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Abstract—Recent developments in hyperspectral sensors have
made it possible to acquire hyperspectral images (HSI) with higher
spectral and spatial resolution. Hence, it is now possible to extract
detailed information about relatively smaller structures. Despite
these advantages, HSI suffers from many challenges also, like
higher spatial variability of spectral signatures, the Hughes effect
due to higher dimensionality, and a limited number of labeled
training samples compared to the dimensions of the spectral space.
Superpixels can be a potentially effective tool in tackling these
challenges. Superpixel segmentation is a process of segmenting the
spatial image into several semantic subregions with similar charac-
teristic features. Such grouping by similarity can significantly ease
the subsequent processing steps. Because of this, superpixels have
been successfully applied to various fields of HSI processing such
as classification, spectral unmixing, dimensionality reduction, band
selection, active learning (AL), denoising, and anomaly detection.
This article focuses on classification, presenting a detailed survey of
superpixel segmentation approaches for the classification of HSI.
The superpixel creation algorithm framework and postprocessing
frameworks for superpixels in HSI are also analyzed. Also, a brief
description of various application areas of superpixels is provided.
An experimental analysis of existing superpixel segmentation ap-
proaches is also provided in this article, supported by quantitative
results on standard benchmark datasets. The challenges and future
research directions for the implementation of superpixel algorithms
are also discussed.

Index Terms—Evaluation, hyperspectral image (HSI),
superpixel segmentation.

NOMENCLATURE
K Number of superpixels.
G Graph.
V Vertex.
E Edge.
w Weight.
H Entropy rate function.
E ′ Selected edge set.
P Probability.
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B Balancing function.
Z Cluster membership distribution.
N Number of connected components.
S Graph partitioning for edge set / superpixel map.
λ Weight of balancing term.
H Input hyperspectral image (HSI).
n Pixels.
B Spectral bands.
Q Window size.
D Distance.
(r, u) Location of pixel i.
C Classes.
J Total training samples for all classes.
T Number of features.
P Predicted label of test sample.
δ Indicator function.
h Predefined scalar.
D Structured dictionary.
N Number of samples in DK .
X Each pixel of HSI, X ∈ RB×1.
L Sparsity level.
A Sparse coefficient matrix.
Err Error.
A Pixel weight set.
B Collaborative coefficient set.
H ′ Clean HSI.
Esparse sparse error term.
Ngaussian Gaussian noise.
M Endmembers.
A Abundances.
ϑp Spatial superpixel group.
c Superpixel confidence index.
W Superpixel-wise weight matrix.
G Ground truth.
FN False positive.
TN True negative.
UE Undersegmentation error.
F Image size in pixels.
EV Explained variance.
μ Mean.
I Image.
CO Compactness.
Ar Area.
Peri Perimeter.
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I. INTRODUCTION

IN RECENT years, hyperspectral (HS) image analysis has
gained significant attention in the remote sensing context,

because of improvements in quality and availability of data.
Indeed, HS data may carry a large volume of information, as
each pixel densely samples the spectral response of the object
contained in it. Such response, called the “signature” of the
object, is unique to the material or mix of materials composing
the object. The practical importance of the spectral signature
concept is testified by the appearance of special HS sensors with
the capacity to recognize distinguishing features that are then
used for signature-based compression [1], [2]. When HSI data
collection is intended for classification and mapping purposes, as
it is frequently the case, ground truth (GT) information is needed
to train the classifiers and perform accuracy assessments.

Generating reliable GT can be a challenging and expensive
endeavour: visual interpretation can suffer from ambiguities,
whereas direct inspection may be costly and possibly difficult
due to accessibility issues. In any case, GT generation is a time-
and resource-consuming process. Hence, it is often suggested
that solutions be sought in classification techniques that are
capable of the following:
� utilizing unlabeled samples;
� predicting the labels of neighboring locations.
When the unlabeled neighboring pixel information is also

taken into consideration, the burden on the training sample
collection can be significantly reduced [3]. Recently, indeed, this
type of approach leveraging spatial information—or the various
forms of correlation between spatially adjacent samples—has
been increasingly adopted in several aspects of hyperspectral
image (HSI) processing such as anomaly detection, band selec-
tion, unmixing, and classification.

Considering specifically the field of classification, traditional
classifiers (e.g., K-nearest neighbors or KNN [4], SVM [4], as
well as neural-network-based ones [5], etc.), when they incorpo-
rate spectral features only may often be biased by atmospheric
disturbances and noise. This creates a labeling uncertainty and
salt-and-pepper noise in the classification map [6]. Often, this is
addressed either with inclusion of spatial features into classifica-
tion [7], or postclassification voting strategies [8]. In general, the
voting strategies rely on window based neighborhood operation.
In this latter case, however, the selection of window size is tricky
and cannot be operated with a universal assumption [9].

Superpixels have been found to offer a possible solution to
this and other problems in HSI data analysis, thanks to their
capability to change shape and size in relation with spatial
information contained in the HS scene. Indeed, superpixels
may also help when incorporated in postclassification voting
strategies [10].

Superpixels, due to their inherent properties have gained a
lot of attention since they were first named and introduced in
2003 [11]. The concept was quickly adopted in a wide range of
applications. Several superpixel segmentation algorithms avail-
able in the literature are specifically designed for natural images.
In [12], a comprehensive evaluation of 28 state-of-the-art super-
pixel algorithms is provided. Also, in [13], the performance of

Fig. 1. Number of articles available in the IEEE Xplore on the subject
superpixel segmentation for HSI during the period 2010 to 2020.

simple linear iterative clustering (SLIC) algorithm is compared
with other state-of-the-art methods. These survey works mainly
focus on the superpixel segmentation algorithms. Recently, su-
perpixels have gained a lot of popularity in the field of HSI
processing. It is desirable to incorporate superpixel segmentation
for HSI processing due to the powerful capability of superpixels
to adapt to the spatial structure of the depicted objects and
group pixels into spatially meaningful clusters. Researchers have
successfully applied superpixels in various applications such as
classification [9], spectral unmixing [14], dimensionality reduc-
tion (DR) [15], band selection [16], AL [17], denoising [18], and
anomaly detection [19] in HSIs. Frequently, the same algorithms
that were developed for natural images are also utilized for
performing superpixel segmentation. There exist no dedicated
superpixel segmentation algorithms that were specifically de-
signed for HSI, as probably those mutated from natural image
processing perform satisfactorily in the new domain. In this
survey, for the first time, the authors have focused on the different
ways in which known surperpixel approaches can be profitably
used as a preprocessing step for HSI analysis, with special
regards to classification.

To demonstrate the increasing popularity of superpixel, in
Fig. 1, a plot showing the number of available articles in the
IEEE Xplore on the subject “superpixel segmentation for HSI”
during the period 2010 to 2020 is provided. It can be observed
that the number of papers dedicated to this subject has increased
drastically in recent years. Fig. 2 contains a pie chart indicat-
ing the percentage of articles using superpixel segmentation in
various application areas of HSI processing published in the
IEEE during the same period; the reader’s attention is drawn
to the relative weight of classification, but also to the range of
possible other applications addressed. Due to such widespread
applicability of superpixels in the field of HSI processing in
this work, a detailed survey of various superpixel segmentation
approaches is provided for the reader’s reference.

The organization of the rest of this article is as follows. In
Section II, the concept of superpixel (especially as opposed to
that of a pixel) is introduced and discussed. Then, in Section III,
the effect of dimension on superpixels is described. A superpixel
creation algorithm framework in HSI is explained in Section IV.
Next, various postprocessing frameworks for superpixels are
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Fig. 2. Application of superpixels in different applications for HSI.

provided in Section V. In Section VI, various applications of
superpixels are explained. Open challenges are discussed in
Section VIII. Finally, some conclusions and future research lines
are presented in Section IX. The basic notations used in this
article are provided in the Nomenclature.

II. FROM PIXELS TO SUPERPIXELS

In the process of HSI image formation, each elementary
piece of information or pixel reports a measured amount of
incoming energy, referring to the observed object. Although
from a technological standpoint this makes perfect sense, in
the context of the earth observation, the HS data generated in
this way suffer from the following two inherent limitations: 1)
Pixels are basically the result of spatial discretization; 2) in
extensive images, a large number of samples, in both spatial
and spectral dimensions, makes many information extraction
algorithms computationally unfeasible [11]. To overcome the
aforementioned problems, Ren and Malik introduced the con-
cept of superpixel segmentation [11].

Superpixels, which may serve as a preparation step to image
segmentation, can be defined as an unsupervised oversegmenta-
tion of an image into several semantic subregions, bearing sim-
ilar characteristic features. Using superpixels for segmentation
has several advantages, as follows.
� Features can be computed on more meaningful regions

instead of acting on the basis of individual pixels.
� Thanks to superpixel segmentation, the computational

complexity downstream reduces drastically as the input
entries for subsequent algorithms are down-scaled from
the order of magnitude of pixels to that of regions, without
losing significant information.

The benefits of using superpixels over pixels include the
following.
� Spatial information: Superpixels provide a robust way to

exploit spatial contextual information as they group spec-
trally similar regions [20].

� Noise robustness: They can extract potential low-
dimensional features even under noisy conditions [15].

� Pseudolabel generation: As GT is not available for all
the pixels in HSI, superpixels can be utilized to gener-
ate pseudolabels. Pixels within the same superpixel are
spatially and spectrally related so their labels may be
propagated [21].

� Impact on AL: In AL, the most informative unlabeled
samples can be selected by using the spatial contextual
information provided by superpixels [17].

� Lower computational complexity: Processing steps are ap-
plied to regions instead of each individual pixel; this opens
the way to more efficient processing [22].

� Preservation of Boundary information: Superpixels can
very well preserve the boundary or edge features in an im-
age [23], and consequently, the related spatial information
is conserved.

In order to be useful, the generated superpixels must possess
certain properties, listed as follows.
� Homogeneity: The generated superpixels must have “uni-

form” pixel values.
� Boundary adherence: Superpixel boundaries must match

the object boundaries.
� Regularity: Superpixels must form a regular pattern in the

image
� Time complexity: The generated Superpixels should have

lower computational complexity.
� Connected partition: Superpixels consist of a connected

set of pixels and do not overlap with each other.

III. DIMENSION AND SUPERPIXEL

A basic definition for the objective of superpixel segmentation
algorithms can be given as that of grouping together clusters
of spatially adjacent pixels with similar spectral features. As a
consequence, all pixels within a given superpixel can be assumed
to have the same class label. The quality of the generated
superpixel map greatly depends on the base image onto which
these algorithms are applied; the base image is the result of
preprocessing the HSI image before applying segmentation.

Hence, the base image must be chosen carefully, prior to
the application of superpixel segmentation algorithms. These
algorithms can be applied either on raw HSI or processed (e.g.,
dimension-reduced) HSI images. When applied to the raw HSI,
the very valuable, discriminating spectral information underly-
ing the image is preserved and fully exploited. In [21], an exam-
ple of segmentation approach addressing the full spectral extent
of the original dataset is reported, with the SLIC algorithm. In
the general case, however, since HSI may have hundreds of
bands, some of which may contribute significant amounts of
noise or artifacts, directly segmenting the whole HSIs with the
superpixel method will result in very high computational cost
and possibly also poor performances due to unsuppressed noisy
bands. To address this issue, processed HSIs can be used as
the base images for superpixel segmentation, which can greatly
reduce the computational cost and improve robustness to noise.
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Fig. 3. Base image for superpixel formation. The blue arrows indicate the
dimensionally reduced features, the green arrow refers to the extracted features,
and the red arrow refers to the hybrid features upon which superpixel segmen-
tation algorithms are applied.

Several types of operations such as DR, band selection, or
feature extraction can be performed on the original HSI image,
to extract only the most informative and significant features from
HSI. DR techniques such as principal component analysis (PCA)
can be employed to extract, e.g., the first three principal compo-
nent bands, onto which superpixel segmentation algorithms can
be applied. This can significantly reduce the computational com-
plexity and also the impact of noise. Another possible approach
is to select the most informative and discriminative bands as the
base image upon which superpixel segmentation algorithms are
applied instead of deriving new, nonspectral bands. By doing so,
the inherent spectral information in HSI can be well preserved
while reducing the impact of noise. Feature extraction can be
another effective approach to obtain an informative base image.
When applied to the extracted features, superpixel segmentation
leads to an enhanced spatial structure, thus reducing the effect of
incorrect region boundaries, decreasing differences within the
same class, and limiting oversegmentation [24]. The kurtosis
wavelet energy [25] and the kurtosis curvelet energy [26] can
also be considered as features upon which superpixel segmen-
tation can be applied. Hybrid methods may also be adopted to
create the base image. Features may be extracted from the PCA
image. After feature extraction, PCA may once again be incor-
porated on the extracted features to generate the base image [27].
In Fig. 3, a scheme is shown, visually summarizing the possible
approaches to generating a base image for superpixel formation.

After obtaining the base image, the next step is application
of superpixel segmentation algorithms to generate superpixel
maps. A detailed description regarding superpixel creation al-
gorithms is provided in Section IV.

Before delving into the various techniques, it is worthwhile to
mention a cross-cutting issue, i.e., defining the optimal number
of superpixels K. This is generally a difficult task, still, it is
important to solve it opportunely as the quality of the generated
superpixel map heavily depends on this factor. Several existing
methods use manual approaches to determine a “good” value
for K [10]. However, some automatic methods have also been
proposed to determine K based on the contextual information

Fig. 4. Characterisation of superpixel.

Fig. 5. Superpixel segmentation approaches.

in image [27]. If the value of K is fixed, then a single superpixel
map is generated. Often, multiscale superpixel segmentation
maps (see Fig. 4) are generated as the use of multiple scales al-
lows the capturing of local spatial structures of various sizes [28].
Instead of varying the value ofK, one may also generate multiple
superpixel maps by considering different features (see Fig. 4).
This approach may very well generate a superpixel map that
takes into account all the key features. Such a hybrid multiple-
superpixel creation approach has not been deeply explored in
the literature so far, despite being very appealing.

IV. SUPERPIXEL CREATION ALGORITHM FRAMEWORK IN HSI

In recent years, superpixel segmentation algorithms have
gained a lot of popularity due to the savings in computational
loads that they permit at the subsequent processing stages of HS
data. Hence, several segmentation algorithms have been pro-
posed by researchers recently. The existing superpixel segmen-
tation algorithms can be categorized broadly into the following
two groups: Graph-based and Gradient-ascent-based methods
(see Fig. 5).
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A. Graph-Based Approach

In graph-based approaches, each pixel is treated as a node
of the graph and the similarity between neighboring nodes
is represented by edge weights. Similar nodes are assigned
higher weights. Superpixels are then created by minimizing a
cost function defined over the graph [13]. Popular graph-based
superpixel segmentation algorithms are follows: normalized
cut [11], Felzenswalb and Huttenlocher [29], superpixel lattice
[30], constant intensity superpixels [31], entropy rate superpix-
els (ERS) [32]. In the field of HSI processing, ERS is the most
popular and frequently used graph-based superpixel segmenta-
tion algorithm. Instead of applying ERS on the original HSI, it
is often applied on the reduced HSI. A detailed description of
the ERS algorithm is provided in the section as follows.

1) Entropy Rate Superpixels: ERS is a graph-based cluster-
ing approach where superpixels are generated by performing
graph partitioning [32]. For the generation of superpixel from
an image, four steps are as follows: graph construction, entropy
rate definition, balancing function definition, and optimization.
� Graph construction: An image is initially mapped to a

graph G = (V,E), where V represents a set of vertices
vi corresponding to each pixel in an image and E indicates
the corresponding set of edges ei,j between V . The edge
weight wi,j measures the similarity between neighboring
pixels by calculating the spectral distance. The goal of
the superpixel segmentation task is to find K connected
subgraphs from the graph G = (V,E′), where E ′ ⊆ E is
the selected edge set.

� Entropy rate: For the creation of compact and homoge-
neous superpixels, the criterion used is the entropy rate of
the random walk on the constructed graph G = (V,E′).
The expression for entropy rate function is as follows:

H(E′) = −
∑
i

μi

∑
j

Pi,j(E
′)log(Pi,j(E

′)) (1)

where Pi,j is the transition probabilities in H(E′), which
is expressed as follows:

Pi,j(E
′) =

⎧⎪⎨
⎪⎩

wi,j

wi
if i �= j and ei,j ∈ E ′

0 if i �= j and ei,j /∈ E ′

1−
∑

j:ei,j∈E′ wi,j

wi
if i = j

wi =
∑

k:ei,k∈E
wi,k, wT =

|V |∑
i=1

wi, μi =
wi

wT
. (2)

With the inclusion of a new edge, the uncertainty of a jump
of the random walk increases. The entropy rate drastically
increases when the selected edges form compact and ho-
mogeneous clusters.

� Balancing function: To obtain clusters of similar sizes a
balancing function is introduced, which is defined as in the
following equation:

B(E ′) = H(ZE′)−NE′

= −
∑
i

PZE′(i)log(PZE′(i))−NE′ (3)

where the selected edge set is E ′, the cluster member-
ship distribution is represented by ZE′ and the number
of connected components is denoted by NE′ . If SE′ =
S1, S2, ..., SNE′ , is the graph partitioning for the edge set
E ′, then ZE′ distribution is as follows:

PZE′(i) =
|Si|
|V | , i = {1, . . ., NE′ } . (4)

When edges from similar-sized clusters are selected, the
value of the balancing function increases.

� Optimization: The objective function for ERS is formulated
by combining the entropy rate function and balancing terms
together (5). Hence, more compact, balanced, and homo-
geneous clusters can be obtained using ERS. To achieve
accurate superpixels, the objective function is optimized
on the edge set

max
E′

H(E ′) + λB(E ′)

subject toE ′ ⊆ E andNE′ ≥ K
(5)

where the weight of the balancing term is λ ≥ 0.

B. Gradient-Ascent-Based Approaches

In such kind of approaches, an initially defined tentative
set of clusters points is iteratively refined using a gradient
ascent method until some convergence criteria are met. Some
of the popular gradient-based approaches are as follows: mean
shift [33], quick shift [34], watershed [35], turbopixels (TP) [36],
SLIC) [37]. Among these gradient-based approaches, the SLIC
algorithm is the most popular superpixel algorithm for HSI pro-
cessing. A brief description of the SLIC algorithm is presented
in the following section.

1) Simple Linear Iterative Clustering: Let the input HSI be
denoted as H ≡ {hb

1, h
b
2, . . ., h

b
n} with n pixels, where {hb

i}
represents the value at ith pixel for the bth spectral band and i =
1, 2, . . .n, b = 1, 2, . . .B.B is the total number of spectral bands.
In SLIC, distance is computed within a2Q× 2Qwindow around
the cluster center, where Q =

√
n
K . The distance between the

cluster center and pixel i is calculated as follows:

D = Dspectral +
w

Q
Dspatial (6)

where w is the weighting factor between spectral and spatial
features. The spectral and spatial distance between pixel i and j
are represented as in (7) and (8)

Dspectral =

√√√√ B∑
i=1

(
hb
i − hb

j

)2
(7)

where Dspectral is the measure of homogeneity within the super-
pixels

Dspatial =
√

(ri − rj)2 + (ui − uj)2 (8)

where (r, u) denotes the location of pixel i in superpixel. The
spatial distanceDspatial ensures regularity and compactness (CO)
in the generated superpixels.
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Fig. 6. Fusion multiple guided.

C. Remark

As the reader may note after the abovementioned discussion,
there exist several superpixel algorithms that are usable in the
HSI context. However, it is to be noted that the concept for most
of them originated outside HSI. This means that nowadays there
exist practically no dedicated superpixel algorithms specifically
designed for HSI, and hence, capable of leveraging the benefits
of HSI data to a full extent. Hence, in our opinion, the develop-
ment of a dedicated superpixel algorithm for HSI is still an open
challenge.

V. POSTPROCESSING FRAMEWORKS FOR SUPERPIXELS

The generated superpixel map can now serve as a convenient
primitive entity, upon which further processing tasks may be
carried out to obtain desirable results. As superpixels can adap-
tively change the object boundaries based upon the available
contextual information, they are often used for object-level
image analysis. The superpixel may be either used as a guidance
map [10] for refining the final classification result or it may
be used to directly compute features from it [3]. The different
approaches to combining segmentation and classification are
treated in the following four sections.

A. Superpixel-Guided Classification

Fig. 6 shows the framework for superpixel-guided classifica-
tion. An initial classification map is first generated based on the
probability description of each pixel belonging to every class.
Later, the classification map is further optimized/regularized
with the guidance of the segmentation map. Initially, classi-
fication maps are obtained by adopting standard feature ex-
traction (local binary pattern, Gabor, extended morphological
attribute profile, etc.) followed by classification (e.g., SVM)
approaches. For supervised HSI classification, let there be C
classes present in the scene and J training samples in total for
all classes. For each feature, t ∈ T (t = 1, 2, . . ., T ), training set
X train = [X train

1 , X train
2 , . . ., X train

C ] ∈ �B×T represents the corre-
sponding training samples for each class. The classifier generates

Fig. 7. Majority voting.

T predicted labels for each pixel using SVM to classify each
feature. Finally, the class label of test sample y is associated
with the class having the highest frequency over all T features,
that is

Class(y) = argmax
c

T∑
t=1

δ(Pt, c), c = 1, 2, . . ., C (9)

δ(Pt, c) =

{
1, if Pt = c
0, if Pt �= c

(10)

where Pt represents the predicted label of the test sample
obtained from tth feature and δ is an indicator function (10).
Hence, an initial label for each pixel is obtained by the clas-
sifier. Simultaneously, superpixel segmentation maps are also
computed over the original HSI, hence, the location information
is the same for both the maps. Let S = [S1, S2, . . ., SK ] denotes
the superpixel map, with K = number of superpixels. In the
Kth superpixel, the labels of all the pixels can be identified by
adopting the majority voting strategy [38], which is computed
by using the following formula:

Class(SK) = argmax
c

∑
y∈Sk

δ(Class(y), c), c = 1, 2, . . ., C.

(11)
Hence, the majority voting (MV) strategy (see Fig. 7) is

mostly utilized to regularize the classification map based on
the segmentation map [39]. Majority voting is suboptimal by
design since it only fuses class labels based on a vote over
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Fig. 8. Direct superpixel classification.

individual class labels from each classifier in the ensemble.
Weighted MV [40] is an upgraded version of MV, as it weighs
the vote of each pixel by the distance between the pixel and
its cluster. However, both of them are quite dependent on the
preliminary classification accuracy.

Instead of directly assigning class labels for each pixel, it is
better to assign a probability description for each pixel belonging
to a particular class; this also permits taking into account the
presence of mixed pixels in an image. Hence, the class probabil-
ity of each pixel belonging to each class is determined by using
an SVM-based classifier [41]. Let Pc(x) denote the probability
of pixelx belonging to the cth class. Then, for each superpixelSi

in HSI data, the label of all the pixels contained in the superpixel
is identified by calculating the following formula:

Class(Si) = argmax
c

∑
x∈Si

Pc(x). (12)

Hence, decision fusion strategies are applied to classify each
pixel based on superpixel-label guidance [10].

Another approach is to perform superpixel-level classification
by fusing pixel-level classification outcomes by using the loga-
rithmic opinion pool (LOGP) approach. The main advantage of
LOGP is that it treats output from various classifiers indepen-
dently [20]. The initial class probability obtained from different
features can also be combined adaptively by computing joint
class probability for each pixel xi. The certainty degree of class
probability (CDCP) and the confidence score of the classifier
(CSC) can be utilized to compute the joint class probability [42].
A higher value of CDCP indicates higher discriminative capa-
bility between different classes for a specific pixel. CSC assigns
a higher weight to a classifier with higher discriminative ability.
The computed joint probability helps in determining the final
class estimate for xi according to maximum probability. How-
ever, some isolated pixels may also exist due to poor probability
estimation. Hence, often Markov random field regularization is
adopted to refine the final classification map [43].

B. Direct Classification Using Superpixels

Fig. 8 illustrates the framework for direct classification using
superpixels. In this approach, features are computed directly

upon the superpixels based on which the classification is per-
formed. Superpixels can be used to generate the test set as they
group spatially connected and spectrally similar pixels together
into one class. The training set can be constructed by considering
labeled pixels from each class. Then, techniques such as convex
hull or affine hull models can be utilized to represent training and
test sets as these models consider both the variance and similarity
within each set to adaptively characterize it. Then, set-to-set
distance is computed to measure the similarity between train
and test set. Finally, a classification label is assigned to each test
set based on distance criterion [44], [45].

The generated superpixels are quite informative, and hence,
features can be extracted directly from them. Spatial features
within each superpixel can be exploited by using filtering
operation Smean

i . This operation also minimizes the effect of
noise in each superpixel. Filters such as mean filters, guided
filters, nonlocal filters, and domain transform recursive filter
may be used for within-SP feature extraction. The spatial fea-
tures among superpixels can be exploited by performing a
weighted average operation on neighboring superpixels S(i,j)

where j = 1, 2, . . ., J . J represents the number of neighboring
superpixels. Since the mean pixel is the representative feature
of each superpixel, the weighted average operation can also be
applied on the mean pixels smean

(i,j), j = 1, . . ., J of neighboring
superpixels, and a weighted average pixel can be obtained by
the following equation:

sWA
i =

J∑
j=1

wi,j × sMean
i,j (13)

where wi,j is the weight defined as in the following equation:

wi,j =
exp(− ∥∥sMean

i,j − sMean
i

∥∥2
2
/h)∑J

j=1 exp(− ∥∥sMean
i,j − sMean

i

∥∥2
2
/h)

(14)

where h is a predefined scalar. Then, sWA
i is assigned to all

pixels in each superpixel SSP
i and all the superpixels constitute

a weighted average feature image Iweigh [46]. These extracted
features may be further utilized to generate a composite kernel,
which is used for classification. Hence, superpixels play a crucial
role in improving the classifier performance.

Superpixels can also be used to construct undirected graphs
G = (V,E,W ) where each superpixel acts as a graph node.
As opposed to traditional graphs, the graphs constructed us-
ing superpixels are computationally more efficient. The weight
between the two connected superpixels Si and Sj is constructed
based on the features extracted from the superpixels [47].

C. Superpixel-Based Sparsity Methods

1) Sparse-Representation-Based Methods: Let each pixel of
HSI be denoted by X ∈ RB×1, where B is the number of
spectral bands. The structured dictionary formed by all classes
is represented by D. The sparse representation can be defined
for superpixels instead of individual pixels. Let SSP

i represent a
superpixel, which is composed of a number of similar spectral
pixels [Si,1, Si,2, . . .]. As pixels within each superpixel have
similar spectral characteristics, their correlation can be exploited



5022 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

by joint sparse regularization [48]. Each superpixel SSP
i can

be appropriately represented by a linear combination of atoms
(training samples from all classes) from dictionary D as in the
following equation:

SSP
i = DASP

i +NSP
i . (15)

The sparse coefficient matrix ASP
i can be calculated as in the

following equation:

ÂSP
i = argmin

∥∥SSP
i −DASP

i

∥∥
F

s.t.
∥∥ASP

i

∥∥ ≤ L (16)

where ‖.‖F is the Frobenius norm. L is the sparsity level
representing the number of selected atoms in the dictionary.
The abovementioned optimization problem can be solved by or-
thogonal matching pursuit (OMP) or Simultaneous OMP. After
obtaining ASP

i , the reconstruction residual error is computed.
This error is the difference between the original superpixel
and the reconstructed superpixel, and it is computed as in the
following equation:

Err(SSP
i ) =

∥∥XSP
i − DASP

i

∥∥
F
. (17)

Finally, the class label of SSP
i can be obtained through the

following equation:

Class(SSP
i ) = argmin Err(SSP

i ). (18)

2) Collaborative Representation (CR) Based Methods: It has
been argued that it is the “collaborative” nature of atoms, as
opposed to “competitive,” imposed by the sparseness constraint
that actually improves the classification accuracy. Thus, clas-
sifiers based on CR were proposed for HSI classification. The
superiority of CR-based HS classifiers is due to the utilization of
the similar training samples from different classes to represent
the test pixel. Recently, superpixel-level CRs proved to be much
more efficient than pixel-level CRs as they can extract more
adaptive, pure, nonoverlapping parcels and they utilize convex
combinations of pixel sets, thereby resulting in more stable fea-
ture representation [49], [50]. To classify unlabeled superpixels
S, a regularized multitask learning model is defined as follows:

min
{A,B}

T∑
t

∥∥Stat −Dtbt
∥∥2
2
+ λ ‖A‖F + ‖B‖2

s.t.A = [a1, . . ., aT ];B = [b1, . . ., bT ]∑
ati; t = 1, . . .T

(19)

where {St}t=1,...,T denotes the convex hull of multiple different
T features extracted from different perspectives of an unlabeled
HS superpixel S. {Dt}t=1,...,T represents the corresponding
subdictionaries ofSt constructed with features of the same train-
ing samples. {at}t=1,...,T is the pixel weight set and {bt}t=1,...,T

is the collaborative coefficient set. The label to be assigned to
unlabeled superpixels is determined by minimal total residual

Class(S) = argmin
i=1,...,C

T∑
t

∥∥Stat −Dt
ib

t
i

∥∥2
2
. (20)

3) Low-Rank Representation (LRR) Approach: LRR over-
comes the limitations of sparse representation by extracting

the intrinsic global structure of HSI. Different from the sparse
representation, the LRR is no longer sparse on a single pixel, but
looks for the common sparsity support of all test samples, which
is the lowest rank. Rank is a reasonable measure of the matrix’s
sparsity [51]. Compared with sparse priors, the low-rank con-
straint does not need to consider specific correlation patterns
and is self-adaptive as well as robust, which can effectively
measure the global correlation of the HS data. The spectral
characteristics of neighbor pixels are highly correlated, and the
low-rank prior can efficiently preserve the intrinsic structure
of the data. Based on the observation that the pixels within a
small neighborhood usually consist of similar materials, it is
reasonable to enforce the low-rank constraint on their coefficient
matrix in a small neighborhood. Hence, superpixels are often
employed to extract spatial-structural information by group-
ing similar pixels together. Let S be a segmentation map and
Σ = {r : r = 1, 2, . . ., p} be the region number. p is the amount
of homogeneous regions in S. X = {xi ∈ RB , i = 1, . . ., N}
is an unknown test set with N as the number of test samples.
D ∈ RB×J is a structured dictionary consisting of training
samples from all classes. J is the total number of training
samples. In a homogeneous regionSr all pixels make up a matrix
Xr ∈ RB×Nr

, where Nr is the number of pixels in the region
Sr. Then, the LRR in each region can be represented as:

min
α

1

2
‖Xr −Dαr‖2F + λ ‖αr‖∗ (21)

where α ∈ RJ×N is the coefficient matrix that is to be restored.
λ > 0 is a scalar regularization parameter. Nuclear norm ‖αr‖∗
is convex relaxation of rank function.

LRR is also widely applied for image denoising applications
as it can simultaneously remove different types of noises [18],
[52]. HSI is first segmented into homogeneous regions using
superpixel segmentation, then a noise model is defined for each
region as follows:

H = H ′ + Esparse +Ngaussian (22)

whereH is the observed HSI andH ′ is the clean HSI.Esparse rep-
resents the sparse error term denoting outliers and non-Gaussian
noise. Ngaussian is the Gaussian noise present in each homoge-
neous region. Spectra in each homogeneous region have high
correlation, hence, have underlying low rank property. Esparse is
expected to be sparse, as the percentage of outliers/non-Gaussian
noise Esparse is much smaller than Y . Hence, Esparse has a
large number of zero elements. The optimization problem is
formulated as follows:

min
H,′Esparse

‖H ′‖∗ + λ ‖Esparse‖1 +
1

2μ
‖H −H ′ − Esparse‖F .

(23)
‖H ′‖∗ is the nuclear norm of H ′, which is defined as sum of
singular values of H ′, i.e., ‖H ′‖∗ =

∑r
i=1 σi(H

′).
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4) Nonnegative Matrix Factorization Approach: The non-
negative matrix factorization (NMF) approach aims to decom-
pose a given nonnegative matrix XB×N , into two smaller non-
negative matrices M ∈ RB×S and AS×N , which can approxi-
mately represent matrix X

X ≈ MA. (24)

This nonnegativity makes the resulting matrices easier to in-
spect. The nonnegative features helps in learning the spatial
structural information [53]. In HSI, NMF is widely used for un-
mixing applications as it can simultaneously decompose mixed
pixelsX into endmembersM and abundancesA. A cost function
is defined to quantify the quality of the approximation, which is
constructed according to the distance metrics

min
M,A

f(M,A) = ‖X −MA‖2F s.t. M ≥ 0, A ≥ 0. (25)

To address the abovementioned optimization problem, var-
ious algorithms have been proposed. Alternating nonnegative
least squares is one of the most popular algorithm where op-
timization problem is decomposed into two subproblems [54].
Recently, for effective incorporation of spatial information into
the NMF, various sparsity inducing spatial regularizers are in-
troduced. The optimization problem with spatial group sparsity
regularization becomes as follows:

min
M≥0,Ar≥0

f(M,Ar) =
1

2

P∑
p=1

‖Xp −MAp‖2F

+ λ

P∑
p=1

∑
aj∈ϑp

cj ‖W paj‖2 (26)

where Ar = (A1, . . ., Ap) is the abundance matrix divided into
P superpixel groups. Xp represents pixels belonging to the pth
superpixel. Ap = [a1, . . ., anp

] ∈ RS×np is abundance matrix
for spatial superpixel group ϑp. λ controls tradeoff between re-
construction and regularizer. cj is pixel by superpixel confidence
index that weights local similarity between pixel and superpixel
it belongs to. W p = diag(wp

1 , . . ., w
p
S) is a diagonal matrix that

represent superpixel-wise weight matrix.

D. Superpixel-Based Deep Learning

In recent years, deep learning has emerged as a powerful
feature extraction tool that can effectively address the existing
nonlinearity problem in HS data. As compared to the tradi-
tional machine learning algorithms, the deep learning techniques
utilize a series of hierarchical layers to extract discriminative
features from original data. Texture information and edge in-
formation are usually extracted by the initial layers whereas,
more complicated features are extracted via the deeper layers.
Hence, deep learning algorithms can effectively deal with the
large spectral variability of spectral signatures. The most popular
deep learning architectures in this context are as follows: stacked
autoencoders (SAEs) [55], deep belief networks [56], convolu-
tion neural networks (CNNs) [57], recurrent neural networks
(RNNs) [58], generative adversarial networks [59], etc. These
networks are utilized to extract features of HSI. The extracted

features may be spectral, spatial, or spatial–spectral. However,
instead of extracting either spectral or spatial features, it is
better to extract spatial–spectral features simultaneously. In [60],
an SAE-based method for HSI classification is proposed by
incorporating a spatial constraint in the energy function to better
maintain the spatial information. DR methods are often com-
bined with CNN for extraction of higher level spectral–spatial
features [61]. For 3-D spectral–spatial feature learning, in [57],
a 3-D CNN is introduced for HSI classification. In [62], a
deep pixel-pair feature-based HSI classification method was
proposed. Although the HSI classification methods mentioned
above have achieved higher level representations of HSIs, a
neighborhood window with a fixed size and shape is used to
extract the spatial information without considering the different
HSI spatial structures. With a fixed window, the scale informa-
tion of objects is not taken into account, which results in less
structural information and the sample is susceptible to spectral
distortion and, hence, noisy classification result. To overcome
these problems, superpixels are incorporated to extract adaptive
object information.

In [63], the spectral classification module and the spatial
constraints module are employed where the spectral classifi-
cation module uses a deep network called “stacked denoising
autoencoders’ to learn feature representation of the data. Then,
pixel-wise classification is performed using a logistic regression
model. Finally, the superpixel constraint is used as a spatial
constraint to refine the classification result. In [64], the latent
relationship between a pixel and the superpixel constraints is
integrated into the stacked SAE model. The constraint from
superpixels is utilized to avoid the “salt-and-pepper” problem by
providing feedback information to the latent relationship learn-
ing. The loss functions constructed by superpixels are integrated
into the objective function of SAE. To effectively exploit the
spatial–spectral information within a superpixel in [65], HSI
is first segmented from coarse to fine scales using superpixels.
Then, the spatial features within each superpixel and among
superpixels are sufficiently exploited by the local and nonlocal
similarity measures. Finally, RNNs with SAEs are proposed
to learn the high-level multiscale spectral–spatial features. To
fully exploit three complementary characteristics of subpixel,
pixel, and superpixel, a novel HSI feature learning network
(HSINet) is developed in [66], which learns consistent features
by self-supervision for HSI classification. HSINet contains a
three-layer deep neural network and a multifeature convolutional
neural network. It automatically extracts the features such as
spatial, spectral, color, and the boundary as well as context
information. To boost the performance of self-supervised feature
learning with likelihood maximization, the conditional random
field framework is embedded into HSINet. A novel marginal
SAE with adaptively spatial regularization (ARMSAE) is pro-
posed in [67] to address the problem of an insufficient training
sample problem. Initially, superpixel segmentation is performed.
Then, pretraining is performed based on adaptively spatial reg-
ularization to extract contextual information of samples in the
homogeneous regions. It utilizes unlabeled adjacent samples to
alleviate the lack of training samples. At the fine-tuning stage,
the marginal samples based on the geometrical property are
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selected to tune the ARMSAE network. Finally, the label of
each test sample is determined by all the samples located in the
same homogeneous region.

VI. SUPERPIXELS AND THEIR APPLICATIONS

Due to the underlying properties of superpixels, in recent
years, it has been successfully applied in a variety of applications
such as classification, spectral unmixing, DR, band selection, al,
denoising, and anomaly detection.

A. Classification

The prime objective of HSI classification is to designate a
unique class label to each pixel in the image. For accurate
classification results, the feature extraction process must be
done perfectly. In traditional classification approaches, how-
ever, a rectangular window is often utilized as a local probe
for extraction of contextual features; this fails to extract local
spatial structural information as pixels in a particular area may
belong to different classes. Hence, to solve the abovementioned
problem, superpixel segmentation was introduced into the HSI
classification framework as it can adaptively modify its shape
and size according to the spatial structural information. The
superpixel segmentation map may be used as a guidance map to
optimize/regularize the initially obtained classification map to
produce the final classification map [10], [39]. Another approach
is to compute features directly upon the superpixels based on
which classification is performed. Often training and test sets
are constructed from superpixels and then the set-to-set distance
is computed to measure the similarity between train and test
set based on distance criterion [3], [44], [45]. Instead of that,
inter- (among) and intrasuperpixel (within) features may be
computed directly from superpixels. These extracted features are
then utilized to generate composite kernels, which are then used
for classification [9], [24], [27], [42], [46]. Superpixels can also
be used as graph nodes to perform graph-based learning for HSI
classification [47], [71]. Various sparsity-based classification ap-
proaches using superpixels are also proposed in the literature to
perform HSI classification. Sparse-representation-based meth-
ods [81], CR-based methods [49] and LRR-based methods [51],
[66] are some of the popular sparsity based methods used for HSI
classification. Various deep-learning-based methods were also
proposed in recent years, which utilize superpixels to improve
their classification performance for HSI [63]–[65], [67].

B. Spectral Unmixing

In HSI, the problem of mixed pixels is very prominent mainly
due to the lower spatial resolution of the HS sensor and atmo-
spheric interference during image acquisition. This results in
mixed spectra, in which spectra from different materials may be
available on the spectrum of a single pixel. Hence, it is necessary
to reduce the effect of mixed pixels as they conceal essential
information regarding the pure substance and their distribution
in the HSI. The aim of spectral unmixing is to segregate the
spectra of the mixed pixel in HSI into a set of constituent
spectra (endmembers) and its associated fractional abundances.

Endmembers represent the pure substances available in the
image, and fractional abundance refers to the percentage of
each endmember available in that pixel [105]. The linear mixing
model (LMM) is the simplest and most widely used model to
represent mixed pixels. Each pixel is modeled as a positive linear
combination of all the radiated spectra of the materials making
up the pixel. Let, X = [x1, . . ., xN ] ∈ RB×N denotes the HSI
data matrix with B bands and N pixels. Then, for the jth mixed
pixel, xj = [x1j , . . ., xBj ]

T ∈ RB the LMM representation is
represented as

xj =
S∑

i=1

miaij + εj = Maj + εj

⇒ X ≈ MA+ ε

(27)

where S denotes the number of endmember signatures. M =
[m1, . . .,mS ] ∈ RB×S is the mixing matrix consisting of S
distinct endmember spectral signatures. aj = [a1j , . . ., aSj ]

T ∈
RS is the abundance vector of xj . εj ∈ RB is the additive
noise. In general, the same set of endmembers M is shared by
each pixel in a scene. Hence, A = [a1, . . ., aN ] ∈ RS×N and
ε = [ε1, . . ., εN ] ∈ RB×N . Here, we need to estimate both M
and A simultaneously. NMF is the most widely used algorithm
for this task. With the incorporation of spatial information to
spectral unmixing, significant improvement in both endmember
and abundance estimation is observed mainly due to the spatial
autocorrelation of the ground surface. Recently superpixels are
utilized to incorporate spatial neighborhood information where
the shape and size of superpixels are adaptive and are related to
the spectral similarity of neighboring pixels. These are utilized
to naturally incorporate spatial priors into the unmixing process.
In [14], a spatial group-sparsity-regularized NMF is proposed,
which incorporates a spatial group sparsity regularizer constraint
into the NMF-based unmixing process. Then, in [86], a new
group low-rank constrained NMF technique is developed for
linear HS unmixing. This method combines a low-rank prior
of abundances with semantic information. Also, a new NMF
method is proposed in [88], which combines nonlocal spatial
information with spatial group sparsity.

C. Dimensionality Reduction

DR is extensively utilized as a preprocessing tool to dis-
card the highly redundant and correlated information in the
initial high-dimensional HSI spectral space while at the same
time preserving crucial information in a low-dimensional sub-
space [91]. It can drastically minimize the computational load,
and at the same time, effectively train the classifier with a
fewer number of available training samples. Several DR tech-
niques have been used in the literature, which can be broadly
categorized into either supervised or unsupervised methods.
PCA, independent component analysis, and minimum noise
fraction are popular linear unsupervised methods. Whereas,
locally linear embedding, neighborhood preserving embedding
(NPE), locality-preserving projection, local pixel NPE, isomet-
ric mapping, and Laplacian eigenmap are popular nonlinear
unsupervised methods. The most popular supervised methods
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are as follows: local Fisher discriminant analysis, Fisher’s lin-
ear discriminant analysis, generalized discriminant analysis,
nonparametric weighting FE method, and decision boundary
FE method. Generally, these algorithms utilize only spectral
features for DR, neglecting the information contained in spatial
features. Providing a spatial context to spectral classification
algorithms may be helpful because spatially neighboring pixels
in images frequently belong to the same classes of interest
and, as such, are spectrally similar. In recent years, superpixels
came to be widely used for DR applications as a means to
incorporate spatial contextual information. In [91], a semisu-
pervised feature extraction algorithm is proposed, in which
the angular similarity between the spectrally analogous spatial
neighbors is minimized, and the angular separation between
pixels belonging to different classes is maximized by utilizing
unlabeled samples in the projected lower dimensional subspace.
A superpixel-wise PCA approach (SuperPCA) is developed
in [15], which applies PCA on each homogeneous region ac-
quired by superpixel segmentation. Furthermore, a multiscale
segmentation-based SuperPCA (MSuperPCA) algorithm is also
presented that can fully exploit the spatial information available
in the HSI cube. It effectively integrates the multiscale spatial
information to achieve superior classification results by decision
fusion. In SuperPCA, however, the individual, traditional PCA
implemented in each superpixel will be dominated by those
bands with higher spectral variances. In that respect, individual
superpixel-based PCA (SuperPCA) over a homogeneous set of
bands can be thought of as a solution. By doing so, SuperPCA
can be implemented on only those bands that feature the highest
levels of correlation. Accordingly, a method is devised that first
categorizes the highly correlated bands of an HSI via the analysis
of its correlation matrix. These band groups are then introduced
to a SuperPCA feature extraction [93]. A spatial regularized local
graph discriminant embedding (LGDE) approach is used in [92]
where a regularization method is proposed to incorporate the
spatial information into the LGDE model naturally. Specifically,
an oversegmentation method is first used to divide the original
HSI into nonoverlapping superpixels. Then, for each superpixel,
an intraclass graph is constructed to describe the spatial structure
information. Finally, the constructed superpixel level intraclass
graphs are used as a regularization term for LGDE, resulting in
a spatially regularized LGDE (SLGDE). Moreover, to take into
account the possible nonlinearity of an HSI caused by the com-
plex acquisition process as well as the impacts of atmospheric
and geometric distortions, the linear SLGDE model is extended
to its kernel counterpart.

D. Band Selection

Band Selection is another approach for DR, in which a smaller
subset of the original HS bands is chosen as per a specific cri-
terion. For ranking the spectral bands, either their discriminant
capability or their degree of correlation is often considered. For
selection of the optimal set of bands, several algorithms have
been proposed by researchers that only utilize spectral features,
neglecting spatial information. In HSI, the neighboring pixels of
the original land surface have a higher probability of belonging

to the same class as these have a spatial correlation. Hence, it is
more likely that the adjacent similar pixels belong to the same
class; this information should be intercepted by superpixels.

Different from the rigid structure of the pixel grid, the bound-
aries of superpixels align well with the natural object boundaries.
An unsupervised BS approach proposed in [16] considers both
the spatial and spectral information for accurate HSI classi-
fication. First, the ERS algorithm is employed to construct
several smaller spectral homogeneous and spatial neighboring
pixel chunklets called superpixel chunklets (SCs). Based on the
observation that the produced SCs achieve higher homogeneity
and consistency within land-cover classes, two bands criteria
(BCs) are defined: Metric Learning-based BC and Representa-
tion Learning-based BC (RL), by estimating the optimal trans-
formation through the relevant component analysis (RCA). In
the ML-based scheme, to assess the within-SC covariance, the
whitening transformation of RCA is utilized. In the RL-based
strategy, the discrimination capability of the individual bands is
determined by exploiting the within-SC and the total variability.
Next, the learned BC is provided as an input to the affinity
propagation (AP) algorithm. Finally, highly discriminative and
weakly redundant band subsets are selected by using the AP
algorithm. Similar to [16], an HS band selection strategy was
developed for lithologic discrimination and geological mapping
in [94]. A new spectral–spatial structure, i.e., the lithologic
superpixel, is constructed by using an improved SLIC superpixel
algorithm based on spectral angle distance, which uses spatial
correlation combined with spectral information.

E. Active Learning

Accurate classification of HSI requires sufficient high-quality
informative training data. During HS data collection, however,
only the spectral information for each pixel is acquired by an
instrument, whereas the label information is often manually
acquired by experts. Hence, the label annotation process is
often time-consuming, tedious, and expensive. This results in
the availability of very few initial labeled samples available for
training. To overcome this, AL is adopted where the labeling
process is guided by certain defined rules instead of the sub-
jective opinion of the human interpreter who tags samples with
labels. AL is quite popular in the remote sensing community,
and a detailed survey on these techniques is provided in [106]
and [107]. Recently, a lot of attention is gained by those AL
approaches, which use the joint spectral–spatial information in
HSI. Based on the spatial information incorporation process,
the existing AL strategies can be broadly categorized into the
following three types: postprocessing, preprocessing, and inte-
grated approaches. In preprocessing-based methods, the spatial–
spectral features are directly fed as an input to the AL systems. In
the case of postprocessing-based approaches, the regularization
of the final classification map is performed by using the spatial
segmentation results. Integrated methods, on the other hand,
guide the query selection by exploiting the spatial information
during the AL process. Depending on the query strategy, AL
strategies can be classified into uncertainty sampling or breaking
tie (BT) [107]. The spatial-contextual information generated
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by superpixels is found to be quite effective in enhancing the
AL process [97]. In [95], gray-level co-occurrence matrix based
texture features are first derived from superpixels and are inte-
grated into an AL framework. Next, at each iteration, unlabeled
samples are classified using the subspace-based multinomial
logistic regression. Then, to select the most informative samples,
the BTs criterion is utilized. A new approach combining AL and
semisupervised learning (SSL) for HSI classification is proposed
in [96]. Initially, morphological component analysis is adopted
for the decomposition of the original HSI into morphological
components. Next, the enlargement of the training dataset based
on superpixels is carried out by combining AL and SSL in each
feature domain. At last, the decision fusion is performed for the
integration of the predictions from extracted components. Spa-
tial uncertainty and spatial homogeneity must also be considered
to improve the AL performance. In [17], an enhanced uncertainty
measure considering the neighborhood information is proposed.
The SLIC algorithm is utilized for generating superpixels, where
the selected batch samples are constrained to be from different
superpixels, in order to improve the diversity of the selected
samples. A superpixel-guided training sample enlargement strat-
egy is developed in [98] to deal with the problem of the small
size of the training sample set. First, superpixel segmentation
is performed and only those superpixels that contain training
samples belonging to no more than one class are explored, and
all the pixels of each of these superpixels are assigned to the
class of the training samples it contains. Next, with the identified
labels, all these classified pixels are added to the initial training
sample set for training sample set enlargement. Later, using
this enlarged training sample set, the distance-weighted linear
regression classifier is applied to classify each mean vector
of each SP. Finally, the last classification map is obtained by
assigning each SP with the same label as its mean vector. In [21],
the learned superpixel map and initial classification maps are
utilized to select the pseudolabeled samples (PLSs). For the
superpixel, which contains labeled training samples, the labels
of the pixels in this superpixel are likely to be the same as that
of the labeled training sample. Hence, the label of pixels in that
superpixel made same as that of the labeled training sample. For
the superpixels, which do not contain labeled training samples,
another condition is considered: if the labels of all pixels in that
superpixel are the same, this is assumed to be an indicator that
the superpixel has sufficient local homogeneity, and these pixels
are also selected as PLSs.

F. Denoising

The obtained HSI is usually corrupted with various types
of noise, which not only scale down the visual quality of
HSI, but especially has an adverse effect on the subsequent
image processing steps. For several HSI applications such
as spectral unmixing, super-resolution, object classification,
and matching, HSI denoising act as a crucial preprocessing
step. The spatial–spectral information should be simultaneously
considered to suppress noise. Total variation denoising [108],
tensor decomposition-based denoising [109], multidimensional

wavelet packet transform [110], and sparse-representation-
based denoising [111] are some of the popular HSI denoising
techniques recently proposed by researchers. Due to the lack
of prior knowledge, however, the aforementioned methods can-
not eliminate more than two types of noise. However, for the
real-world HSIs, the primary source of noise is not only the
additive noise. Various other types of noise such as Gaussian,
impulse, and stripes noise also exist in practice. To remove
these mixed noise, LRR-based approaches are often used [18],
[52]. In [52], superpixel segmentation is integrated into the
LRR-based method. LRR helps in the removal of different types
of noise simultaneously. Meanwhile, superpixel segmentation
is utilized to extract the spatial information of HSI, which can
further boost the performance of LRR-based denoising. A novel,
fast superpixel-based subspace low-rank learning method is
presented in [18], which explores the spatial low rankness within
superpixel-based regions for HSI denoising. The method simul-
taneously imposes the spatial correlation and spectral low-rank
properties of the HSI.

G. Anomaly Detection

Anomaly detection is an unsupervised target detection tech-
nique, which detects a specific target or anomaly against a
complex background without any prior information. The term
anomalies refers to pixels that have distinct spectral–spatial
differences with respect to their surroundings, together with a
lower probability of appearance.

For the detection of anomalies, specialized detectors have
been developed, which utilize the difference between the back-
ground pixels and anomaly pixels. The existing anomaly detec-
tion approaches can be broadly divided into the following two
categories: statistical modeling-based and geometric modeling-
based techniques. The statistical modeling-based approaches
primarily concentrate on the spectral feature differences and are
generally correlated with the Gaussian distribution. The most
popular statistical modeling-based method is the Reed–Xiaoli
(RX) technique. It usually employs multivariate Gaussian dis-
tributions for modeling the background. In geometric modeling-
based approaches, the main focus is on the difference in spatial
distribution. These techniques usually assume that a group of
primary spectra can be utilized for the approximate construc-
tion of the background pixels. But, it cannot be employed for
the representation of the sparse anomaly targets. The sparse
representation-based, CR-based, and LRR-based detectors have
been developed recently for anomaly detection. Also, neural net-
works with hybrid algorithm of CNN and multilayer perceptron
can be suggested for anomaly/target detection [112].

In [19], for anomaly detection, a superpixel-based dual-
window (SPDW) RX is proposed. In the case of the conventional
dual window, both the outer and inner windows are rectangular
and have fixed sizes. Whereas for the SPDW, only the outer
window is rectangular and has a variable size, but the inner win-
dow has an irregular shape. Another approach in [101] considers
the similarity between anomaly pixels, along with the variation
between anomaly pixels and background pixels for detection.
The approach consists of three key steps. First, anomaly queries
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Fig. 9. (a) False color composite image. (b) GT image. (c) Class names for Indian Pines dataset.

are automatically generated by applying RX for measuring the
spectral difference between background pixels and anomaly pix-
els. Next, for the characterization of spatial similarity between
adjoining nodes (each node refers to a superpixel), a closed-loop
graph is constructed. At last, the manifold ranking technique
is adopted to assign a ranking value to each node. Lastly, a
final detection result is generated by normalizing the ranking
value of each node. In [102], for the detection of anomalies,
a game theory-based detection approach is proposed for HSI.
In these approaches, for each superpixel, one specific payoff
function is defined. The payoff function consists of several
energy functions, which can jointly exploit the spectral–spatial
features of anomalies and similarities among superpixels. By
utilizing multiple energy functions, the detector can be made
more powerful in a complex background.

VII. EXPERIMENTAL ANALYSIS OF EXISTING SUPERPIXEL

SEGMENTATION APPROACHES

For experimental analysis of popular superpixel segmentation
algorithms three benchmark datasets, namely: Indian Pines,
Pavia University, and Houston 2013 were used. Section VII-A
contains a concise explanation of these datasets. The description
of various compared state-of-the-art superpixel segmentation
approaches is presented in Section VII-B. The result and dis-
cussion are presented in Section VII-C.

A. Dataset Description

1) Indian Pines: The dataset was acquired over the North-
western Indiana region by using the AVIRIS sensor. It features
220 spectral bands, with wavelengths between 0.4 to 2.5 μm.
About two-thirds of the imaged area consists of agricultural
land, and the rest contains forests. It is a quite challenging
dataset due to the presence of highly mixed pixels due to the
low spatial resolution (20 m/pixel) of the sensor. Also, there
exists a severe mismatch in the number of samples collected per
class that further complicates the classification task. The scene
contains 16 classes and has a size of 145 × 145 pixels. Fig. 9
contains the pseudocolor image, GT map, and class names for
the dataset.

Fig. 10. (a) False color composite image. (b) GT image. (c) Class names for
Pavia University dataset.

2) Pavia University: This dataset was collected over the Uni-
versity of Pavia, Italy by using the ROSIS sensor. It originally
contains 115, spectral bands in the wavelength range of 0.43
to 0.86 μm, and it has a spatial resolution of 1.3 m. After the
removal of noisy channels, the remaining 103 bands are used
for our analysis. The image size is 610 × 340 pixels, and the GT
is composed of nine challenging classes with similar spectral
reflectance trends. The false-color image, GT, and class names
are provided in Fig. 10.

3) Houston 2013 Dataset: The data were captured using the
ITRES CASI-1500 sensor, over the campus of the University
of Houston and the neighboring areas of it in Texas, USA.
The “IEEE GRSS Data Fusion Contest 2013” also utilized this
dataset. The image size is 349 × 1905 pixels and has a spatial
resolution of 2.5 m. A total of 144 spectral channels are available
in this dataset in the wavelength range of 364 to 1046 nm. In the
scene, 15 challenging classes are defined. Fig. 11 contains the
pseudocolor image, GT, and class names for the dataset.

B. State-of-the-Art Superpixel Segmentation Approaches for
HSI Classification

A comparison of various benchmark state-of-the-art super-
pixel segmentation algorithms for HSI classification is presented
in this section.
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Fig. 11. (a) False color composite image. (b) GT image. (c) Class names for Houston-2013 dataset.

TABLE I
APPLICATION OF SUPERPIXEL SEGMENTATION IN VARIOUS APPLICATION AREAS FOR HSI

1) Superpixel-Based Classification Via Multiple Kernels
(SCMK) [46]: In this approach, the spatial–spectral information
within and among the superpixels is utilized via multiple kernels
to enhance the classifier’s performance.

2) Uniform, Local, Binary-Pattern-Based Superpixel Guid-
ance (ULBP-SPG) [10]: A ULBP-SPG approach for HSI clas-
sification, which first extracts local image features by employing
ULBP and later refines the classification map with the guidance
of a superpixel map.

3) Region-Based Relaxed Multiple Kernel (R2MK) [69]: It
is an R2MK technique that fuses multiscale spatial features and
spectral features via a kernel CR classification approach.

4) Adjacent Superpixel-Based Generalized Spatial–Spectral
Kernel (ASGSSK) [9]: It is an ASGSSK method that can very
well preserve the image structure by introducing the AS ap-
proach to GSSK.

5) ASMGSSK: A multiscale framework is adopted here on
the ASGSSK method to achieve the superior classification per-
formance and solve the problem of optimal superpixel number
selection.

6) SuperPCA [15]: It is a SuperPCA approach that can effec-
tively learn the intrinsic low-dimensional features in HSI even
in noisy conditions.

7) Msuperpca: It is an MSuperPCA model, which can ef-
fectively integrate multiscale spatial information to obtain the
optimal classification result by decision fusion.

8) IAP [78]: It extracts the spatial invariant features by ex-
ploiting isotropic filter banks or convolutional kernels on HSI
and spatial aggregation techniques (e.g., superpixel segmenta-
tion) in the Cartesian coordinate system.

C. Result and Discussion

Classification results for the Indian Pines dataset with 3%
training samples from each class are provided in Table II. Fig. 12
contains classification maps for the different superpixel seg-
mentation methods that were compared. From the classification
results, it can be clearly noticed that approaches adopting the
multiscale segmentation strategy achieve better classification
performances, because they consider different scale structures of
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TABLE II
CLASSIFICATION RESULT FOR INDIAN PINES DATASET WITH 3% TRAINING FOR SCMK, ULBP-SPG, R2MK, ASGSSK, ASMGSSK, SUPERPCA,

MSUPERPCA, AND IAP ALGORITHMS

Fig. 12. (a) GT Image, classification maps of (b) SCMK, (c) ULBP-SPG, (d)
R2MK, (e) ASGSSK, (f) ASMGSSK, (g) SuperPCA, (h) MsuperPCA, (i) IAP
for Indian Pines dataset.

the particular scene. Also, it solves the problem of selecting the
optimal superpixel scale. R2MK, ASMGSSK, and MsuperPCA
approaches show a better classification accuracy levels as com-
pared to their single-scale segmentation counterparts. Still, the
performance of the ASMGSSK technique is superior amongst
all other approaches. From the classification map plot in Fig. 12.
it can also be clearly noticed that the map for the ASMGSSK
approach closely resembles the GT map.

The second analysis was conducted on the Pavia University
dataset. In Table III, the classification result with 30 training

samples from each class is provided and the corresponding clas-
sification map is displayed in Fig. 13. The performances of all
superpixel segmentation algorithms are comparable. Yet, in the
case of the ASMGSSK algorithm, the highest improvement of
about 3.09% in OA is observed as compared to SCMK approach.
The next rank goes to the IAP algorithm with an increment of
about 2.23% in accuracy. The performance of R2MK, ASGSSK,
and MsuperPCA is almost identical. ULBP-SPG and SuperPCA
classification results are very much similar to SCMK algorithm.
Similar conclusions can be drawn from the classification map
also (see Fig. 13)

The third experiment was conducted on the Houston 2013
dataset. To evaluate the performance of the investigated ap-
proaches, 50 labeled samples from each class were selected as
training samples. In Table IV, the classification results are pre-
sented. A visual comparison of performance among the different
methods is displayed in Fig. 14. For this dataset also, ASMGSSK
and IAP show the best classification results as compared to other
tested algorithms. The performance of R2MK, ASGSSK, and
MsuperPCA algorithms is similar. SuperPCA, ULBP-SPG, and
SCMK results are identical for this case also.

VIII. OPEN CHALLENGES

A. Determination of Number of Superpixels

Determination of the number of superpixels is an important
function because this factor controls the segmentation scale. It
is a quite challenging task to select an optimal value of K for
the inexperienced users. Depending on the image structure, the
correct value of K must be chosen. Usually, for a dataset having
more complex structure and texture information, a larger value
of K must be selected, whereas for a homogeneous dataset the
value of K must be smaller. A larger number of superpixels
implies a relatively smaller number of pixels in each superpixel.
In that case, the same object may end up being separated into
various superpixels. This may result in an inferior classification
performance under a small training sample condition. On the
contrary, when the number of superpixels is too small, it implies
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TABLE III
CLASSIFICATION RESULT FOR PAVIA UNIVERSITY DATASET WITH 30 TRAINING SAMPLES FOR SCMK, ULBP-SPG, R2MK, ASGSSK, ASMGSSK, SUPERPCA,

MSUPERPCA, AND IAP ALGORITHMS

TABLE IV
CLASSIFICATION RESULT FOR HOUSTON 2013 DATASET WITH 50 TRAINING SAMPLES FOR SCMK, ULBP-SPG, R2MK, ASGSSK, ASMGSSK, SUPERPCA,

MSUPERPCA, AND IAP ALGORITHMS

a relatively larger number of pixels in each superpixel. Also,
within a single superpixel, several objects may be included.
Hence, incorrect classification results may be obtained.

In most cases, the value of K is chosen manually (see[20],
[21], [24], [39], [113]) based on observation and experience of
the user. In very few works, automatic estimation of the correct
K value is done. In [46] and [27], a texture ratio is computed
to characterize the level of complexity of the texture in HSI.
Based on the value of such ratio, the value of K is determined.
Even edge detection can be introduced for estimating K [44],
[73]. Complex structures generally include more edges and,
hence, more superpixels are expected. Still, these methods for
automatic estimation of K are prone to errors as it is practically
difficult to determine an optimal value for the number of su-
perpixels that can adapt to all materials. Hence, the multiscale
superpixel segmentation approaches were proposed. Different
objects exhibit indiscriminately smaller or larger portions in the
spatial domain; hence, it is justifiable to fuse the multiscale
superpixel segmentation maps so that the spatial structure of
various objects can be exploited in a unified framework [76].
By doing so, one can overcome the deficiencies of each scale
to spatial constraints and effectively improve the classification
performance [114]. Multiscale segmentation approaches, how-
ever, increase the computational complexity. Hence, there is a
need for development of more advanced strategies for optimal
estimation of number of superpixels.

B. Position of Superpixel Seed Points

The initial cluster seed points in the superpixel segmentation
algorithms must be carefully chosen in order to obtain accurate
segmentation maps. In the case of a standard SLIC algorithm,
square grids are used for generating the initial cluster seed
points [13]. Hexagonal grids are proposed in place of square
grids in [14] as each corner and each side of the hexagon is
shared by three and two hexagons, respectively. Compared with
the original SLIC based on a square grid, choosing a hexag-
onal grid for image segmentation has noticeable benefits as it
can adequately learn the neighboring spatial information. More
nondiagonal neighbors are present for each hexagon rather than
a square. Also, hexagonal grids generate less distance distortion
of boundary pixels [77].

In [73], the position indexes of pixels within the ith superpixel
map Si are employed on the ith edge-preserving feature Fi to
extract the corresponding nonoverlapping superpixels. Hence,
superpixels are generated within the edge-preserving feature.

C. Superpixel Evaluation Metrics

The standard superpixel evaluation metrics developed for
RGB images are as follows: boundary recall, undersegmenta-
tion error (UE), explained variation, and co. Let S = {Sj}Kj=1

and G = {Gi} represents the superpixel segmentation and GT
segmentation, respectively, for the same image I . A brief
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Fig. 13. (a) GT image, classification maps of (b) SCMK, (c) ULBP-SPG, (d)
R2MK, (e) ASGSSK, (f) ASMGSSK, (g) SuperPCA, (h) MsuperPCA, (i) IAP
for Pavia University dataset.

explanation of the aforementioned matrices is provided as
follows.

1) Boundary Recall (Rec): It computes the fraction of GT
edges that fall within at least two pixels of a superpixel
boundary. A higher value of boundary recall indicates that
few number of true edges are missed and, hence, better
boundary adherence [115]. Rec is expressed using the
following equation:

Rec(G,S) =
TP(G,S)

TP(G,S) + FN(G,S)
(28)

where FN(G,S) and TP(G,S) are the number of false
negative and true positive boundary pixels inS with respect
to G, respectively.

2) UE: It computes the error made by the algorithm while
segmenting an image with respect to the GT [37]. Let
g1, g2, . . ., gY be the GT segments and s1, s2, . . ., sK rep-
resents the superpixel output. Then, the UE error for GT
segment gi can be expressed using the following equation:

UE =
1

F

⎡
⎣ Y∑
1=1

⎛
⎝ ∑

sj |sj∩gi>O

|sj |
⎞
⎠− F

⎤
⎦ (29)

where |.| denotes the size of segments in pixels andF is the
image size in pixels. O is the minimum number of pixels
required for overlapping. sj ∩ gi is the overlap error of
superpixel sj with respect to GT segment gi. The value of
O is set to 5% of |sj |.

3) Explained variance (EV): It is used to quantify the variation
in the image based on superpixel segmentation quality
without depending on the GT. It mainly assesses the strong
changes in color and structure exhibited by the image
boundaries [30]. EV is expressed as in the following equa-
tion:

EV(S) =

∑
sj
|Sj | (μ(Sj)− μ(I))2∑
xn

(I(xn)− μ(I))2
(30)

where μ(Sj) is the mean color of the superpixel Sj and
μ(I) is the mean color of image I

4) CO: It compares each superpixel (Sj) area (Ar(Sj)) with
the area of a circle, which is having the same perimeter
(Peri(Sj)) [116]. The higher the value of CO the better it
is

CO(G,S) =
1

F

∑
Sj

|Sj | 4πAr(Sj)

Peri(Sj)
. (31)

Even though the abovementioned metrics are popular for
natural RGB images, for HSIs, it is difficult to compute these
parameters. Hence, to assess the performance of the segmen-
tation algorithm, the standard metrics generally used for eval-
uating the classification performances [overall accuracy (OA),
average accuracy, and kappa coefficient (κ)] are adopted. If for
a particular superpixel segmentation algorithm, a substantial
enhancement in the classification performance is observed, then
it means that a particular segmentation algorithm is superior
as compared to other algorithms. At the moment, however, no
dedicated segmentation evaluation metrics seem to have been
developed yet for HSIs. Hence, more work needs to be done in
this regard.

D. Selecting the Base Image for Generation of Superpixels

The base image upon which the superpixel segmentation
algorithm is applied impacts heavily on the final segmentation
result. Hence, the choice of the most suitable base image before
applying the superpixel segmentation algorithm is a crucial
decision. These algorithms may be applied directly to the raw
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Fig. 14. (a) GT image, classification maps of (b) SCMK, (c) ULBP-SPG, (d) R2MK, (e) ASGSSK, (f) ASMGSSK, (g) SuperPCA, (h) MsuperPCA, and (i) IAP
for Houstan 2013 dataset.

HSI or processed (dimensionality-reduced, band-selected, or
feature-extracted) HSI.

E. Selecting an Appropriate Superpixel Segmentation
Algorithm for HS Image

Several superpixel segmentation algorithms are available in
the literature, which were originally developed for computer
vision applications. These algorithms basically expect a natural
RGB image as input and were conceived under this assumption.
While applying superpixel segmentation algorithms, often the
dimension of HS images are down-scaled in accordance with
the segmentation algorithm. However, there exist no dedicated
superpixel segmentation algorithms designed for HSI, despite
these could enjoy the full benefits of HSI data and its information
content. Hence, finding a dedicated superpixel algorithm for HSI
is still an open challenge. Moreover, HS compression techniques
can be considered when generating superpixels.

IX. CONCLUSION AND FUTURE SCOPE

In recent years, superpixels have been extensively applied in
a broad range of applications due to their inherent properties.
Superpixels can partition a particular image into several smaller
meaningful regions upon which features can be computed.
Hence, by using superpixels the computational complexities can
be reduced drastically as superpixel-based processing signifi-
cantly reduces the input entries for the subsequent algorithms.
Due to the aforementioned benefits, superpixels have been
widely employed in various application areas of HSI processing

such as classification, spectral unmixing, DR, band selection,
AL, denoising, and anomaly detection. In this work, a unified
postprocessing framework for superpixels is presented. Also,
a brief survey on various application areas of superpixels is
provided. In spite of so many advantages, there exist several
open challenges also in the implementation of superpixel seg-
mentation. Determination of the number of superpixels and
their position is a challenging task. There is also a need to
develop dedicated superpixel evaluation metrics for HSIs. Even
though several superpixel segmentation algorithms exist in the
literature, most of them are developed for RGB images. These
algorithms are often modified before applying them to HSI.
There is a need to develop dedicated superpixel segmentation
algorithms specific to HSI. Also, deep learning techniques may
be incorporated for generating superpixel segments in the future
for HSI.
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