
mean Fl-score. As the same as experiments in the Vaihingen
dataset, in the case of man-made objects, our method surpasses
other methods. While in the case of vegetation, it shows fewer
advantages. In Fig. 5(a), the regular road greenbelts are re-
covered completely. In Fig. 5(b), the problem of the internal
inconsistency of buildings is alleviated.

Considering that DSM data is not always available in the
reality, we launch experiments on the Vaihingen dataset without
using the DSMs, including the original U-Net, UNet-sc, and
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Fig. 3. Images and labels of the typical classes of man-made objects and vegetation. Classes: (a) building (blue), (b) car (yellow), (c) tree (green), (d) low
vegetation (cyan). (a) and (b) have clear boundary while (c) and (d) have confused boundary.

Image Label U-Net UNet-CBAM PSPNet UNet-sc BAM-UNet-sc

(b)

Fig. 4. Experiment results of ISPRS Vaihingen dataset. Classes: impervious surface (white), building (blue), low vegetation (cyan), tree (green), car (yellow),
and clutter (red).

UNet-CBAM PSPNet BAM-UNet-sc
-~ B ool -

(a)

(b)

Fig.5. Experiment results of ISPRS Potsdam dataset. Classes: impervious surface (white), building (blue), low vegetation (cyan), tree (green), car (yellow), and
clutter (red).



5266

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
COMPARISONS BETWEEN OUR METHOD AND OTHER PUBLISHED METHODS ON THE ISPRS VAIHINGEN DATASET

Imp.surf.  Building  Low veg Tree Car Mean F1 OA

U-Net 90.19 94.81 77.61 87.11 78.11 85.56 87.61
UNet-CBAM 90.62 95.11 78.13 87.17 79.99 86.21 88.45
DST-2 90.50 93.70 83.40 89.20 72.60 85.90 89.10
ONE-7 91.00 94.50 84.40 89.90 77.80 87.50 89.80
RotEqNet 89.50 94.80 77.50 86.50 72.60 84.18 87.50
RA-FCN 91.47 94.97 80.63 88.57 87.05 88.54 89.23
PSPNet 91.69 95.23 80.23 87.86 80.71 87.14 88.87
Deeplab v3+ 91.84 95.15 80.72 88.86 79.96 87.31 89.02
UNet-sc 92.18 95.99 80.44 88.27 87.71 88.76 89.56
BAM-UNet-sc 92.26 96.17 80.36 88.14 88.55 89.10 89.75

TABLE II

COMPARISONS BETWEEN OUR METHOD AND OTHER PUBLISHED METHODS ON THE ISPRS POTSDAM DATASET

Imp surf  Building  Low veg Tree Car Clutter Mean F1 OA
U-Net 88.99 92.68 84.45 81.50 93.75 72.10 85.58 86.25
UNet- CBAM 90.34 93.62 85.34 81.87 94.24 72.64 86.34 86.82
FCN 88.03 93.13 83.72 79.10 92.94 70.67 84.60 85.54
FCN-FR 89.31 94.37 84.83 81.10 93.56 76.54 86.62 87.02
RA-FCN 91.33 94.70 86.81 83.47 94.52 77.27 88.01 88.59
PSPNet 90.74 94.24 87.15 83.21 93.23 77.83 87.87 88.32
Deeplab v3+ 90.99 94.15 86.91 83.11 93.61 78.49 87.88 88.57
UNet-sc 91.18 95.35 86.88 83.43 94.95 77.23 88.19 88.75
BAM-UNet-sc 91.50 95.56 86.94 83.37 95.09 78.97 88.59 89.13
TABLE III 89.9
ABLATION EXPERIMENTS FOR UNET-AM AND BAM -
§ 805 80.72 89.75 50,65
Mean F1 OA Prediction time  Parameters ) 89.55 §9.58 "
U-Net 85.56 87.21 0.0433s 4.32M T w1 )
UNet-s 87.39 88.02 0.0495s 4.36M =
UNet-sc 88.76 89.56 0.0618s 4.45M g
SS-UNet-sc 88.51 89.47 0.0620s 4.45M e 887
BN-UNet-sc [33] 88.89 89.68 0.0712s 6.12M by
BAM-UNet-sc 89.10 89.75 0.0632s 5.18M = 883 88.53
g ——m F1
B —— oA
87.9
BAM-UNet-sc. Due to the lack of DSM data, evaluation Metrics 0.05 0.1 02 03 0.4 0.6
decline slightly. However, the conclusion still holds that our weight parameter / of loss
method outperforms the other reference ones. Fig. 6. Influence on different values of weight parameter 3 (blue: mean F1-

D. Effectiveness of the Proposed UNet-AM and BAM

In Table III, we verify the effectiveness of the two proposed
modules: AMs between the encoder and decoder of U-Net (the
proposed SSN sub-network), and BAMs between the SSN and
EDN subnetwork.

U-Net with AM-s and U-Net with AM-sc are called “UNet-s”
and “UNet-sc,” respectively. As shown in Table III, both UNet-s
and UNet-sc outperform the original U-Net, with a gain of 3.20%
and 1.83% in mean F1-score, respectively. The proposed AM-sc
is an effective module to improve the skip connection from the
encoder to the decoder in U-Net. Besides, the effectiveness of
BAMs and the integration strategy of the two sub-networks
is also tested in this section. Our method is compared with
two multitask learning methods for semantic segmentation.
“SS*” denotes the learning edge detection task and semantic
segmentation task simultaneously in a single-stream network.
“BN*” denotes the sharing weights in the encoding stage for
the two tasks, which is proposed in [33]. “BAM*” denotes the
proposed dual-stream network with the EDN network. In this

score, red: OA).

part, the SSN subnetwork is U-Net with AM-sc. « and 3 are
0.4 and 0.2, respectively, in this experiment.

The proposed AM-sc and BAMs modules are further inte-
grated to fuse the boundary information and the shallow fea-
tures. We make use of the BAMs module to combine the SSN
stream and the EDN stream, named “BAM-UNet-sc,” which
outperforms UNet-sc by 0.34% in mean F1-score and 0.19% in
OA. Ttimplies that the boundary information is successfully sent
to the SSN subnetwork from the auxiliary EDN subnetwork by
our BAMs module. SS-UNet-sc fails to get improvement, which
indicates that sharing weights for the semantic segmentation task
and the edge detection task in a same network does not work.
The reason may be that the two tasks need different types of
features. Compared with the two multitask learning methods for
the semantic segmentation task and the edge detection task, the
proposed BAM-UNet-sc gets higher mean Fl-score and OA,
which implies the effectiveness of the proposed dual-stream
network and BAM.



NONG et al.: BOUNDARY-AWARE DUAL-STREAM NETWORK FOR VHR REMOTE SENSING IMAGES SEMANTIC SEGMENTATION

(a)

5267

(b)

Fig. 7.

Feature similarity maps between the selected pixel and other pixels. Hotter color denotes more similar in feature level. (a) A pixel from “building” (yellow

cross sign in image) is selected. (b) A pixel from “car” (yellow cross sign in image) is selected.

Furthermore, Table III lists the total parameters of each net-
work tested in the experiment as well, in which the time cost
is corresponding to a test image with size of 512 x 512 pixels.
The experiment is carried out on a single desktop PC, equipped
with an Intel Core™ i7-8700 CPU, 32GB RAM and NVIDIA
RTX 2070. Compared with the original U-Net, our method
has an extra 46% time consumption and extra 20% network
parameters.

E. Influence on Different 5 Values

In the proposed dual-stream network, the SSN subnetwork
is the major stream, and the EDN is designed as an auxiliary
stream. To balance the contributions of the two streams, the
weight parameter 3 is designed in (2). To further analyze the
effect of different weight parameter /3 and to select the proper
value of 3, we launch a series of experiments with different
8 =1{0.05,0.1, 0.2, 0.3, 0.4, 0.6} for 8. The result is shown in
Fig. 6.

With the increase of 3, the evaluation metrics, mean F1-score,
and OA all present the trend that first increased and then de-
creased. And mean Fl-score and OA reach a maximum when
the value of (3 is set as 0.2. However, there are some differences
between the two metrics. Boundaries are in the minority in an
image. Thus, the overall classification accuracy fluctuates within
a narrow range. However, mean Fl-score is more sensitive to
the categories with a small proportion, which mainly consist
of small objects in VHR remote sensing data, such as cars.
Boundaries occupy a larger proportion in these categories. When
the boundaries of these categories are recovered finer with the
proposed BAM, there is an obvious improvement in Fl-score.
We can find similar conclusion from Tables I and II, which
shows a great improvement of cars in F1-score. With the further
increase of the value of 3, the two evaluation metrics decline
significantly, since the loss of edge detection task has occupied

a large proportion of total loss in this situation, which confuses
the primary task and secondary task.

F. Feature Similarity Visualization of the Feature Maps

In order to further show the effect of the proposed AM-sc
and BAM modules, we calculate the cosine similarity between
a selected point and other pixels in the feature map. The feature
similarity maps are shown in Fig. 7. As mentioned in [39], the
uncertainty of semantic segmentation is usually higher in the
pixels near object boundaries. In the feature similarity map of the
original U-Net, there are obvious transition regions between the
selected category and its neighboring objects, where the pixels
are hard to be classified. It corresponds to the conclusion in
[39]. In UNet-sc, the introduction of local details by the AM-sc
module makes the pixels near boundaries easier to be classified
accurately. Visually, in the feature similarity map of UNet-sc,
the boundaries are finer than those in the original U-Net, as
shown in the regions of buildings and cars in Fig. 7. The feature
similarity of the feature maps confirms that our network learns
a more boundary-fine feature by adding the two modules.

V. CONCLUSION

In this article, we have introduced AMs for U-Net to enhance
low-level feature, which helps to recover local details lost caused
by the downsampling operations in the encoder—decoder struc-
ture semantic segmentation network. In addition, an auxiliary
edge detection stream and BAM are proposed to provide seman-
tic segmentation stream with strong boundary information. The
experiments on VHR data have validated the effectiveness of
recovering object boundaries, especially for man-made objects
with clear boundaries.

However, the main limitation of the proposed method relies on
the requirement of ground-truth images with fine boundaries. In
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the future, the combination of color feature, texture feature, and
shape feature may be an alternative solution of this limitation.
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