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New Global MuSyQ GPP/NPP Remote Sensing
Products From 1981 to 2018

Juanmin Wang , Rui Sun, Helin Zhang, Zhiqiang Xiao , Anran Zhu, Mengjia Wang, Tao Yu, and Kunlun Xiang

Abstract—Long time series of vegetation productivity products
are significant for the research of global carbon cycle and climate
change. In this article, the 0.05° global gross primary productivity
(GPP) and net primary productivity (NPP) products from 1981
to 2018 were estimated by using the improved multisource data
synergized quantitative (MuSyQ) NPP algorithm. The model was
based on the fraction of absorbed photosynthetically active radia-
tion (FPAR) and leaf area index (LAI) data from the global land
surface satellite (GLASS) dataset, the light use efficiency (LUE)
from the parameterization approach with the clearness index (CI),
the ERA-Interim meteorological data, and other environmental
factors. The results suggested that the accuracy of the MuSyQ
GPP product was slightly higher than that of the MOD17 GPP
product when compared with the FLUXNET GPP, especially for
the evergreen broadleaf forest (EBF), deciduous broadleaf forest
(DBF), wetland (WET), cropland (CRO), woody savanna (WSAV),
and closed shrubland (CSH) land types. MuSyQ NPP product also
has higher accuracy [R2 = 0.81, RMSE = 214.6 gC/(m2year)]
than MOD17 NPP [R2 = 0.55, RMSE = 214.7 gC/(m2year)] when
compared with the BigFoot NPP, which indicated the reliability
of the improved MuSyQ-NPP algorithm in estimating global NPP.
Our results showed a significant upward trend in global NPP, which
was most affected by FPAR, followed by LUE, temperature, and
PAR. The average NPP declined significantly in Asia and Amazon
tropical rainforests and increased significantly in Africa tropical
rainforest, which were affected by the local deforestation or the
forest expansion, and also the climate factors.

Index Terms—Carbon cycle, GLASS, global change, vegetation
productivity.
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I. INTRODUCTION

THE VEGETATION productivity of terrestrial ecosystems
can quantify the conversion of atmospheric carbon dioxide

(CO2) to plant biomass and reflect the ability of vegetation to fix
atmospheric CO2, which is an important variable for estimating
the global carbon budget, and it is also an important ecological
indicator for estimating the Earth’s carrying capacity and the
sustainable development of terrestrial ecosystems [1]. In the
early days of research on vegetation productivity, some scholars
established climate productivity models based on the statisti-
cal relationship between vegetation productivity and climate
factors, such as the Miami, Thomthwaite memorial [2], and
Chikugo [3] approaches. Subsequently, the process-based model
was established based on the eco-physiological processes of
plant growth, combined with the climate and soil physical data,
such as the CENTURY model [4], terrestrial ecosystem model
(TEM) [5], biome bio-geochemical cycle (Biome-BGC) [6]
model, and the boreal ecosystems productivity simulator (BEPS)
[7]. Currently, satellite-based gross primary productivity (GPP)
models have been developed based on the light use efficiency
(LUE) concept [8], the LUE approach believed that photosyn-
thetically active radiation (PAR) is the driving force for plant
photosynthesis, and other external environmental factors also
impact it. Most of these models’ procedures use remote sensing
data as some of the driving data including the Carnegie-Ames-
Stanford approach (CASA) [9], the global production efficiency
model (GLO-PEM) [10], the net primary productivity (NPP)
algorithm of the moderate resolution imaging spectroradiometer
(MODIS) (MOD17) [11]–[13], the vegetation photosynthesis
model (VPM) [14], and the eddy covariance-LUE (EC-LUE)
approach [15]. Many researchers have used different procedures
and remote sensing data to calculate the global NPP. Nemani
et al. [16] estimated the monthly and annual global NPP between
1982 and 1999 at 0.5° × 0.5° resolution with a biome-specific
production efficiency model (PEM) using the National Center
for Environmental Prediction (NCEP) climate data, the LAI
and FPAR derived from the global inventory monitoring and
modeling system (GIMMS), and the pathfinder advanced very
high-resolution radiometer land (PAL) normalized difference
vegetation index (NDVI) dataset. The results found that the
average global NPP was approximately 59.7 PgC/year, with an
increase of approximately 6% between 1982 and 1999. Zhao and
Running [17] found that the average annual NPP decreased by
0.55% and the average was 53.5 PgC/year from 2000 to 2009
by using the 0.05° MOD17 NPP product. The new MOD17
GPP and NPP products, which span from 2000 to the present,
show a temporal resolution of 8 days and a spatial resolution
of 500 m [18]–[19]. Tum et al. [20] used the atmospheric CO2

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2001-2116
https://orcid.org/0000-0001-8245-6762
mailto:201631170025@mail.bnu.edu.cn
mailto:sunrui@bnu.edu.cn
mailto:201931051035@mail.bnu.edu.cn
mailto:zhqxiao@bnu.edu.cn
mailto:201831051047@mail.bnu.edu.cn
mailto:201721170059@mail.bnu.edu.cn
mailto:18953565005@189.cn
mailto:yutaogis@mail.bnu.edu.cn
mailto:xiangklun@mail2.sysu.edu.cn


WANG et al.: NEW GLOBAL MUSYQ GPP/NPP REMOTE SENSING PRODUCTS FROM 1981 TO 2018 5597

concentrations, the albedo map, and the climate data with the
biosphere energy transfer hydrology model (BETHY/DLR) to
calculate the global NPP. The result showed that the global
average NPP increased by 1% from 2000 to 2014, with an
average value of 60.2 PgC/year. Rafique et al. [21] estimated a
global NPP of 63 PgC/year with a growth rate of 0.21 PgC/year
from 1982 to 2012 by using the five TEMs from the trends
and drivers of the regional scale sources and sinks of carbon
dioxide project (TRENDY) project. The simulated NPP data
were aggregated to a spatial resolution of 0.5°. These studies
investigated the spatial and temporal changes in global NPP
for certain periods, but most had limited temporal coverage.
Longer time series and higher spatial resolution global vegeta-
tion productivity products are still required for research on global
change.

Recently, the Center for Global Change Data Processing
and Analysis of Beijing Normal University generated and pub-
lished a long-term series of global land and terrestrial satellite
(GLASS) leaf area index (LAI) and the fraction of absorbed
photosynthetically active radiation (FPAR) products from 1981
to 2018 [22]–[23]. GLASS LAI and FPAR products have high
accuracy, with root mean square error (RMSE) = 0.90 and bias
= −0.19 for LAI [24], and RMSE = 0.08 and bias = 0.01 for
FPAR [25]. Moreover, through the preprocessing of AVHRR
reflectance data, including cloud contamination removal and gap
filling, GLASS LAI and FPAR data are spatially complete and
temporally continuous [26].

These products will be very helpful for generating the long-
term series of global GPP and NPP products. At the same time,
the LUE is the primary controlling factor for predicting GPP,
and most LUE models used for regional or global vegetation
productivity estimation only considered water stress factors and
temperature stress factors. However, many studies have found
that the LUE of diffuse solar radiation is higher than that of
direct solar radiation [27]–[28]. The consideration of the effect
of the fraction of diffuse solar radiation on LUE might improve
the accuracy of GPP and NPP estimation, especially in cloudy
areas, such as tropical evergreen broadleaf forests. Therefore, it
is necessary to consider the influence of diffuse solar radiation
when estimating the global GPP and NPP. Wang et al. [29]
recently compared three LUE estimate approaches and found
that the parameterization approach with the clearness index (CI)
could improve LUE and GPP estimation. Based on the above
result, this study aimed to estimate LUE by adding the CI factor
to improve the accuracy of GPP estimation.

The aim of this article is as follows: (i) to propose a new global
GPP and NPP products with a spatial resolution of 0.05° and a
temporal resolution of 8 days from 1981 to 2018 by using the
improved multisource data synergized quantitative (MuSyQ)-
NPP algorithm and the GLASS LAI and FPAR products; (ii) to
validate the GPP and NPP estimates based on the data of ground-
based measurements from BigFoot and FLUXNET network, and
(iii) to analyze the spatial-temporal distribution characteristics
of global NPP.

II. DATA AND METHODOLOGY

A. Data

This research includes data from remote sensing imagery
(e.g., LAI and FPAR), meteorology records (e.g., temperature,

TABLE I
DATA USED IN THIS ARTICLE

TABLE II
VALUES FOR DIFFERENT PARAMETERS USED IN THE ACTUAL LIGHT USE

EFFICIENCY PARAMETERIZATION DEPENDING ON THE VEGETATION

LAND COVER

LUEmax
sh

dewpoint temperature, surface net solar radiation, surface net
thermal radiation, and surface solar radiation), digital elevation
model (DEM), and land-cover information (e.g., MCD12C1
product). The specific properties of each product are shown in
Table I.

1) GLASS LAI and FPAR Products: The Global Change
Data Processing and Analysis Center of Beijing Normal Uni-
versity generated and published the GLASS product set, which
includes the GLASS LAI and FPAR products. The GLASS LAI
product includes two categories: the GLASS MODIS LAI prod-
uct and the GLASS AVHRR LAI product. The GLASS MODIS
LAI product was calculated from MODIS surface reflectance
data and provided in a sinusoidal projection at a spatial resolution
of 1 km and a temporal resolution of 8 days from 2000 to 2015;
the GLASS AVHRR LAI product was derived from the GLASS
AVHRR. The latest version of the GLASS AVHRR LAI product
was provided in a geographic latitude/longitude projection at a
spatial resolution of 0.05° and a temporal resolution of 8 days
from 1981 to 2018 (http://www.glass.umd.edu/LAI/AVHRR/).
This product was used in this study. The GLASS AVHRR
FPAR product was calculated from GLASS AVHRR LAI (http:
//www.glass.umd.edu/FAPAR/AVHRR/) maintaining the same
spatial and temporal resolution as the GLASS AVHRR LAI.

2) MODIS Land-Cover Product: The Terra and Aqua com-
bined MODIS land-cover climate modeling grid (MCD12C1)
Version 6 product has a spatial resolution of 0.05° in geographic

http://www.glass.umd.edu/LAI/AVHRR/
http://www.glass.umd.edu/FAPAR/AVHRR/
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TABLE III
COMPARISON OF MUSYQ GPP, MOD17 GPP TO FLUXNET GPP ACCORDING TO THE DIFFERENT LAND-COVER TYPES

TABLE IV
MEAN ANNUAL NPP OF THE WORLD’S SIX CONTINENTS, THE NORTHERN AND

SOUTHERN HEMISPHERES FROM 1981 TO 2018

TABLE V
COMPARISON OF THE DIFFERENT GLOBAL AVERAGE ANNUAL GPP ESTIMATES

latitude/longitude projection and provides global land-cover
types at yearly intervals, which can be downloaded from https:
//e4ftl01.cr.usgs.gov/MOTA/MCD12C1.006/ [30]–[31].

In this article, the IGBP product was used to address different
land-cover types, which provides 17 land-cover classifications
with an annual interval from 2001 to 2018. The product in 2001
was used as a substitute for the period from 1981–2000 since
there was no data for before 2001 (Fig. 1).

TABLE VI
COMPARISON OF THE DIFFERENT GLOBAL AVERAGE ANNUAL NPP RESULTS

3) Meteorological Data: The ERA-Interim database was
used as the meteorological input data in our algorithm. It refers to
a global atmospheric reanalysis data generated by the European
Centre for Medium-Range Weather Forecasts (ECMWF) from
1979 to 2019 and can be downloaded from https://apps.ecmwf.
int/datasets/data/interim-full-daily/levtype=sfc/ [32]. In our re-
search, the dewpoint temperature, air temperature, surface net
solar radiation, surface net thermal radiation, surface solar radi-
ation downward, and total precipitation of 8 days were obtained
by averaging the 12-h data. The relative humidity was calculated
from the dewpoint temperature and average temperature [33]. A
bilinear interpolation was used to produce the 0.05° data of solar
radiation. However, in the interpolation of air temperature, the
effect of altitude was also taken into account. The air temperature
was corrected to the sea level temperature value first by the
lapse rate of temperature (γ =−0.65°C/100 m). Then, a bilinear

https://e4ftl01.cr.usgs.gov/MOTA/MCD12C1.006/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype&equals;sfc/
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Fig. 1 Global land-cover map of the IGBP classification schemes. The full
name of each land-cover type is as follows: EBF: evergreen broadleaf forest;
DBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest; DNF: decid-
uous needleleaf forest; MF: mixed forest; CSH: closed shrublands; OSH: open
shrublands; WSAV: woody savannas; SAV: savannas; GRA: grasslands; WET:
permanent wetlands; CRO: croplands; UA: urban area; C/NV: cropland/natural
vegetation mosaic; SI: snow and ice; BSV: barren or sparsely vegetated; WB:
water bodies.

interpolation method was used to generate the global sea level
temperature at a spatial resolution of 0.05°. Finally, the DEM
data and γ were used to simulate the corrected temperature under
the undulating terrain to generate global temperature data.

Zhang et al. [34] evaluated the solar radiation incident
at the Earth’s surface (Rs) estimates from six current rep-
resentative global reanalyses [National Centers for Envi-
ronmental Prediction-National Center for Atmospheric Re-
search (NCEP-NCAR); National Centers for Environmental
Prediction-Department of Energy (NCEP-DOE); The NCEP
Climate Forecast System Reanalysis (CFSR); ERA-Interim; The
Modern-Era Retrospective Analysis for Research and Applica-
tions (MERRA), and the Japan Meteorological Agency (JRA-
55)] using surface measurements from different observation
networks. The results showed that relatively small discrepancies
were found for the ERA-Interim solar radiation product. So we
selected the ERA-Interim product in our study.

4) Digital Elevation Model (DEM) Data: The DEM data
were derived from the Global Land One-Kilometer Base Ele-
vation (GLOBE) Version 1.0 (http://www.ngdc.noaa.gov/mgg/
topo/globe.html) [35]. The GLOBE DEM is a global dataset
covering from 180° west to 180° east longitude and 90° north to
90° south latitude; the spatial resolution of these data was 1 km.

B. Methodology

1) Model Algorithm: The MuSyQ NPP product was derived
from a LUE model, which has been preliminary validated in
China by Cui et al. [36] and at the global scale by Yu et al.
[37]. The results suggested the proposed algorithm as potentially
suitable for the estimation of the vegetation productivity. In
this article, the global GPP and NPP were estimated with an
improved MuSyQ-NPP algorithm (Fig. 2). The algorithm was
improved in the calculation of the LUE factor.

GPP (gC/m2d) was estimated according to the Monteith
concept [8], which considers that GPP is proportional to the
absorbed photosynthetically active radiation (APAR = FPAR ×

Fig. 2 Diagram of GPP and NPP estimation with the improved MuSyQ-NPP
algorithm.

PAR) and the proportionality LUE factor as follows:

GPP = LUECI ×APAR (1)

where LUECI is the actual LUE (gC/MJ), and PAR is the incident
photosynthetically active radiation (MJ/m2 d). LUECI was de-
rived from a parameterization approach, in which the maximum
LUE without stress was determined according to the vegetation
type and CI, and the actual LUE was estimated by multiplying
the temperature stress and water stress. The CI was adopted to
take into account the effect of diffuse solar radiation on LUE.
The accuracy of LUE by using this method was proved higher
than the method without CI [29].

LUECI =
[
LUEsu

max × CI + LUEsh
max × (1− CI)

]
× f (W )× f (T ) . (2)

CI =
SWsurface

SWtop
(3)

SWtop =
TD

π
S0 (ω0 sinϕ sin δ + cosϕ cos δ sinω0) (4)

S0 = S0 ×
(
1 + 0.033× cos

(
2π × day

365

))2

. (5)

LUECI (gC/MJ) was calculated by weighting LUEmax for
sunlit leaves (LUEsu

max, gC/MJ) and shaded leaves (LUEsh
max,

gC/MJ). LUEsu
max and LUEsh

max values for different vegetation
types (Table II) were optimized by the shuffled complex evolu-
tion procedure developed at the University of Arizona (SCE-UA)
[38] and FLUXNET GPP data. CI and (1−CI) correspond to the
weighted coefficients where the CI is the clearness index, which
represents the ratio of solar incident radiation on the surface of
the earth (SWsurface, MJ/m2d) to the extraterrestrial radiation
at the top of the atmosphere (SWtop, MJ/m2d). SWsurface is the
surface solar radiation downwards, which was obtained from
the ERA-Interim dataset. TD represents the time period of a day
(TD = 60 × 60 × 24 = 86 400 s) and S0 is the solar radiation
constant (1367 W/m2). ϕ, ω0, and δ refer to the latitude, solar
horizon at sunrise, and solar declination, respectively.

f(W) describes the water stress factor and can be obtained by
the following formula:

f (W ) = 0.5 + 0.5 (E/Ep) (6)

http://www.ngdc.noaa.gov/mgg/topo/globe.html
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where E represents the actual evapotranspiration (mm), which
is calculated from a modified Penman-Monteith approach [39]–
[40] using the GLASS LAI products. Ep represents the potential
evapotranspiration (mm), which is derived from the Priestley
and Taylor equation [41]. f(W) is forced to be equal to 1.0 when
it exceeds 1.0.

f(T) is a temperature stress factor; the growth performance of
vegetation is influenced by both the average temperature (T, °C)
and the optimum growth temperature (Topt, °C), which can be
described as follows:

f(T ) =
1[

1 + e0.2(Topt−10−T )
]× [

1 + e0.3(−Topt−10+T )
] (7)

where Topt is the average temperature when vegetation grows
best. We counted the average temperature in the month when
LAI reached the maximum for different vegetation types first,
and then SCE-UA optimization algorithm was used to optimize
the Topt value for different vegetation types (Table II).

PAR was calculated from SWsurface using the following for-
mula:

PAR = 0.48× SWsurface (8)

NPP (gC/m2d) is the net flow of carbon entering the plants
from the atmosphere and represents the remainder after deduct-
ing the organic matter consumed by plant autotrophic respiration
from GPP.

NPP = GPP −Ra (9)

where Ra is the autotrophic respiration (gC/m2d). It can be
separated into two parts, maintenance respiration Rm and growth
respiration Rg, which refer to the energy necessary to maintain
biomass and the energy converting assimilates into new struc-
tural plant constituents, respectively [36].

Ra = Rm +Rg (10)

Rm = Mirm,iQ10,i
(T−Tb)/10 (11)

Rg = γ(GPP −Rm) (12)

where Mi is the live biomass of plant component i, which was
calculated by using the LAI and annual maximum LAI for
each pixel. rm,i is the maintenance respiration coefficient for
component i, whereas Q10 is the temperature sensitivity factor, T
is the daily average temperature, and Tb is the base temperature.
Rg was considered to be proportional to the difference between
GPP and Rm. γ is the growing respiration efficient defined as
0.25.

By using the improved MuSyQ-NPP algorithm, the global
GPP and NPP products with a spatial resolution of 0.05° in every
8 days from 1981 to 2018 were generated. The products can be
downloaded at http://doi.org/10.5281/zenodo.3996814 [42].

2) Analyzing Method: The two methods of unary linear re-
gression and the Pearson correlation coefficient were used to
analyze the interannual change trend of NPP and the correlation
between NPP and climate factors, respectively.

a) Unary Linear Regression: To understand the global
NPP changes, unary linear regression was used to obtain the
slope of the change in the annual NPP for each pixel by per-
forming a linear regression on the annual average NPP for the

Fig. 3 (a) Comparison of MuSyQ GPP, MOD17 GPP to BigFoot GPP.
(b) Comparison of MuSyQ NPP, MOD17 NPP to BigFoot NPP.

years during the study period.

θ =
n×∑n

i=1 i×NPPi −
∑n

i=1 i
∑n

i=1 NPPi

n×∑n
i=1 i

2 − [
∑n

i=1 i]
2 (13)

where θ is the slope variation in annual NPP, n represents the
number of years, i represents the serial number of years, and
NPPi represents the NPP value at year i. The result (θ), which
is greater than 0, represents the increase in NPP, while less than
0 represents the decrease in NPP.

b) Pearson Correlation Coefficient: The Pearson correla-
tion method was used to calculate the correlation coefficient
between the annual NPP and the annual mean air temperature
and annual precipitation. The formula is shown as follows:

rxy =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
∑n

i=1 (yi − ȳ)2
(14)

rxy is the correlation coefficient and describes the degree of linear
correlation between the two variables. n is the number of years,
i is the year number, xi is the NPP in year i, x̄ is the average
NPP, yi is the value of the climate factor in year i, and ȳ is the
average value of the climate factor. Three confidence levels of
p < 0.01, p < 0.05, and p < 0.1 were considered in this article.

III. RESULTS

A. Validation of GPP/NPP Products

1) Validation From BigFoot GPP/NPP: In order to validate
the accuracy of MuSyQ GPP and NPP products, the BigFoot
GPP and NPP data for nine sites from 2000 to 2004 were
downloaded (https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=
1) [43]–[44], which covered a 7 × 7 km2 area with a spatial
resolution of 25 m for each site. The MOD17 product (http://
files.ntsg.umt.edu/data/NTSG_Products/MOD17/) for the com-
parison with MuSyQ GPP and NPP was downloaded providing
a temporal resolution of 8 days and spatial resolution of 0.05°.
Annual data were calculated by accumulating the value of every
8 days according to the normal year or leap year.

The average values of 5 × 5 km2 around the center pixel of
BigFoot sites were calculated to correspond to the 0.05° GPP
and NPP products. The results showed that the accuracy of the
MuSyQ GPP product was slightly higher than that of the MOD17
GPP (Fig. 3). A higher R2 demonstrated that the MuSyQ NPP

http://doi.org/10.5281/zenodo.3996814
https://daac.ornl.gov/cgi-bin/dataset_lister.pl&quest;p&equals;1
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/
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Fig. 4 Location of the selected 126 FLUXNET sites and the 9 BigFoot sites.

achieved a better precision than the MOD17 NPP product, which
indicated the reliability of the improved MuSyQ-NPP algorithm
in estimating global NPP.

2) Validation From FLUXNET2015 Dataset: The
FLUXNET 2015 dataset [45] (https://FLUXNET.fluxdata.org/)
was downloaded in order to further verify the accuracy of
MuSyQ GPP data. This dataset includes observation data of the
carbon flux and other climate data from 212 global FLUXNET
sites. A total of 126 sites were extracted where the land-cover
types matched the MCD12C1 data. These sites covered 11
land-cover types across frigid to tropical climate zones over six
continents (Fig. 4).

The comparison of the MuSyQ GPP and MOD17 GPP to
the FLUXNET GPP from 126 sites at 8 days, monthly and
yearly scale according to different land-cover types, provides the
MuSyQ GPP a higher R2 and lower RMSE than MOD17 GPP
at the three time scale (Table III). Among them, the accuracy
of the MuSyQ GPP for EBF [Fig. 5(a)], DBF [Fig. 5(c)], WET
[Fig. 5(e)], CRO [Fig. 5(f)], and WSAV [Fig. 5(g)] was higher
than those of MOD17 GPP. The higher frequency of cloud cover
in tropical rainforest reduced the values of MODIS FPAR and
LAI, which resulted in the underestimation of the MOD17 GPP.
In our article, GLASS FPAR and LAI were preprocessed to
remove cloud contamination and fill gaps using a new time-series
cloud detection algorithm [46], which resulted in a significant
improvement of accuracy estimates. Direct validation result
demonstrates that the GLASS LAI values were closer to the
mean values of the high-resolution LAI maps (RMSE = 0.78
and R2 = 0.81) than the MOD15 LAI values (RMSE = 1.12
and R2 = 0.67) [26]. In particular, the estimation of MuSyQ
GPP for EBF was performed better due to the increase of LUE
by considering the CI factor. EBF is mainly located in tropical
regions where the predominance of diffuse radiation due to more
cloudy conditions with abundant rain needs to be taken into
account. This is also the case of the BR-Sa1 site in the Amazon
tropical rainforest. The comparative result for 8 days showed
that the MOD17 GPP was severely underestimated while our
GPP estimates performed better [Fig. 6(a)]. In addition, the
GPP estimates for croplands were slightly higher than MOD17
GPP estimates for 8 days and monthly scales, especially for the
irrigated areas in arid and semi-arid regions. This result may
be explained due to the consideration of an irrigation factor
in the proposed model. Such as the US-Ne1 site, our 8 days
estimate was performed slightly better than MOD17 GPP in
the peak values [Fig. 6(b)]. However, both MuSyQ GPP and

MOD17 GPP estimates proved low accuracy at the yearly scale.
For the CSH site, there is only one observation site and only
one year of data, so the annual error cannot be counted. The
DBF estimates in our model for 8 days and monthly scales were
slightly higher than that of the MOD17 while has no advantage
in yearly estimates. This conclusion was confirmed in the veri-
fication of Harvard Forest data [47]. The 8 days [Fig. 6(g)] and
yearly [Fig. 6(h)] comparing result of the Harvard Forest data
with the MOD17 GPP and MuSyQ GPP for DBF suggested
that our estimated value was closer to the observed value in the
peak period of the growing season, while both of them were
higher than observed value in other time period. In terms of
interannual changes, MOD17 GPP was closer to the observed
value than our estimated result. Compared with the observed
data, the interannual variation of estimated GPP was relatively
stable for the Harvard Forest station, while the observed GPP
shows an increasing trend from 1982 to 2010 and decreasing
trend for 2010 to 2018. The possible reason might be that
GLASS LAI and FPAR have not well reflected the effect of tree
age.

At the same time, the resulting accuracy of MuSyQ GPP for
ENF [Fig. 5(b)], GRA [Fig. 5(d)], and DNF [Fig. 5(h)] was
lower than that of MOD17 GPP (Table III). According to the
results of the RU-SkP site from DNF, the MuSyQ GPP in the
growing season from 2012 to 2013 was overestimated, but it was
underestimated for 2014. There is only one observation site with
less observation data for DNF, which was not very representative
[Fig. 6(c)]. The accuracy of MuSyQ GPP was slightly lower
at 8 days and monthly scale, but higher at yearly scale than
MOD17 GPP for GRA (Table III). The MOD17 GPP has a higher
accuracy of ENF than our estimate, from the comparison result of
the CA-obs site, there was an overestimation of the GPP during
the growing season [Fig. 6(e)].

The difference between MOD17 and MuSyQ products can
be mainly attributed to the difference of input data and LUE
estimation. First, in MOD17 algorithm, the input remote sensing
data, including FPAR and LAI, were derived from MODIS data,
the PAR, and other surface meteorological fields which were
provided by GEOS-5 data assimilation system at a resolution
of 0.5° × 0.67° in the latest version [13]. In MuSyQ model,
the GLASS FPAR and LAI products were adopted, which were
retrieved from NOAA AVHRR data, and the meteorological
input data was derived from the ERA-Interim product at a
resolution of 0.75° × 0.75°. Second, there are different LUE
values in the MOD17 and MuSyQ model. In the MOD17
algorithm, the maximum LUE of different land-cover types
can be found in the Biome parameter lookup table, and the
actual LUE was calculated by multiplying temperature and
VPD limits. In MuSyQ model, in order to reflect the effect of
diffuse light fraction in the incident solar radiation on LUE, the
maximum LUE was determined according to the vegetation type
and CI, and the actual LUE was estimated by multiplying the
temperature stress and water stress, where the water stress was
estimated by the ratio of actual evapotranspiration and potential
evapotranspiration.

B. Spatial–Temporal Characteristics of Annual NPP

1) Spatial–Temporal Patterns of Global NPP: According to
the global MuSyQ NPP product, our results showed that the

https://FLUXNET.fluxdata.org/
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Fig. 5 Comparison of MOD17 GPP, MuSyQ GPP to FLUXNET GPP at 8 days in different land-cover types for (a) EBF; (b) ENF; (c) DBF; (d) GRA; (e) WET;
(f) CRO; (g) WSAV; (h) DNF, and (i) CSH.

global annual average NPP was 58.6 PgC/year from 1981 to
2018. The spatial pattern of the global annual average NPP
is shown in Fig. 7. In the tropical regions of low latitude, the
temperature and humidity can fully meet the requirements of
photosynthesis, the NPP value was the highest [NPP > 1000
gC/(m2 year)], while the NPP value was in the middle in the
temperate regions of middle latitude [NPP ≈ 400–800 gC/(m2

year)]. In the cold zone of high latitude and the other arid
regions, the NPP value was the lowest [NPP < 200 gC/(m2

year)] with the main limiting factors of the temperature and
precipitation. Table IV shows the average NPP of the north-
ern and southern hemispheres and the world’s six continents
from 1981 to 2018. The results indicated that the NPP of
the northern hemisphere was much higher than that of the

southern hemisphere due to the vast land area. NPP in the
northern hemisphere accounted for 61.9% of the global NPP
and the southern hemisphere accounted for 38.1%. The NPP
values for Asia and South America accounted for 52.1% of
the global NPP, which were higher than those of the other four
continents.

Fig. 8 indicates the spatial variation pattern of global an-
nual average NPP from 1981 to 2018. The results showed
that the increased regions were mainly distributed in Russia,
China and India of Asia, central Europe, central and south-
ern North America, southern South America, and central and
southern Africa. The regions where NPP declines were mainly
located in the northern South America and the low latitudes of
Asia.
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Fig. 6 Comparison of MOD17 GPP, MuSyQ GPP to FLUXNET GPP at 8 days in five FLUXNET sites for (a) EBF, (b) CRO, (c) DNF, (d) GRA, (e) ENF, and
(f) WSAV. Comparison of MOD17 GPP, MuSyQ GPP to the Harvard Forest data for DBF at (g) 8 days and (h) yearly scale.

Fig. 7 Global spatial pattern of the mean annual NPP from 1981 to 2018.

The global NPP showed a significant increasing trend, with
an annual upward rate of 0.10 PgC/year (R2 = 0.56, p < 0.01)
over the past 38 years [Fig. 9(a)]. The lowest was 54.8 PgC/year
in 1989, and the highest was 61.1 PgC/year in 2000. Both the
northern and southern hemispheres showed an upward trend.
The annual growth rate was 0.09 PgC/year in the northern hemi-
sphere and 0.01 PgC/year in the southern hemisphere. Before
2000, the curve of the global NPP was essentially consistent

Fig. 8 Spatial variation pattern of global annual average NPP from 1981 to
2018.

with that of the northern hemisphere, and after 2000, the global
NPP curve was similar to the southern hemisphere [Fig. 9(b)].
In addition, the annual average NPP in Asia, Europe, Africa,
North America, South America, and Oceania from 1981 to 2018
were calculated [Fig. 9(c)]. The results showed an average NPP
value for Asia of 15.7 PgC/year over the 38 years, accounting
for 26.8% of the world. A significant upward trend (R2 = 0.76)
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Fig. 9 Interannual NPP changes (a) at global scale; (b) for northern and
southern hemisphere; (c) and for the six continents from 1981 to 2018.

with an annual growth rate of 0.04 PgC/year was provided. An
average NPP of 5.2 PgC/year for Europe was obtained with
a significant upward trend (R2 = 0.67) and an annual growth
rate of 0.02 PgC/year. An average NPP value was observed
8.5 PgC/year for North America. The lowest value was 7.8
PgC/year in 1989, and the highest was 9.0 PgC/year in 1999,
which indicated an upward trend and an annual growth rate
of 0.02 PgC/year. An average NPP in South America of 14.8
PgC/year was found, which accounted for 25.3% of the global
NPP. The lowest value was 13.9 PgC/year in 1988 and the
highest was 15.6 PgC/year in 1981. This was distinct from the
annual variation trend of the NPP in the other five continents,
which revealed a slow downward trend. The average NPP in
Africa was 12.3 PgC/year and accounted for 21.0% of the global
NPP. It showed a significant upward trend before 2000, with an
annual growth rate at 0.07 PgC/year. The trend was relatively
stable from 2000 to 2018. The average NPP of Oceania was 2.1
PgC/year, which remained relatively stable from 1981 to 2018.

2) NPP Variation Characteristics in Tropical Rainforest:
In order to further understand the changing trend of NPP in
tropical rainforests, the annual NPP of the world’s three largest
tropical rainforests from 1981 to 2018 was calculated. The
tropical regions were defined as the Amazon (17.5 °S–12 °N,
80 °W–43 °W), Africa (6.5 °S–9 °N, 13.5 °W–40 °E), and Asia
(11 °S–23.5 °N, 73.5 °E–162.5 °E) in this study. Since the main
vegetation types in this region are EBF, SAV, GRA, and CRO, the
region of EBF in the three tropical areas was defined as tropical
rainforest. The IGBP classification product of MCD12C1 from
2001 was used as the land-cover data.

Fig. 10 Annual NPP for the three tropical rainforests and global percentages
values for NPP from 1981 to 2018.

Fig. 11 NPP anomalies for EBF in the Amazon, African and Asian rainforests
from 1981 to 2018.

Fig. 12 Annual NPP variation for EBF, ENF, WSAV, SAV, DNF, GRA, WET,
CSH, OSH, MF, CRO, and DBF from 1981 to 2018.

The results showed that the average annual NPP of the three
tropical rainforests was 10.4 PgC/year for 1981–2018. In the
past 38 years, the NPP of the three tropical rainforests and their
contribution to the global NPP dropped significantly (Fig. 10).
Among them, the Amazon, the African, and the Asian rainforest
accounted for 9.7%, 3.6%, and 4.4% of the global NPP, respec-
tively. The Amazon rainforest NPP declined over the 38 years
and almost went below the average since 2000. The NPP of the
Asian rainforest was above the average before 2000 but below
the average throughout the 21st century. However, the NPP
of the African rainforest showed an upward trend, which was
above the average from 1995 (Fig. 11).

3) NPP Variation Characteristics in Different Biomes: The
annual average NPP values for different biomes from 1981 to
2018 are displayed in Fig. 12. The rank of the annual average
NPP was EBF > DBF > CRO > MF > SAV > WSAV >
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ENF > CSH > WET > GRA > DNF > OSH. The NPP value
was highest of 1138.7 gC/(m2year) in EBF, followed by DBF
of 772.6 gC/(m2year). The NPP of DNF, CSH, GRA, and WET
were all less than 300 gC/(m2year), and the lowest NPP was
99.6 gC/(m2year) in OSH. The NPP interannual variation of
CSH, WSAV, SAV, GRA, and CRO showed the largest increase
from the late 1990s to 2000, and relatively slow after 2000.
The estimated NPP values for different biomes from 2000 to
2018 were all above the 38-year average except EBF. Among
them, DNF grew the fastest, with an average increase of 3.61
gC/(m2year), followed by CRO, CSH, and SAV. The linear fitting
slopes were 2.95, 1.44, and 1.40 gC/(m2year), respectively.
However, in contrast to the other biomes, EBF showed a down-
ward tendency, and the average decline was 1.40 gC/(m2year).
EBF is mainly distributed in the tropical rainforest region, and
this result was consistent with the conclusion that the decreased
NPP of the Asia and Amazon tropical rainforests.

IV. DISCUSSION

A. Comparison of Similar Research Results

1) Comparison of Global GPP and NPP Estimates From Var-
ious Models: Many studies estimated the global GPP and NPP
with different methods and obtained different results. The global
annual average GPP based on our model was 120.1 PgC/year,
which was slightly lower than the GPP values derived from
other models such as BEPS (132 PgC/year) [48], GOSIF (135.5
PgC/year) [49], NIRv (128.3 PgC/year) [50], and CCW (134.2
PgC/year) [51] and higher than the results from the MOD17
product (110.9 PgC/year) [17]. However, the value obtained by
MuSyQ-NPP model was within the same range of the ten global
GPP land models (112–169 PgC/year) [52] and seven LUE
models (95.10–139.71 PgC/year) [53]. Moreover, it was similar
to VPM V20 models outcomes (121.60–129.42 PgC/year) [54],
EC-LUE model estimates (112–127 PgC/year) [55], and results
from upscaling the two global flux tower observations [56]–[57]
(Table V).

Global NPP estimations vary widely among different studies
(Table VI ), most of which range from 50.0 to 65.0 PgC/year.
Our results showed that the global annual average NPP was
58.6 PgC/year, which was slightly higher than the MOD17
annual average NPP from 2001 to 2015 (53.5 PgC/year) [17].
However, the global average NPP from our results was within
the result range of 17 global NPP process models (44.4–66.3
PgC/year) [59], and close to the results of Li et al. (61.46
PgC/year) [60], Tum et al. (60.2 PgC/year) [20], and Nemani
et al. (59.7 PgC/year) [16]. This finding was consistent with the
results of the IPCC second assessment (61.3 PgC/year) [62] and
the IPCC Third Assessment (60 PgC/year) [63].

2) Comparison of the MuSyQ, MOD17, Revised EC-LUE,
VPM, and GOSIF Products: In order to further verify the
MuSyQ product, four global GPP datasets were selected which
providing GPP continuous values at 0.05 × 0.05° spatial res-
olution with a geographic latitude/longitude projection. The
revised EC-LUE GPP product was generated by using a re-
vised LUE model [74], which includes input data of vapor
pressure deficit (VPD), PAR, GLASS LAI, and atmospheric
CO2 concentration. The VPM V20 GPP product [75] was based
on the improved LUE theory and driven by satellite data from

Fig. 13 Variation of global annual GPP for MuSyQ, MOD17, revised EC-
LUE, VPM, and GOSIF from 2000 to 2015.

MODIS and climate data from NCEP Reanalysis II. The Or-
biting Carbon Observatory-2-based solar-induced chlorophyll
fluorescence (GOSIF) GPP product [76] was generated by the
SIF-based method and driven by the data including enhanced
vegetation index (EVI) from MODIS and meteorological data
(e.g., PAR, air temperature, and VPD) from the modern-era ret-
rospective analysis for research and applications (MERRA-2).

The variation of global annual GPP for MuSyQ, MOD17, re-
vised EC-LUE, VPM, and GOSIF is shown in Fig. 13. The mean
annual global GPP derived from MuSyQ was 122.5 PgC/year
from 2000 to 2015. This value was similar to VPM (120.3
PgC/year), while lower than GOSIF (131.9 PgC/year) and higher
than MOD17 (110.9 PgC/year) and revised EC-LUE (105.0
PgC/year). The average global annual GPP estimates of VPM
and GOSIF showed a significant increasing trend, while MuSyQ,
MOD17, and revised EC-LUE were almost stable during the past
16 years.

We also compared MuSyQ GPP with other GPP products
in the spatial pattern. Fig. 14 was obtained by calculating the
deviation of the annual average values from 2000 to 2015
between MuSyQ and the other four GPP products. In comparison
with VPM, MuSyQ GPP was higher in the three major tropical
rainforests of the world, and lower in southern North America,
southern South America, and northern and southern Africa.
MuSyQ GPP was about 400–600 gC/(m2year) higher in the three
tropical rainforests, and about 200–400 gC/(m2 year) higher in
eastern North America, Europe, and central Asia compared with
MOD17. MuSyQ GPP was higher in the three major tropical
rainforests, eastern North America, Europe, and central Asia,
and lower in northern South America and southern Africa than
the revised EC-LUE GPP. MuSyQ GPP was slightly higher in
central Africa, but lower in South America, northern Africa,
southern Asia, and parts of Europe than GOSIF GPP.

Combined with the global land-cover map of the IGBP clas-
sification schemes, MuSyQ GPP showed higher values than
MOD17, revised EC-LUE, and VPM for EBF while closer
values to GOSIF. MuSyQ, VPM, and GOSIF provided similar
results in DBF and CRO estimations whereas MuSyQ GPP was
relatively lower in OSH, DNF, SAV, and WSAV (Fig. 15). On the
whole, MuSyQ GPP was more consistent with GOSIF estimate,
while higher in the three major rainforests than the MOD17,
revised EC-LUE, and VPM.

B. Reasons for NPP Interannual Changes

1) Reasons for Global NPP Interannual Changes: The
global change trend of annual NPP was most affected by FPAR
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Fig. 14 Comparison of MuSyQ GPP with other GPP products. Mean annual
GPP difference between MuSyQ and (a) VPM, (b) MOD17, (c) revised EC-LUE,
and (d) GOSIF from 2000 to 2015. All comparisons were conducted at 0.05° ×
0.05° spatial resolution.

Fig. 15 Comparison of annual average MuSyQ GPP with MOD17, revised
EC-LUE, GOSIF, and VPM for different land-cover types from 2000 to 2015.

Fig. 16 (a) Global annual PAR and FAPAR. (b) Global annual LUE and
temperature anomaly for 1981–2018.

(R2 = 0.89), followed by LUE (R2 = 0.56), temperature (R2

= 0.35), and PAR (R2 = 0.16) (Fig. 16). From 1981 to 2000,
the global average NPP was 57.2 PgC/year, with increases of
4.89% and 2.79 PgC. The results were essentially consistent with
Nemani’s studies [16], which found that the global NPP rose by
6.17% and 3.42 PgC between 1982 and 1999. During this period,
although the changing trend of PAR was stable, the rising trend
of FPAR, LUE, and temperature was obvious, which ultimately
led to an increase in GPP and NPP; at the same time, the Earth
also experienced dramatic environmental changes, two of the
warmest decades (the 1980s and 1990s) and three intense and
persistent El Niño events happened (1982–1983, 1987–1988,
and 1997–1998). The NPP declined during the three major El
Niño events, with a coincident increase in global CO2 [17]. From
2001 to 2018, the global average NPP was 59.2 PgC/year. During
this period, NPP remained stable, and the overall trend of change
was basically consistent with FPAR and LUE. In the meantime,
NPP was also significantly affected by PAR or temperature in
some years. For example, the significant increase in PAR led
to an increase in NPP in 2012 and 2017, but the obviously
rising temperature in 2005 resulted in a decrease in NPP. The
increase of temperature strengthens the maintain respiration of
vegetation, which leads to a decrease in NPP. The results also
found that the NPP decreased from 2000 to 2008 and gradually
recovered after 2009. Severe drought affected most of Europe,
southern Africa, Brazil, and Paraguay in 2005 and much of the
United States, eastern and southern Africa, China, and Australia
from 2006 to 2008, which may give rise to the reduction in NPP
[17]. The two volcanic eruptions in 1988 and 1993 also reduced
the FPAR, which resulted in a lower NPP [25].

2) Reasons for Tropical Rainforests NPP Interannual
Changes: The continued decline of Amazon and Asian rain-
forest NPP was related to the local deforestation. From 1982
to 2016, Brazil, Argentina, and Paraguay in South America
suffered the greatest loss of forest area, and the primary forests
of Australia and Southeast Asia were also deforested [77]. The
Amazon drought, which began in 2005 and lasted until 2009, has
led to a subsequent decline in NPP [78]. The increasing trend
of Africa rainforest NPP may be attributed to the local forest
expansion [77]. In addition, climatic factors such as temperature,
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Fig. 17 (a) Spatial pattern of the correlation coefficient between the annual
NPP and annual precipitation; (b) annual NPP and annual average temperature;
and (c) annual NPP and annual surface solar radiation in the three tropical
rainforests from 1981 to 2018.

precipitation, and solar radiation also have a certain impact on
tropical rainforests NPP.

Fig. 17 displays the spatial distribution of the correlation
coefficient (r) (p<0.05) between the annual NPP and the climate
factors from 1981 to 2018. The results showed that variations in
the annual NPP over the three tropical rainforests were mainly
dominated by the changes in the annual precipitation, followed
by the annual surface solar radiation and the annual temperature.
Among them, about 69.4% of the area showed a significant
negative correlation between the NPP and the precipitation (−1
< r <−0.6). 29.7% of the area showed an insignificant negative
correlation (−0.6 < r < 0), and 0.8% of the area indicated a
positively correlation (0 < r < 0.5) [Fig. 17(a)]. According to
the statistical results, the average precipitation of the Asia and
Amazon tropical rainforests showed a significant increase from
1981 to 2018, with an annual increase of 14.7 mm/year (R2 =
0.48) and 9.3 mm/year (R2 = 0.63) [Fig. 18(a)]. The increase
in precipitation would lead to less solar radiation [Fig. 18(c)],
which inhibits vegetation growth. But the average precipitation
of the Africa rainforests suggested a significant decrease trend,
with an annual decrease of 15.9 mm/year (R2 = 0.52). The
decrease in precipitation meant more solar radiation [Fig. 18(c)],
which lead to an increase in NPP. The temperature increased
slightly in the Asia and Amazon tropical rainforests and de-
creased slightly in the Africa tropical rainforest [Fig. 18(b)].
The average temperature in these areas is high enough. The
rising temperature will increase respiratory expenditure, which
resulting in a decrease in NPP, and the decrease in temperature is
conducive to the growth of vegetation. In conclusion, the slightly
increased temperature, the significantly increased precipitation,
and the reduced solar radiation contributed to the decrease in
NPP of the Amazon and Asian rainforests. Both the decrease of
precipitation and the increase of solar radiation contributed to
the increase of NPP in African rainforests.

Fig. 18 (a) Annual precipitation anomaly, (b) annual temperature anomaly,
and (c) annual PAR anomaly for the three tropical rainforests from 1981 to
2018.

C. Uncertainty Analysis

In this article, FLUXNET GPP was used to validate the
MuSyQ GPP estimates. From the scatter plot, most of the scatters
(Fig. 5) were below the 1:1 line, which indicated that both
our estimated GPP and MOD17 GPP were underestimated.
The reason may be attributed to the large-scale difference
between the in situ GPP observations and the 0.05° remote
sensing data, and some factors that affect the LUE such as
the C3 or C4 photosynthetic pathway, the concentration of
CO2 in the atmosphere, and the soil moisture were also not
considered.

First, the GPP observation source area ranged from tens of
meters to several kilometers, which varied with changes in
instrument height, wind direction, and wind speed. At the same
time, many pixels of the remote sensing data are mixed pixels.
The inconsistency between the scale of the remote sensing pixel
and the in situ GPP observation inevitably leads to uncertainty
in the validation results. In our study, the correlation coefficient
between the annual FLUXNET GPP and MuSyQ GPP was also
calculated for the total 212 sites, which was compared to the
correlation for the selected 126 sites. The result showed that
the correlation of the selected 126 sites was improved [R2 =
0.60, RMSE = 500.60 gC/(m2year)] when compared with the
total sites including mixed pixels [R2 = 0.47, RMSE = 1025.06
gC/(m2year)]. Even so, we cannot guarantee that the selected
126 sites are pure pixels. For example, the land-cover type of
FLUXNET site BR-Sa1 (2.8567 °S, 54.9589 °W) is EBF, which
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is consistent with MCD12C1 product with a spatial resolution of
5 km. Based on MCD12Q1 with a spatial resolution of 500 m, we
found that the land-cover types of pixels within 5 km around the
site are all EBF, and the consistency of land-cover types around
the site is very high based on Google Earth images. However, at
FR-Gri site (cropland site, 48.8442 °N, 1.9519 °E), although the
land-cover type of the MCD12C1 pixel with a spatial resolution
of 5 km is cropland, it is actually a mixed pixel. Based on
MCD12Q1 with a spatial resolution of 500 m, we found that
within 5 km around this site, cropland accounted for 84%, urban
land accounted for 8%, and the rest were grassland or savannas.
This kind of mixed pixel might cause some uncertainties and
errors in the estimation. Future research should focus on the
impact of inconsistent scales on validation to further verify the
accuracy of the product through scale conversion by combining
remote sensing data of different spatial resolutions.

Second, the C4 crops had a stronger photosynthetic capacity
compared to the C3 crops. Not distinguishing between C3 and
C4 crops in the LUE estimation of cropland might result in
overestimation of GPP and NPP for C3 crops or underestimation
of GPP and NPP for C4 crops. Future research should improve
the accuracy of GPP and NPP estimates by combining more
detailed land classification maps to determine the LUE of C3
and C4 crops.

Third, the CO2 fertilization is the most important process
driving the current increase in the global GPP. Ueyama et al. [79]
found that rising CO2 enhanced GPP at a rate of 0.08%/ppm at
the global scale based on data of the 104 global eddy-covariance
stations from 2000 to 2014, which was equivalent to an increase
of 0.16% per year. De Kauwe et al. [80] found that satellite-based
estimates likely underestimate the effect of CO2 fertilization on
NPP. Although the influence of CO2 on FPAR was considered,
the influence of CO2 on LUE was not taken into account in this
article. Not considering the CO2 effect might underestimate the
global GPP and NPP, especially in the later period.

In addition, soil moisture and VPD largely affect the pho-
tosynthetic rate through the control of stomatal conductance.
Stocker et al. [81] found that the impact of soil moisture alone
can reduce GPP by up to 40% at sites located in sub-humid,
semi-arid, or arid regions. VPD had been used to reflect the
effect of water stress on LUE in many remote sensing models,
such as MOD17 [11]–[13] and the revised EC-LUE model
[74]. However, under very dry conditions, VPD progressively
decouples from soil moisture [81], and it cannot fully capture
drought effects and explain the variability in LUE across the
full dryness spectrum [82]. Stocker et al. [81] demonstrated
that soil moisture is an important forcing of global vegetation
primary production, and interannual carbon cycle variability
cannot be replaced by the information of VPD and should be
accounted for in satellite data-driven estimates. In our model, the
ratio of actual evapotranspiration to potential evapotranspiration
was used to reflect the effect of water conditions on photo-
synthesis, where actual evapotranspiration was calculated from
a modified Penman–Monteith approach and remotely sensed
LAI [36], [39]–[40]. Theoretically, actual evapotranspiration
estimated from remotely sensed LAI has indirectly taken both
soil moisture and VPD into account and can reflect the effect of
water condition on GPP, which can partly improve the accuracy
of GPP and NPP estimation, especially for irrigated cropland
in semi-humid, semi-arid, and arid regions. The higher GPP

and NPP estimation of croplands in this article compared with
MOD17 products can partly attribute to the usage of the remotely
sensed actual evapotranspiration. However, there are still errors
in evapotranspiration estimation, which might bring uncertain-
ties in the GPP and NPP estimation. Whether the ratio of actual
evapotranspiration to potential evapotranspiration in this article
can well reflect the effect of dry conditions globally still needed
to be further studied in the future.

Finally, the land-cover map in 2001 was used as an alternative
for the period from 1981 to 2000 since there was no product be-
fore 2001, which also increased the uncertainty of the estimated
results.

In the future, the introduction of new remote sensing products
(such as a more detailed land-cover map, soil moisture, canopy
chlorophyll concentration, and solar-induced chlorophyll flu-
orescence) and CO2 fertilization is expected to improve the
accuracy of vegetation productivity estimates.

V. CONCLUSION

In this article, a new global GPP and NPP product with a spa-
tial resolution of 0.05° and a temporal resolution of 8 days from
1981 to 2018 was generated by using the improved MuSyQ-NPP
algorithm and the GLASS LAI and FPAR products. The effect
of CI on LUE was added in the algorithm, which improved the
estimation of GPP and NPP, especially in the tropical region.
The products are spatially complete and temporally continuous
owing to the characteristics of GLASS LAI and FPAR products
and can be further used to estimate the global carbon budget and
study the response of global vegetation on climate change and
human activity.

The MuSyQ GPP and NPP were then compared with BigFoot
data, FLUXNET data, and the other four GPP products. The
result indicated that the accuracy of the MuSyQ GPP product
was higher than that of the MOD17 GPP product when compared
with the BigFoot and FLUXNET data, which suggested that the
GLASS data and the MusyQ-NPP algorithm have great potential
in regional and global GPP/NPP estimates.

Finally, the temporal and spatial variations in the global NPP
from 1981 to 2018 were analyzed. Our results showed an average
global GPP and NPP of 120.1 and 58.6 PgC/year between 1981
and 2018, respectively. The global NPP has shown a significant
increasing trend, with an annual growth rate of 0.10 PgC/year
over the past 38 years. The increased regions were mainly
distributed in Russia, China and India in Asia, Central Europe,
central and southern of North America, southern of South Amer-
ica, and central and southern of Africa. The NPP in the northern
and southern hemispheres accounted for 61.9% and 38.1% of the
global NPP, respectively. Both showed increasing trends. The
NPP of the majority of land-cover types was in keeping with the
general growth trend of NPP except for EBF. The average annual
NPP of the three tropical rainforests from 1981 to 2018 was 10.4
PgC/year, the Asia and Amazon tropical rainforests significantly
decreased, and the Africa tropical rainforest increased obviously
over the 38 years; besides the reasons for local deforestation
in the Asia and Amazon tropical rainforests and the forest
expansion in the Africa tropical rainforest, the variations in
the annual NPP were mainly affected by the changes of the
precipitation, followed by PAR and temperature.
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Data Availability: The 0.05° × 0.05° global GPP and NPP
dataset for 1981–2018 is available at http://doi.org/10.5281/
zenodo.3996814 [42]. The dataset is provided in TIFF format.
The scale factor of the data is 0.01. Each TIFF file represents an
8-day GPP/NPP at a daily value (unit: gC/m2d).

APPENDIX

TABLE VII
LIST OF THE ABBREVIATIONS AND THE FULL EXPLANATIONS IN THE ARTICLE

ACKNOWLEDGMENT

The data used in this article contain BigFoot product,
FLUXNET 2015 dataset, MOD17 GPP/NPP product, revised
EC-LUE product, VPM product, and GOSIF product. We
sincerely thank all contributors of the data. We are also
very grateful to the anonymous reviewers for their valuable
suggestions on the article.

REFERENCES

[1] J. M. Chen et al., “Effects of foliage clumping on the estimation of
global terrestrial gross primary productivity,” Global Biogeochem. Cycles,
vol. 26, no. 1, Mar. 2012, Art. no. 1019, doi: 10.1029/2010GB003996.

[2] H. Lieth, “Modeling the primary productivity of the world,” in Primary
Productivity of the Biosphere. Ecological Studies (Analysis and Synthesis),
H. Lieth and R.H. Whittaker Eds. Berlin, Heidelberg, Germany: Springer,
1975, vol. 14. pp. 203–215.

[3] Z. Uchijima and H. Seino, “Agroclimatic evaluation of net primary pro-
ductivity of natural vegetations,” J. Agricultural Meteorol., vol. 40, no. 4,
pp. 343–352, Mar. 1985, doi: 10.2480/agrmet.40.343.

[4] W. J. Parton et al., “Observations and modeling of biomass and soil organic
matter dynamics for the grassland biome worldwide,” Global Biogeochem.
Cycles, vol. 7, no. 4, pp. 785–809, Dec. 1993, doi: 10.1029/93GB02042.

[5] A. D. McGuire, J. M. Melillo, D. W. Kicklighter, and L. A. Joyce,
“Equilibrium responses of soil carbon to climate change: Empirical and
process-based estimates,” J. Biogeogr., vol. 22, no. 4/5, pp. 785–796,
1996a.

[6] S. W. Running, and E. Raymond Hunt, Jr., “Generalization of a forest
ecosystem process model for other biomes, BIOME-BCG, and an appli-
cation for global-scale models,” in Scaling Physiological Processes: Leaf
to Globe, J. R. Ehleringer and B. Christopher Eds. Field, San Diego, USA:
Academic, 1993, pp. 141–158.

[7] J. Liu, J. M. Chen, J. Cihlar, and W. M. Park, “A process-based
boreal ecosystem productivity simulator using remote sensing in-
puts,” Remote Sens. Environ., vol. 62, no. 2, pp. 158–175, Nov. 1997,
doi: 10.1016/S0034-4257(97)00089-8.

[8] J. Monteith, “Solar radiation and productivity in tropical ecosystems,” J.
Appl. Ecol., vol. 9, pp. 747–766, 1972, doi: 10.2307/2401901.

[9] C. S. Potter et al., “Terrestrial ecosystem production: A process model
based on global satellite and surface data,” Global Biogeochem. Cycles,
vol. 7, no. 4, pp. 811–841. Dec. 1993, doi: 10.1029/93GB02725.

[10] S. D. Prince, and S. N. Goward, “Global primary production: A re-
mote sensing approach,” J. Biogeogr., vol. 22, pp. 815–835, 1995,
doi: 10.2307/2845983.

[11] F. A. Heinsch et al., “User’s guide GPP and NPP (MOD17A2/A3) products
NASA MODIS land algorithm,” 2003. [Online]. Available: https:
//www.researchgate.net/publication/242118371_User’s_guide_GPP_
and_NPP_MOD17A2A3_products_NASA_MODIS_land_algorithm

[12] M. Zhao, F. A. Heinsch, R. R. Nemani, and S. W. Running. “Improvements
of the MODIS terrestrial gross and net primary production global data
set,” Remote Sens. Environ., vol. 95, no. 2, pp. 164–176. Mar. 2005,
doi: 10.1016/j.rse.2004.12.011.

[13] S. W. Running, and M. S. Zhao, “User’s guide daily GPP and annual NPP
(MOD17A2/A3) products NASA earth observing system MODIS land
algorithm,” 2015. [Online]. Available: https://modis-land.gsfc.nasa.gov/
pdf/MOD17UsersGuide2015v3.pdf

[14] X. M. Xiao et al., “Satellite-based modeling of gross primary production
in an evergreen needleleaf forest,” Remote Sens. Environ., vol. 89, no. 4,
pp. 519–534. Feb. 2004, doi: 10.1016/j.rse.2003.11.008.

[15] W. P. Yuan et al., “Deriving a light use efficiency model from eddy
covariance flux data for predicting daily gross primary production across
biomes,” Agricultural Forest Meteorol., vol. 143, no. 3/4, pp. 189–207.
Apr. 2007, doi: 10.1016/j.agrformet.2006.12.001.

[16] R. R. Nemani et al., “Climate-driven increases in global terrestrial net
primary production from 1982 to 1999,” Science, vol. 300, no. 5625,
pp. 1560–1563, Jun. 2003, doi: 10.1126/science.1082750.

[17] M. S. Zhao, and S. W. Running, “Drought-induced reduction in global ter-
restrial net primary production from 2000 through 2009,” Science, vol. 329,
no. 5994, pp. 940–943, Aug. 2010, doi: 10.1126/science.1192666.

[18] S. Running, Q. Mu, and M. Zhao, “MOD17A2H MODIS/terra gross
primary productivity 8-day L4 global 500m SIN grid V006,” distributed

http://doi.org/10.5281/zenodo.3996814
https://dx.doi.org/10.1029/2010GB003996
https://dx.doi.org/10.2480/agrmet.40.343
https://dx.doi.org/10.1029/93GB02042
https://dx.doi.org/10.1016/S0034-4257(97)00089-8
https://dx.doi.org/10.2307/2401901
https://dx.doi.org/10.1029/93GB02725
https://dx.doi.org/10.2307/2845983
https://www.researchgate.net/publication/242118371_User&apos;s_guide_GPP_and_NPP_MOD17A2A3_products_NASA_MODIS_land_algorithm
https://dx.doi.org/10.1016/j.rse.2004.12.011
https://modis-land.gsfc.nasa.gov/pdf/MOD17UsersGuide2015v3.pdf
https://dx.doi.org/10.1016/j.rse.2003.11.008
https://dx.doi.org/10.1016/j.agrformet.2006.12.001
https://dx.doi.org/10.1126/science.1082750
https://dx.doi.org/10.1126/science.1192666


5610 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

by NASA EOSDIS Land Processes DAAC, 2015. [Online]. Available:
https://doi.org/10.5067/MODIS/MOD17A2H.006

[19] S. Running, Q. Mu, and M. Zhao, “MOD17A3H MODIS/terra net primary
production yearly L4 global 500m SIN grid V006,” distributed by NASA
EOSDIS Land Processes DAAC, 2015. [Online]. Available: https://doi.
org/10.5067/MODIS/MOD17A3H.006

[20] M. Tum, J. N. Zeidler, K. P. Günther, and T. Esch, “Global NPP and
straw bioenergy trends for 2000-2014,” Biomass Bioenergy, vol. 90,
pp. 230–236. Jul. 2016, doi: 10.1016/j.biombioe.2016.03.040.

[21] R. Rafique, F. Zhao, R. De Jong, N. Zeng, and G. Asrar, “Global and
regional variability and change in terrestrial ecosystems net primary pro-
duction and NDVI: A model-data comparison,” Remote Sens., vol. 8, no. 3,
pp. 1–16 Feb. 2016, doi: 10.3390/rs8030177.

[22] S. L. Liang et al., “A long-term global land surface satellite (GLASS)
data-set for environmental studies,” Int. J. Digit. Earth, vol. 6, pp. 5–33.
Jul. 2013, doi: 10.1080/17538947.2013.805262.

[23] S. Liang, X. Zhang, Z. Xiao, Q. Liu, J. Cheng, and X. Zhao, Global Land
Surface Satellite (GLASS) Products: Algorithms, Validation and Analysis.
Switzerland: Springer, 2013, pp. 154–155.

[24] Z. Xiao, S. Liang, and B. Jiang, “Evaluation of four long time-series
global leaf area index products,” Agricultural Forest Meteorol., vol. 246,
pp. 218–230, Nov. 2017, doi: 10.1016/j.agrformet.2017.06.016.

[25] Z. Q. Xiao, S. L. Liang, and R. Sun, “Evaluation of three long time
series for global fraction of absorbed photosynthetically active radiation
(FAPAR) products,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 9,
pp. 5509–5524. Sep. 2018.

[26] Z. Xiao, S. Liang, J. Wang, Y. Xiang, X. Zhao, and J. Song, “Long-time-
series global land surface satellite leaf area index product derived from
MODIS and AVHRR surface reflectance,” IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 9, pp. 5301–5318, Sep. 2016.

[27] Q. C. Xin, P. Gong, A. E. Suyker, and Y. L. Si, “Effects of the partitioning
of diffuse and direct solar radiation on satellite-based modeling of crop
gross primary production,” Int. J. Appl. Earth Observ. Geoinf., vol. 50,
pp. 51–63. Aug. 2016, doi: 10.1016/j.jag.2016.03.002.

[28] M. Z. He et al., “Development of a two-leaf light use efficiency model
for improving the calculation of terrestrial gross primary productiv-
ity,” Agricultural Forest Meteorol., vol. 173, pp. 28–39, May 2013,
doi: 10.1016/j.agrformet.2013.01.003.

[29] M. J. Wang, R. Sun, A. R. Zhu, and Z. Q. Xiao, “Evaluation and comparison
of light use efficiency and gross primary productivity using three different
approaches,” Remote Sens., vol. 12, no. 6, May 2020, Art. no. 1003,
doi: 10.3390/rs12061003.

[30] A. F. Mark, and S. M. Damien. “MCD12C1 MODIS/terra+aqua land
cover type yearly L3 global 0.05Deg CMG V006 [Data set],” NASA
EOSDIS Land Processes DAAC, 2015. [Online]. Available: https://
ladsweb.modaps.eosdis.nasa.gov/missions-and- measurements/products/
MCD12C1/

[31] S. M. Damien, and A. F. Mark, “User guide to collection 6 MODIS land
cover (MCD12Q1 and MCD12C1) product,” Version 6, May 2018. [On-
line]. Available: https://lpdaac.usgs.gov/documents/101/MCD12_User_
Guide_V6.pdf

[32] P. Berrisford et al., “The ERA-interim archive version 2.0,” Version 2.0.
2011. [Online]. Available: https://www.ecmwf.int/en/elibrary/8174-era-
interim-archive-version-20

[33] P. M. Zhai, “Some gross errors and biases in China’s historical ra-
diosonde data,” Acta Meteorol. Sinica, vol. 55, no. 5, pp. 563–572. 1997,
doi: 10.11676/qxxb1997.055.

[34] X. Zhang, S. Liang, G. Wang, Y. Yao, B. Jiang, and J. Cheng, “Evaluation
of the reanalysis surface incident shortwave radiation products from NCEP,
ECMWF, GSFC, and JMA using satellite and surface observations,”
Remote Sens, vol. 8, no. 225, pp. 1–24. Mar 2016, doi: 10.3390/rs8030225.

[35] NOAA National Geophysical Data Center, “Global land one-kilometer
base elevation (GLOBE) v.1,” NOAA National Centers for Environ-
mental Information, 1999. [Online]. Available: https://doi.org/10.7289/
V52R3PMS

[36] T. X. Cui et al., “Estimating vegetation primary production in
the Heihe river basin of China with multi-source and multi-scale
data,” PLoS One, vol. 11, no. 4, Apr. 2016, Art. no. e0153971,
doi: 10.1371/journal.pone.0153971.

[37] T. Yu et al., “Estimation of global vegetation productivity from global
land surface satellite data,” Remote Sens., vol. 10, no. 2, p. 327, Feb. 2018,
doi: 10.3390/rs10020327.

[38] Q. Y. Duan, S. Sorooshian, and V. Gupta, “Effective and efficient global
optimization for conceptual rainfall-runoff models,” Water Resour. Res.,
vol. 28, no. 4, pp. 1015–1031, Apr. 1992, doi: 10.1029/91WR02985.

[39] C. Qiao et al., “A study of shelterbelt transpiration and cropland evapo-
transpiration in an irrigated area in the middle reaches of the Heihe river
in northwestern China,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2,
pp. 369–373. Feb. 2015.

[40] K. Zhang, J. S. Kimball, Q. Mu, L. A. Jones, S. J. Goetz, and S. W. Running,
“Satellite based analysis of northern ET trends and associated changes in
the regional water balance from 1983 to 2005,” J. Hydrol., vol. 379, no. 1/2,
pp. 92–110, Dec. 2009, doi: 10.1016/j.jhydrol.2009.09.047.

[41] C. H. Priestley, and R. Taylor, “On the assessment of surface
heat flux and evaporation using large-scale parameters,” Monthly
Weather Rev., vol. 100, pp. 81–92, 1972, doi: 10.1175/1520-
0493(1972)100<0081:OTAOSH>2.3.CO;2.

[42] R. Sun, Z. Q. Xiao, J. M. Wang, A. R. Zhu, M. J. Wang, and Q. Li, “Global
vegetation productivity from 1981 to 2018 estimated from remote sensing
data (Version 1.0) [Data set],” IEEE J-STARS, Zenodo, 2020. [Online].
Available: https://zenodo.org/record/3996814#.YKIWMlpSGUk

[43] D. P. Turner, W. D. Ritts, and M. Gregory, “BigFoot GPP surfaces
for North and South American sites, 2000–2004. Data set,” 2006. [On-
line]. Available: http://daac.ornl.gov, from Oak Ridge National Labo-
ratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA,
doi: 10.3334/ORNLDAAC/749.

[44] D. P. Turner, W. D. Ritts. M, Gregory, “BigFoot NPP surfaces for North and
South American sites, 2000–2004. Data set,” 2006. [Online]. Available:
http://daac.ornl.gov, from Oak Ridge National Laboratory Distributed
Active Archive Center, Oak Ridge, Tennessee, USA, doi: 10.3334/ORNL-
DAAC/750.

[45] G. Pastorello et al., “The FLUXNET2015 dataset and the ONEFlux
processing pipeline for eddy covariance data,” Sci. Data, vol. 7, no. 1,
Jul. 2020, Art. no. 225, doi: 10.1038/s41597-020-0534-3.

[46] H. R. Tang, K. Yu, O. Hagolle, K. Jiang, X. R. Geng, and Y. C. Zhao,
“A cloud detection method based on a time series of MODIS surface
reflectance images,” Int. J. Digit. Earth, vol. 6, pp. 157–171, Dec. 2013,
doi: 10.1080/17538947.2013.833313.

[47] W. Munger, and S. Wofsy, “Canopy-Atmosphere Exchange of
Carbon, Water and Energy at Harvard Forest EMS Tower since 1991,
Harvard Forest Data Archive: HF004,” 2020 [Online]. Available:
https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.
html?id=HF004

[48] J. M. Chen et al., “Effects of foliage clumping on the estimation of
global terrestrial gross primary productivity,” Global Biogeochem. Cycles,
vol. 26, no. 1, Mar. 2012, Art. no. GB1019, doi: 10.1029/2010GB003996.

[49] X. Li, and J. F. Xiao, “Mapping photosynthesis solely from solar-induced
chlorophyll fluorescence: A global, fine-resolution dataset of gross primary
production derived from OCO-2,” Remote Sens., vol. 11, no. 21, Oct. 2019,
Art. no. 2563, doi: 10.3390/rs11212563.

[50] S. Wang et al., “Tracking the seasonal and inter-annual variations of global
gross primary production during last four decades using satellite near-
infrared reflectance data,” Sci. Total Environ., vol. 755, no. Pt 2, Feb. 2021,
Art. no. 142569, doi: 10.1016/j.scitotenv.2020.142569.

[51] Y. L. Zhang et al., “Development of a coupled carbon and water model for
estimating global gross primary productivity and evapotranspiration based
on eddy flux and remote sensing data,” Agricultural Forest Meteorol.,
vol. 223, pp. 116–131. Apr. 2016, doi: 10.1016/j.agrformet.2016.04.003.

[52] A. Anav et al., “Spatiotemporal patterns of terrestrial gross primary pro-
duction: A review,” Rev. Geophys., vol. 53, no. 3, pp. 785–818, Jun. 2015,
doi: 10.1002/2015RG000483.

[53] W. B. Cai et al., “Large differences in terrestrial vegetation production
derived from satellite-based light use efficiency models,” Remote Sens.,
vol. 6, no. 9, pp. 8945–8965, Sep. 2014, doi: 10.3390/rs6098945.

[54] Y. Zhang et al., “A global moderate resolution dataset of gross primary
production of vegetation for 2000–2016,” Sci. Data, vol. 4, Oct. 2017,
Art. no. 170165, doi: 10.1038/sdata.2017.165.

[55] W. P. Yuan, Y. Zheng, and S. L. Piao, “Increased atmospheric vapor
pressure deficit reduces global vegetation growth,” Sci. Adv., vol. 5, no. 8,
Aug. 2019, Art. no. 1396, doi: 10.1126/sciadv.aax1396.

[56] C. Beer et al., “Terrestrial gross carbon dioxide uptake: Global distribution
and covariation with climate,” Science, vol. 329, no. 5993, pp. 834–838.
Aug. 2010, doi: 10.1126/science.1184984.

[57] M. Jung et al., “Global patterns of land atmosphere fluxes of carbon
dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations,” J. Geophys. Res., vol. 116,
no. G3, Sep. 2011, Art. no. G00J07, doi: 10.1029/2010JG001566.

[58] N. Madani, J. S. Kimball, and S. W. Running, “Improving global gross pri-
mary productivity estimates by computing optimum light use efficiencies

https://doi.org/10.5067/MODIS/MOD17A2H.006
https://doi.org/10.5067/MODIS/MOD17A3H.006
https://dx.doi.org/10.1016/j.biombioe.2016.03.040
https://dx.doi.org/10.3390/rs8030177
https://dx.doi.org/10.1080/17538947.2013.805262
https://dx.doi.org/10.1016/j.agrformet.2017.06.016
https://dx.doi.org/10.1016/j.jag.2016.03.002
https://dx.doi.org/10.1016/j.agrformet.2013.01.003
https://dx.doi.org/10.3390/rs12061003
https://ladsweb.modaps.eosdis.nasa.gov/missions-and- ignorespaces measurements/products/MCD12C1/
https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf
https://www.ecmwf.int/en/elibrary/8174-era-interim-archive-version-20
https://dx.doi.org/10.11676/qxxb1997.055
https://dx.doi.org/10.3390/rs8030225
https://doi.org/10.7289/V52R3PMS
https://dx.doi.org/10.1371/journal.pone.0153971
https://dx.doi.org/10.3390/rs10020327
https://dx.doi.org/10.1029/91WR02985
https://dx.doi.org/10.1016/j.jhydrol.2009.09.047
https://dx.doi.org/10.1175/1520-0493(1972)100&lt;0081:OTAOSH&gt;2.3.CO;2
https://zenodo.org/record/3996814#.YKIWMlpSGUk
http://daac.ornl.gov
https://dx.doi.org/10.3334/ORNLDAAC/749
http://daac.ornl.gov
https://dx.doi.org/10.3334/ORNLDAAC/750
https://dx.doi.org/10.1038/s41597-020-0534-3
https://dx.doi.org/10.1080/17538947.2013.833313
https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html{?}id$=$HF004
https://dx.doi.org/10.1029/2010GB003996
https://dx.doi.org/10.3390/rs11212563
https://dx.doi.org/10.1016/j.scitotenv.2020.142569
https://dx.doi.org/10.1016/j.agrformet.2016.04.003
https://dx.doi.org/10.1002/2015RG000483
https://dx.doi.org/10.3390/rs6098945
https://dx.doi.org/10.1038/sdata.2017.165
https://dx.doi.org/10.1126/sciadv.aax1396
https://dx.doi.org/10.1126/science.1184984
https://dx.doi.org/10.1029/2010JG001566


WANG et al.: NEW GLOBAL MUSYQ GPP/NPP REMOTE SENSING PRODUCTS FROM 1981 TO 2018 5611

using flux tower data,” J. Geophys. Res. Biogeoscience, vol. 122, no. 11,
pp. 2939–2951. Nov. 2017, doi: 10.1002/2017JG004142.

[59] W. Cramer et al., “Comparing global models of terrestrial net primary pro-
ductivity (NPP): Overview and key results,” Global Change Biol., vol. 5,
no. S1, pp. 1–15. Apr. 1999, doi: 10.1046/j.1365-2486.1999.00009.x.

[60] P. Li et al., “Quantification of the response of global terrestrial net pri-
mary production to multifactor global change,” Ecol. Indicators, vol. 76,
pp. 245–255, May 2017, doi: 10.1016/j.ecolind.2017.01.021.

[61] R. Rafique, F. Zhao, R. De Jong, N. Zeng, and G. Asrar, “Global and
regional variability and change in terrestrial ecosystems net primary pro-
duction and NDVI: A model-data comparison,” Remote Sens., vol. 8, no. 3,
p. 177, Feb. 2016, doi: 10.3390/rs8030177.

[62] J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A.
Kattenberg, and K. Maskell, Climate Change 1995: The Science of Climate
Change: Contribution of Working Group I to the Second Assessment Report
of the Intergovernmental Panel On Climate Change. Cambridge, U.K.:
Cambridge Univ. Press, 1996.

[63] J. T. Houghton et al., Climate Change 2001: The Scientific Basis. Contri-
bution of Working Group I to the Third Assessment Report of the Intergov-
ernmental Panel On Climate Change. Cambridge, U.K.: Cambridge Univ.
Press, 2001.

[64] S. Li et al., “The change of global terrestrial ecosystem net primary
productivity (NPP) and its response to climate change in CMIP5,” Theor.
Appl. Climatol., vol. 121, pp. 319–335. Aug. 2014, doi: 0.1007/s00704-
014-1242-8.

[65] S. F. Pan et al., “Complex spatiotemporal responses of global terrestrial
primary production to climate change and increasing atmospheric cO2 in
the 21st century,” PLoS One, vol. 9, no. 11, Nov. 2014, Art. no. e112810,
doi: 10.1371/journal.pone.0112810.

[66] A. Ito, “A historical meta-analysis of global terrestrial net primary produc-
tivity: Are estimates converging?,” Global Change Biol, vol. 17, no. 10,
pp. 3161–3175, May 2011, doi: 10.1111/j.1365-2486.2011.02450.x.

[67] M. A. Huston, and S. Wolverton, “The global distribution of net primary
production: Resolving the paradox,” Ecol. Monographs, vol. 79, no. 3,
pp. 343–377, Aug. 2009, doi: 10.1890/08-0588.1.

[68] C. S. Potter, S. Klooster, and V. Brooks, “Interannual variability in
terrestrial net primary production: Exploration of trends and controls
on regional to global scales,” Ecosystems, vol. 2, pp. 36–48. Jan. 1999,
doi: 10.1007/s100219900056.

[69] C. M. Malmström et al., “Interannual variation in global-scale net primary
production: Testing model estimates,” Global Biogeochem. Cycles, vol. 11,
no. 3, pp. 367–392, Sep. 1997, doi: 10.1029/97GB01419.

[70] A. D. McGuire et al., “Equilibrium responses of global net primary produc-
tion and carbon storage to doubled atmospheric carbon dioxide: Sensitivity
to changes in vegetation nitrogen concentration,” Global Biogeochem.
Cycles, vol. 11, no. 2, pp. 173–189, Jun. 1997, doi: 10.1029/97GB00059.

[71] J. M. Melillo, A. D. McGuire, D. W. Kicklighter, B. Moore, C. J.
Vorosmarty, and A. L. Schloss, “Global climate change and terrestrial
net primary production,” Nature, vol. 363, pp. 234–240, May 1993,
doi: 10.1038/363234a0.

[72] J. A. Foley, “Net primary productivity in the terrestrial biosphere: The
application of a global model,” J. Geophys. Res., vol. 99, no. D10,
pp. 20773–20783. Oct. 1994, doi: 10.1029/94JD01832.

[73] C. Potter, S. Klooster, and V. Genovese, “Net primary production of
terrestrial ecosystems from 2000 to 2009,” Climatic Change, vol. 115,
pp. 365–378, Apr.–Nov. 2012, doi: 10.1007/s10584-012-0460-2.

[74] Y. Zheng et al., “Improved estimate of global gross primary production
for reproducing its long-term variation, 1982–2017,” Earth Syst. Sci. Data,
vol. 12, no. 4, pp. 2725–2746, Sep. 2020, doi:10.5194/essd-12-2725-2020.

[75] Y. Zhang et al., “A global moderate resolution dataset of gross primary
production of vegetation for 2000–2016,” Sci. Data, vol. 4, no. 1, Oct. 2017,
Art. no. 170165, doi: 10.1038/sdata.2017.165.

[76] X. Li, and J. F. Xiao, “Mapping photosynthesis solely from solar-induced
chlorophyll fluorescence: A global, fine-resolution dataset of gross primary
production derived from OCO-2,” Remote Sens., vol. 11, no. 21, Oct. 2019,
Art. no. 2563, doi: 10.3390/rs11212563.

[77] X. Song et al., “Global land change from 1982 to 2016,” Nature, vol. 560,
pp. 639–643, Aug. 2018, doi: 10.1038/s41586-018-0411-9.

[78] L. L. Simon, M. B. Paulo, L. P. Oliver, M. F. V. Geertje, and N. Daniel,
“The 2010 amazon drought,” Science, vol. 331, no. 6017, p. 554. Feb. 2011,
doi: 10.1126/science.1200807.

[79] M. Ueyama et al., “Inferring CO2 fertilization effect based on global
monitoring land-atmosphere exchange with a theoretical model,” Environ.
Res. Lett., vol. 15, p. 084009. Jul. 2020, doi: 10.1088/1748-9326/ab79e5.

[80] M. G. De Kauwe, T. F. Keenan, B. E. Medlyn, I. C. Prentice, and C.
Terrer, “Satellite based estimates underestimate the effect of cO2 fertil-
ization on net primary productivity,” Nat. Climate Change, vol. 6, no. 10,
pp. 892–893, Sep. 2016, doi: 10.1038/nclimate3105.

[81] B. D. Stocker, J. Zscheischler, T. Keenan, I. Prentice, J. Penuelas, and
S. Seneviratne, “Quantifying soil moisture impacts on light use effi-
ciency across biomes,” New Phytologist, vol. 218, no. 4, pp. 1430–1449,
Mar. 2018, doi: 10.1111/nph.15123.

[82] B. D. Stocker, J. Zscheischler, T. F. Keenan, I. C. Prentice, S. I.
Seneviratne, and J. Peñuelas, “Drought impacts on terrestrial primary
production underestimated by satellite monitoring,” Nat. Geosci., vol. 12,
no. 4, pp. 264–270. Mar. 2019, doi: 10.1038/s41561-019-0318-6.

Juanmin Wang was born in Shanxi Province in 1983.
She is currently working toward the Ph.D. degree
in geographic information system at Beijing Normal
University, Beijing, China.

From 2007 to 2018, she was with the Meteorolog-
ical Bureau of Shaanxi Province, and since 2019, she
has been with the Meteorological Bureau of Foshan
City. Her research interests include the remote sensing
applications on ecological environment.

Rui Sun received the B.S. degree in agrometeorology
from the Nanjing Institute of Meteorology, Nanjing,
China, in 1992, the M.S. degree in applied meteo-
rology from Graduate School, Chinese Academy of
Agriculture Sciences, Beijing, China, in 1995, and
the Ph.D. degree in physical geography from Beijing
Normal University, Beijing, in 1998.

His research interests include regional net primary
productivity estimation, evapotranspiration estima-
tion, and drought monitoring.

Helin Zhang is currently working toward the Ph.D.
degree in geographic information system at Beijing
Normal University, China.

He is mainly engaged in the research on vegetation
productivity product with higher spatial resolution in
MuSyQ algorithm.

Zhiqiang Xiao received the Ph.D. degree in geophys-
ical prospecting and information technology from
Central South University, Changsha, China, in 2004.

From 2004 to 2006, he was a Postdoctoral Research
Associate with Beijing Normal University, Beijing,
China. His research interests include the retrieval of
land biophysical parameters from remotely sensed
data and assimilating radiometric observations into
dynamic models.

https://dx.doi.org/10.1002/2017JG004142
https://dx.doi.org/10.1046/j.1365-2486.1999.00009.x
https://dx.doi.org/10.1016/j.ecolind.2017.01.021
https://dx.doi.org/10.3390/rs8030177
https://dx.doi.org/0.1007/s00704-014-1242-8
https://dx.doi.org/10.1371/journal.pone.0112810
https://dx.doi.org/10.1111/j.1365-2486.2011.02450.x
https://dx.doi.org/10.1890/08-0588.1
https://dx.doi.org/10.1007/s100219900056
https://dx.doi.org/10.1029/97GB01419
https://dx.doi.org/10.1029/97GB00059
https://dx.doi.org/10.1038/363234a0
https://dx.doi.org/10.1029/94JD01832
https://dx.doi.org/10.1007/s10584-012-0460-2
https://dx.doi.org/10.5194/essd-12-2725-2020
https://dx.doi.org/10.1038/sdata.2017.165
https://dx.doi.org/10.3390/rs11212563
https://dx.doi.org/10.1038/s41586-018-0411-9
https://dx.doi.org/10.1126/science.1200807
https://dx.doi.org/10.1088/1748-9326/ab79e5
https://dx.doi.org/10.1038/nclimate3105
https://dx.doi.org/10.1111/nph.15123
https://dx.doi.org/10.1038/s41561-019-0318-6


5612 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Anran Zhu received the master’s degree in geo-
graphic information system from Beijing Normal
University, Beijing, China, in 2020.

She is now working in the Xuzhou Economic and
Technological Development Zone, Jiangsu Province,
China. Her research interests include estimation of
light use efficiency of vegetation with remote sensing
data.

Mengjia Wang received the master’s degree from
Beijing Normal University, Beijing, China, in 2018,
and she is currently working toward the Ph.D. degree
in geographic information system at Beijing Normal
University, China.

Her research interests include vegetation produc-
tivity and biomass estimation, and vegetation parame-
ter inversion from passive microwave remote sensing
data.

Tao Yu received the master’s degree from Renmin
University of China, Beijing, China, in 2015, and the
Ph.D. degree in geographic information system from
Beijing Normal University, Beijing, China, in 2019.

His research interests include downscaling of re-
motely sensed vegetation parameters.

Kunlun Xiang the Ph.D. degree in climate change
and environmental ecology from Sun Yat-sen Uni-
versity of China, Guangzhou, China, in 2019.

Since 2019, he has been with the Guangdong Eco-
logical Meteorology Center, Guangzhou, China. His
research interests include downscaling of remotely
sensed vegetation parameters.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


