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Attention-Guided Label Refinement Network for
Semantic Segmentation of Very High Resolution
Aerial Orthoimages

Jianfeng Huang *“, Xinchang Zhang

Abstract—The recent applications of fully convolutional net-
works (FCNs) have shown to improve the semantic segmentation
of very high resolution (VHR) remote-sensing images because of
the excellent feature representation and end-to-end pixel labeling
capabilities. While many FCN-based methods concatenate features
from multilevel encoding stages to refine the coarse labeling results,
the semantic gap between features of different levels and the selec-
tion of representative features are often overlooked, leading to the
generation of redundant information and unexpected classification
results. In this article, we propose an attention-guided label refine-
ment network (ALRNet) for improved semantic labeling of VHR
images. ALRNet follows the paradigm of the encoder—decoder
architecture, which progressively refines the coarse labeling maps
of different scales by using the channelwise attention mechanism. A
novel attention-guided feature fusion module based on the squeeze-
and-excitation module is designed to fuse higher level and lower
level features. In this way, the semantic gaps among features of
different levels are declined, and the category discrimination of
each pixel in the lower level features is strengthened, which is
helpful for subsequent label refinement. ALRNet is tested on three
public datasets, including two ISRPS 2-D labeling datasets and the
Wuhan University aerial building dataset. Results demonstrated
that ALRNet had shown promising segmentation performance
in comparison with state-of-the-art deep learning networks. The
source code of ALRNet is made publicly available for further
studies.
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I. INTRODUCTION

HE development of remote-sensing technologies for the
T earth observation has significantly increased the accessibil-
ity to very high spatial resolution (VHR) images [ 1], which opens
up new horizons for a better understanding of our changing
world. Semantic segmentation that assigns a semantic label to
each pixel in an image is one of the fundamental approaches
to analyze remote-sensing data [2], and plays an essential role
in diverse applications, such as land cover/land use interpreta-
tion [3], disaster analysis, urban planning [4], and environment
monitoring. Developing automatic and reliable algorithms of
semantic segmentation is now a research frontier in the field of
remote sensing [5].

Many efforts have been made in the past few decades to
develop accurate semantic segmentation methods, including
machine-learning-based methods [6], [7] and object-based anal-
ysis methods [8]. Nevertheless, accurate semantic labeling of
VHR images is challenging for reasons. On the one hand, the
high intraclass and low interclass spectral variation of compli-
cated urban areas in the VHR images make it difficult to extract
representative features of target objects [9]. On the other hand,
many methods depend on designing hand-crafted features [10],
whereas the hand-crafted features are usually low/mid-level
features and are often unreliable to distinguish objects in com-
plicated circumstances [11].

Deep convolutional neural networks (DCNNs) have recently
shown remarkable learning ability in processing and analyzing
VHR images [12], such as scene classification [13], urban object
detection [14], and semantic segmentation [15], [16]. DCNNs
can automatically learn rich contextual features and high-level
semantic features from the input images without prior knowl-
edge [17]. Because the downsampling operations in DCNNs
enlarge the receptive fields of deeper layers [18], DCNNSs often
generate low spatial resolution feature maps and do not meet the
demands to obtain full-resolution labeling results. To overcome
this problem, Long ez al. [19] proposed fully convolutional net-
works (FCNs) that can perform pixelwise semantic labeling via
an end-to-end learning fashion. FCNs have an encoder—decoder
architecture, of which the encoder is used to learn multilevel
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features and the decoder is used to obtain dense prediction
results [20]. Thus, FCNs have become increasingly important for
many state-of-the-art semantic segmentation algorithms [21].
One of the significant weaknesses of FCNs is that the output
results are often “blobby” because many spatial-related features
generated in the shallow layers of DCNNs are discarded [22].
Consequently, it is now an open research topic to develop
advanced FCN-models for semantic labeling of VHR images.

There are two key issues to be properly addressed when per-
forming accurate labeling with FCNGs. First, lower level features
of DCNNs that contain rich spatial information are often utilized
to refine the coarse results [23]. Many methods transfer these fea-
tures to the decoder via skip-connection [24] or up-pooling [25],
and then apply the multiscale feature stacking [18]. However,
the semantic gaps among different level features are often
overlooked [26]. As the receptive field sizes and abstraction
degrees of multilevel features are different, higher level features
tend to have stronger category discriminability than lower level
features [20]. Directly stacking the features of different levels
may not achieve the desired fusion outcome or even decrease
the accuracy of FCNs [27].

Second, feature selection is often ignored when lower level
features are transferred to the decoder, leading to the genera-
tion of redundant information [28] and increased computational
complexity of FCNs. The transferred features usually contain
category-ambiguity and nonboundary-related information that
is not helpful for label refinement [20], [29]. To tackle this
problem, Islam et al. [20] developed a gated feedback refinement
network (G-FRNet) that chose a certain number of features from
both higher level and lower level encoding stages and fused
them for further label refinement. The purpose of their work
is to select representative features from each encoding stage
with the guidance of higher level features. Increasing studies
have used high-level features to guide the selection of lower
level features for improved category discriminability [29]-[31].
However, most methods to date only consider the features of
the same level to be equally important, which may increase
the difficulty of feature selection from such a large number of
features.

According to the reasons as mentioned earlier, it is potentially
beneficial to improve FCNs by eliminating the semantic gaps
among different level features and selecting the most represen-
tative features for network delivering. Toward this goal, we focus
on applying the visual attention mechanism [32] to the semantic
segmentation tasks. The visual attention mechanism aims to
learn how to extract salient spatial locations and important
feature channels from images by imitating the way of human
observation [33], [34]. There are developed attention modules
that can be seamlessly integrated with DCNNs [27]. Notably, the
squeeze-and-excitation (SE) module proposed by Hu et al. [35]
allows DCNNs to perform the channelwise attention that can
automatically emphasize essential features and suppress less
important ones. The SE module motivates us to use the attention
mechanism for selecting representative features and declining
the semantic gap when fusing multilevel features. At present,
integrating the attention mechanisms and FCNs has attracted
the interests of many studies [27], [30], [33], [36]. However,
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few studies have used the attention mechanisms for declining
the semantic gaps among different level features and taking
advantage of the reweighted features for further label refinement.

In this study, we propose a novel attention-guided label re-
finement network (ALRNet) to advance the state-of-the-art on
semantic segmentation of VHR aerial images. The proposed
network follows the paradigm of encoder—decoder architecture,
which progressively upsamples and refines the coarse labeling
maps of different scales. A new attention-guided feature fusion
(AGFF) module is carefully designed to decline the semantic
gap between different level features. Specifically, it transforms
the higher level features into a weighted vector via the SE
module. The obtained weighted vector is used to guide the
channelwise recalibrating of lower level features. The AGFF
module not only strengthens the category discriminability of
each pixel in the lower level features but also reweights the
features that are helpful for label refinement. Additionally, rather
than transferring all the reweighted features to the decoder, only
a small part of these features is selected and leveraged to refine
the upsampled labeling maps. We recursively apply the AGFF
module across different encoding stages in ALRNet and finally
obtain full-resolution classification results. Experiments on three
benchmark datasets were conducted to verify the performance
of our proposed network.

II. RELATED WORK
A. Semantic Segmentation of VHR Images

Semantic segmentation of the remote-sensing images has
been intensively studied in the past few decades [37]. Prior
studies can be roughly divided into the pixel-based and object-
based classification methods [38], depending on the analysis
unit. Machine-learning-based methods and object-based analy-
sis methods [8] are important techniques widely used in previous
studies [16]. With the development of the deep learning tech-
nology, many researchers have attempted to use deep learning
for semantic segmentation. Early studies have used DCNNs for
pixelwise classification [39], in which each pixel is classified
with the category of its enclosing subpatch. Recently, the FCN-
based methods have been applied for the semantic segmentation
of VHR images. FCNs can obtain full-resolution classification
results via an end-to-end learning framework [19]. Hence, they
have been widely used in land cover classification and urban ob-
jectextraction [17], [40]. It is now common to validate the newly
developed FCNs methods based on the international society for
photogrammetry and remote-sensing (ISPRS) semantic labeling
benchmarks [41]. These methods can be roughly classified into
the image-based methods [28] and the data fusion-based meth-
ods [42], [43]. The data fusion-based methods use the elevation
data (e.g., nDSM) as supplementary elevation information to
the 2-D images [44]. By comparison, the image-based methods
that only use the 2-D images for semantic segmentation face
an enormous challenge in extracting robust contextual and se-
mantic features from images. The objective of this study is to
develop a new image-based FCN model to improve the semantic
segmentation of the VHR images.



4492

Encoder network

512

lower-level

64 128 256

higher-level

==

1/32 E
§ /
’,;" a7
| 4 [ 4

1024 1024

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Decoder network

Output

PR — |

PP —— |

k4
.

i e
| | | | | |

loss1 loss2 loss3 loss4 loss5 loss6

7
l Convolution+BatchNorm+ReLU iMax Pooling E’ Dropout ’.; Labeling maps | ’ Label refinement unit | Softmax loss

B Attention guided feature fusion
(AGFF) module

Fig. 1.

""" = Convolution for feature selection = Convolution for labeling — Up-sampling

Overview of the proposed ALRNet. The encoder is based on the modified VGG-16, and the decoder progressively enlarges and refines the coarse labeling

maps to obtain the final full-resolution output. The AGFF module fuses higher level and lower level features with the guidance of the channelwise SE module.
The label refinement unit produces higher level labeling maps by combining the upsampled labeling maps with the selected features from the AGFF module. A
multiscale supervision schema is used to penalize the poor classifications of the labeling maps on each scale.

B. Encoder—Decoder Network Architecture

Most of the state-of-the-art FCN-based methods follow the
paradigm of an encoder—decoder architecture, e.g., SegNet [25]
and U-Net [45]. The output of FCNs often suffers the loss of
spatial details because of the downsampling operations per-
formed in the encoder. To tackle this problem, some studies
transfer lower level features to the decoder by skip-connections
to refine the coarse prediction results [45]. Some other works
aggregate multiscale contextual features that generated by di-
lated convolution operations [21]. Multilevel feature fusion is a
crucial step in FCN-based methods [18]. However, the semantic
gaps between different levels of encoder features and between
encoder and decoder features are often neglected [26], leading to
the generation of redundant information and unexpected results.
Our proposed model is inspired by LRN [24] and G-FRNet [20],
which progressively refines the coarse labeling maps of different
scales. G-FRNet adopts a gate feature fusion strategy to enhance
the category discriminability of lower level features. Different
from their works, we further reduce the aforementioned semantic
gaps among features of different levels in the fusion stage by
leveraging the channelwise attention mechanism.

C. Attention Mechanism

Attention mechanisms [32] have shown efficiency in many
computer vision applications, such as image classification [34],
[35], object detection [35], [46], and semantic segmenta-
tion [33], [36]. For the tasks of semantic segmentation, Oktay
et al. [30] integrated an attention gate model (AG) into the
standard U-Net architecture to increase model sensitivity and
prediction capability. Fu et al. [27] proposed a dual attention
network for scene segmentation, of which both a positionwise
and a channelwise attention module are appended on top of the
dilated FCNs. Motivated by the channelwise SE module [35],
Roy et al. [47] proposed a spatialwise SE (SSE) module and
proved that the integration of SE modules within FCNs yields an

improvement for image segmentation. Recent studies have used
attention mechanisms for improving the semantic segmentation
of VHR images [48], [49]. Luo et al. [43] proposed a deep FCN
model for semantic labeling of VHR images, where the SE mod-
ule is used for reweighting single-level features. Panboonyuen
et al. [50] introduced a channelwise attention module to the
global convolutional network for selecting the most discrimina-
tive features. Pan et al. [51] developed a generative adversar-
ial network (GAN) with channelwise and spatialwise attention
modules (GAN-SCA) for building extraction. Different from the
aforementioned studies, we try to conduct channelwise attention
across different feature fusion stages and carefully design an
AGFF module for narrowing the semantic gaps between higher
level and lower level features.

III. ATTENTION-GUIDED LABEL REFINEMENT NETWORK
A. Overview of the Network

The proposed ALRNet consists of an encoder network and
a decoder network (see Fig. 1). The encoder is based on the
modified VGG-16 [52], which is stacked by multiple convolu-
tional blocks and max-pooling layers. Each block has a 3 x 3
kernel-size convolutional layer, a batch normalization layer, and
a rectified linear unit (ReLU) layer. We replace the Softmax
and fully connected layers of the original VGG-16 with two
additional convolutional blocks, of which each generates the
feature maps with 1024 channels. The layers in the encoder
can be grouped into different encoding stages, according to the
increasing feature channels and decreasing spatial dimensions.
To avoid network overfitting, we add a dropout layer on top of
the third to the seventh encoding stages, respectively. As shown
in Fig. 1, the encoder network accepts three-band input images
and generates feature maps with 1/32 size of the original spatial
dimensions.

The output feature maps (with 1024 channels) of the encoder
network are passed to the decoder and are, then, convolved into
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Fig. 2. Schema of (a) the SE module and (b) the proposed AGFF module.

coarse labeling maps with the same number of the classifica-
tion categories. The decoder progressively enlarges the coarse
labeling maps using a standard 2 x upsampling operation and
a convolutional operation for five times to obtain full-resolution
prediction results (see Fig. 1).

As the lower level features are discarded, the details of the
full-resolution prediction maps are still coarse with “blobby”
objects [22]. Here, we apply three model components to trans-
fer the representative features from the encoder to refine the
coarse prediction maps. First, an AGFF module based on the
SE module [35] is proposed to fuse features from different
encoding stages. AGFF is recursively applied to each encoding
stage to reduce the category ambiguity of lower level features
and reweight the features for subsequent selection. Second, a
label refinement unit [20] is used repeatedly in the decoder
(see Fig. 1). This unit produces higher level labeling maps with
larger spatial dimensions by combining the upsampled coarse
labeling maps and the convolved features obtained from the
AGFF module. The detailed design of the AGFF module and
its collaboration with the label refinement unit are demonstrated
in Section III-C. Finally, a multiscale supervision scheme [53]
is utilized to penalize the poor classifications of the coarse
labeling maps on each scale. We first upsample each coarse
labeling map to full resolution and then calculate the pixelwise
cross-entropy loss between the upsampled labeling maps and
the ground truth images. The detailed description of the deep
supervision schema is presented in Section III-D. Our proposed
ALRNet is an end-to-end trainable network and does not require
any sophisticated postprocessing.

B. SE Module

To allow a better understanding of the AGFF module, here we
briefly introduce the basic concept of the SE module proposed by
Hu et al. [35]. The SE module is a channelwise attention module
that aims to improve the representational capability of a network.
It allows DCNNs to emphasize essential features and suppress
less important ones by explicitly modeling the interdependencies
of features. Fig. 2(a) illustrates an example of the SE module
transforms input features into weighted features. In general, the
SE module can be embedded into many DCNNSs via three steps
of 1) squeeze, 2) excitation, and 3) rescaling as follows.

Let1 € RT*WxC denote the input features of SE module, H,
W, and C' denote the height, width, and number of channels of
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the features, respectively. The squeeze operation is first applied
to shrink I into a channelwise statistic q € R, using the global
average pooling operation. The cth element of q is computed by

1 H W
= 2 D (i) M

i=1 j=1

qc = qu (lc)

where 1. is cth channel of 1. The global pooling operation helps
to aggregate and exploit the contextual information of each
channel.

The excitation operation is conducted to fully capture the
channelwise interdependencies of the features. It transforms the
channelwise statistic q into a weighted vector via a lightweight
gate mechanism

g = Fex(q’ W) =0 (W26 (qu)) (2)

where § and o denote the ReLU and sigmoid actlvatlon func-
tion, respectively; W; € R%*C and W, € RO*T refer to
two fully connected layers around the ReLU layer; r denotes
the dimensionality-reduction ratio; g is the obtained weighted
vector with the same number of channels as 1. As shown in
Fig. 2(a), the number of channels of statistic q is first reduced
to C'/r and then scaled up to the original dimension (i.e., C).

Finally, the rescaling operation (i.e., channelwise multiplica-
tion) is used to rescale the input features 1 with vector g

ve =F, (lm gc) =gl 3)

where v = [vq, va, ..., V.| refers to the weighted features.
Some studies [43], [51] have used the SE module for feature
reweighting on single-level features. Different from their works,
here we tried to introduce the higher level features into the
squeeze and excitation process. The underlying idea is that the
weighted vector obtained from the higher level features is more
category discriminative than from the lower level ones and, thus,
is helpful to guide the reweighting of the lower level features.

C. AGFF Module

The proposed AGFF module is developed based on the SE
module to narrow the semantic gaps among different level fea-
tures and select the most representative information for further
label refinement. An example that illustrates the structure of the
AGFF module is shown in Fig. 2(b). Rather than performing
feature recalibration by self-attention on single-level features,
the AGFF module conducts the channelwise attention among
features of different levels. It is designed for reducing the se-
mantic gaps between higher level and lower level features and
further facilitating feature selection.

Letl € REXWxCigndu € R 7 *O2 be the lower level and
higher level encoding features, respectively. We first transform u
into a weighted vector following the SE steps of the SE module:

H/2W/2
q.=Fy(u) = H/wa/zz‘szlucu 4
g =Fu (d, W) = 0 (W5 (Wiq)) 6))

where g’ denotes the weighted vector transformed from u;
W/ € R16%C1 and W, € RE*16 refer to two fully connected
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layers. Note that the obtained weighted vector g’ has the same
channel dimension as 1. The final output of the AGFF module is
calculated by rescaling the lower level features 1 with g’

V/c =Fg (L, g/c) = g/clc (6)

where v/ = [V, v}, ..., v, ] refers to the weighted fusion fea-
tures. As Fig. 1 shows, the weighted features are convolved
(selected) and passed to the label refinement unit. Here, a
standard convolution operation rather than a specific pooling or
convolution operation (e.g., depthwise separable convolution) is
applied to the weighted features because the standard convolu-
tion operation helps to preserve the completeness of weighted
features and smooth the labeling maps. The feature selection
results would be presented in Section VI-B.

To better demonstrate the design and novelty of the AGFF
module, Fig. 3 illustrates an example of different feature fusion
modules incorporated with the label refinement unit. The label
refinement unit obtains higher level labeling maps with more
details by combining the upsampled labeling maps with the
selected features from different feature fusion modules. As
shown in Fig. 3(a), the direct feature fusion (FF) module [24]
transfers a certain number of lower level features to the label
refinement unit. These transferred features may contain category
ambiguity information that decreases the accuracy of FCNs.
Different from the FF module, the gated feature fusion (GFF)
module [see Fig. 3(b)], which is used in G-FRNet [20], integrates
the higher level and lower level features into a fusion process.
GFF module first fuses the selected features from both higher
level and lower level features using the elementwise product
and then transfers a certain number of features to the label
refinement unit. In the GFF module, multiple convolution op-
erations are performed, and the features of the same encoding
stage are considered equally important, which could increase
the difficulty of feature selection. The main advantage of the
proposed AGFF module is that it does not perform feature
selection and upsampling operation before connecting to the
label refinement unit [see Fig. 3(c)]. The details of lower level
features are retained and reweighted when fused with higher
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level ones. The weighted features are considered as discrim-
inative and informative enough to refine the coarse labeling
maps. Note that the weighted features obtained from the AGFF
module are recursively used in the next fusion stage and acted
as the higher level inputs [see Figs. 3(c) and 1] to strengthen
the connection across multilevel features. Conversely, the GFF
module in G-FRNet [20] is separately used in each fusion stage
without recursion, and only two adjacent level encoding features
are involved.

D. Multiscale Supervision

As shown in Fig. 1, six labeling maps with increasing spatial
dimensions are produced at the decoder network. For supervised
learning, a straight method is to calculate the pixelwise cross-
entropy loss between the last labeling maps and the ground
truth images. To capture the characteristic and interaction of
target objects on different scales, here we apply the multiscale
supervision learning approach, which has been used for typical
FCN architectures [42], [53].

Let f(f denote the dth decoding stage labeling maps at the
down-scaling factor s, and the corresponding upsampled full-
resolution labeling maps (F};) can be obtained using the standard
upsampling operation as follows:

o {UPS (f5), de{1,2,...,5}

where UPg denotes the bilinear interpolation operator that
upsamples the labeling maps by a factor s; fs is the last
full-resolution labeling maps. The down-scaling factor s is set
according to the decoding stage at which the labeling maps are
located. For example, s is set as 16 if the labeling maps is in the
second decoding stage.

The cross-entropy loss function is used to account for the
differences between the ground truth images and the upsampled
full-resolution labeling maps at each decoding stage. Let (™)
denote the nth pixel in the input image and 3™ denote the cor-
responding nth category label. The loss calculation is described

as follows:
(n,d)
exp (my,
P]Emd) ( nZ) VTLEN,VdE{L--wG} ®)
>k €XP ( )
N
1 n (n,d)
lossa = — = Lz_:l 1{y"™ = k}logp) ] ©)

where k is the category label; IV is the total number of pix-
els in an input image; m,(c”’d) and P,i"’d) denote the response
values of the dth decoding full-resolution labeling maps and
the category probability of ("), respectively; lossy represents
the cross-entropy loss obtained from the dth decoding stage;
I{y™ = k} denotes an indicator function.

The proposed ALRNet is optimized using back propagation
and the final output loss of ALRNet is calculated by summing
up all the loss from each decoding stage

6
10SSiotal = E loss, .
d=1

(10)
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TABLE I

INFORMATION ON ALL TRAINING IMAGES, VALIDATION IMAGES, AND TEST IMAGES FOR THREE DATASETS

Dataset Resolution  Training images Validation images Test images
0.05 m 18 (full: 6,000 x 6,000) . .
Potsdam dataset 7,200 (patch: 480 x 480) 6 (full: 6,000 x 6,000) 14 (full: 6,000 x 6,000)
i 0.09 m 16 (full: ~2494 x 2064) .
Vaihingen dataset 746 (patch: 480 x 480) Not used 17 (full: ~2,494 x 2,064)
WHU dataset 0.3 m 4,736 (patch: 512 x 512) 1,036 (patch: 512 x 512) 2416 (patch: 512 x 512)

IV. EXPERIMENT DESIGN
A. Dataset Descriptions

To validate the robustness of our developed model, we con-
ducted experiments on three publicly available VHR aerial
image datasets with distinctive characteristics.

ISPRS Potsdam labeling dataset: This is a commonly used
benchmark dataset released by the 2-D semantic labeling
contest' organized by the ISPRS Working Group I1I/4. It con-
tains 38 VHR orthoimages, lidar-derived elevation products
(e.g., DSM and nDSM), and the corresponding annotated im-
ages. Each orthoimage has an image size of 6000 x 6000 pixels
with a ground sampling distance (GSD) of 5 cm, and consists of
4 spectral bands, i.e., 1) near-infrared (NIR), 2) red (R), 3) green
(G), and 4) blue (B). The annotated images are densely classified
into six classes: 1) impervious surfaces, 2) buildings, 3) low
vegetation, 4) trees, 5) cars, and 6) clutter. All the annotated
images have been made available to the public. In total, 24
images were used for training and validation, and the remaining
14 images are used for online comparison. The validation images
includes six tiles (ID: 3_12,4_12,5_12,6_12,7_8, 7_12). We
used the three-band images NIR-R-G as inputs to the network,
without using the elevation data.

ISPRS Vaihingen labeling dataset: Another benchmark
dataset provided by ISPRS for semantic labeling contest. The
Vaihingen dataset consists of 33 spectral orthoimages and cor-
responding annotated images. Each image has an averaging
size of 2494 x 2064, with a spatial resolution of 9 cm, and is
composed of only three bands, i.e., NIR-R-G. The annotated
images have the same classification schema as the Potsdam
dataset. In our experiments, we used all the 16 labeled images
for model training and the remaining 17 images for testing. Only
NIR-R-G images were used as inputs to the network.

WHU building dataset: The Wuhan University (WHU) build-
ing dataset covers an area of about 45 km?2, with more than
187 000 buildings with diverse shapes and appearances in New
Zealand? [54]. It is set up for evaluating the performance of
different methods on building extraction. A total of 8188 RGB
images of 512 x 512 pixels are provided at a GSD of 0.3 m.
The building footprints have been manually edited and rasterized
into images. The dataset was divided into a training set (4736
images), a validation set (1036 images), and a test dataset (2416
images), respectively.?

'Online. [Available]: https://www2.isprs.org/commissions/comm?2/wg4/
benchmark/semantic-labeling/
ZOnline.  [Available]:

building_dataset.html
3Online. [Available]: https://www?2.isprs.org/commissions/comm?2/wg4/
results/vaihingen-2d-semantic-labeling-contest/

http://study.rsgis.whu.edu.cn/pages/download/

Fig. 4. Image samples and corresponding ground reference images for (a) the
Potsdam labeling dataset, (b) the Vaihingen labeling dataset, and (c) the WHU
aerial building dataset.

Table I lists the detailed information about these datasets,
and Fig. 4 displays some spectral image samples and the
corresponding ground truth images. There are many intricate
human-made objects and complex scenarios in the VHR
images, which pose challenges for obtaining both consistent
and accurate semantic segmentation results.

B. Implementation Details

The large images were cropped into subpatches as network
inputs due to the limitation of the GPU memory sizes. For both
the Potsdam and Vaihingen datasets, each training image was
cropped into a sequence of patches (size of 480 x 480 pixels)
with an overlap of 200 pixels, whereas each validation and test
image was cropped into patches (size of 480 x 480 pixels) with
an overlap of 100 pixels. We did not crop the images for the
WHU building dataset. Details on the cropped patches are listed
in Table I. In the training stage, data augmentation techniques
were applied to increase the diversity of training samples. Each
training patch was randomly rotated every 90° in the clockwise
direction, flipped in the horizontal direction, and its brightness
and contrast were also adjusted (the adjustment ratios are set as
0.7 or 1.3). In the inference stage, the full-resolution probability
map was created by merging all the patch results, and the class
probability of each overlapping pixel was obtained by averaging
the prediction values of that pixel.

The proposed ALRNet was implemented using Caffe [55]
on an NVIDIA GTX Titan X GPU. The Adam optimizer [56]
was used to improve the model convergence because it could
iteratively update the learning rate based on the training data. The
parameters 5_1 and 3_2 were set as 0.9 and 0.999, respectively.
The initial learning rate of 0.00005 was determined through


https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/
http://study.rsgis.whu.edu.cn/pages/download/building_dataset.html
https://www2.isprs.org/commissions/comm2/wg4/results/vaihingen-2d-semantic-labeling-contest/
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trials and errors (from 0.001 to 0.00001) based on the speed
of convergence and accuracy on the Potsdam validation dataset.
The maximum iteration number was 200 000 for the Potsdam
dataset, 30 000 for the Vaihingen dataset, and 300 000 for the
WHU building dataset, respectively. The minibatch size was
default as 4. Additionally, we initialized the parameters for
the encoder part of ALRNet using the pretrained weights of
VGG-16.

C. Method Comparisons

To understand the performance of ALRNet, five FCN mod-
els, including U-Net [45], SegNet [25], Att-U-Net [30], G-
FRNet [20], and GRRNet [29], were used for method compar-
isons. The main reason for selecting these models is that all these
models were verified in the field of computer vision or remote-
sensing image processing, and all models are open source and
easy for implementation. Besides, the feature transmission and
the fusion mechanism of these models have motivated the design
of ALRNet.

SegNet and U-Net are commonly used as baselines for
semantic segmentation comparisons because of their elegant
encoder—decoder architectures. To restore the spatial details
lost during the downsampling operations, SegNet delivers the
indices of max-pooling to the decoder, whereas U-Net fused
the corresponding lower level and higher level features by skip
connections. Based upon the architecture of U-Net, Att-U-Net
introduces a new attention module into each feature fusion stage
and enhances the network prediction capabilities. Both G-FRNet
and GRRNet were developed based on the label refinement
network (LRN) [24] that gradually up-samples and refines the
coarse labeling maps in each decoding stage. The aforemen-
tioned models applied the same training strategy as ALRNet to
facilitate direct method comparisons. Note that the minibatch
size of each network was different and was set according to the
GPU memory size. SegNet, G-FRNet, and GRRNet initialized
their weights using the corresponding pretrained models, e.g.,
VGGNet and ResNet-50 [57], and U-Net and Att-U-Net initial-
ized the weights from scratch.

D. Evaluation Metrics

To facilitate a comparison with state-of-the-art methods, dif-
ferent metrics are considered regarding different datasets. For
the Potsdam and Vaihingen test datasets, the overall accuracy
(OA) and F1 score are used, whereas for the WHU test dataset,
the precision, recall, F1, and IoU metrics are employed. The
above-employed metrics are consistent with those used in the
relevant literature [17], [41], [54]. Typically, for the Potsdam
validation dataset, we also use IoU for evaluation, since IoU
is often used as one of the essential indicators of semantic
segmentation. OA is the proportion of the correctly classified
pixel numbers to the total pixel numbers in a single image or a
whole image dataset. F1 could be regarded as the harmonic mean
of precision and recall. IoU, also called the Jaccard similarity
coefficient, is the ratio of correctly classified pixel numbers to
the total amounts of reference annotated pixels and the detected
pixels. All of the metrics mentioned before, except for OA,
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Fig. 5. False-color-composite (NIR-R-G) images for the Potsdam validation
dataset (top row), the ground references (middle row), and classification results
produced by ALRNet (bottom row) are shown for different image tiles, respec-
tively. The ID for image tile is shown for each column. (a) Image 3_12. (b)
Image 5_12. (c) Image 6_12. (d) Image 7_8. (e) Image 7_12.

are explicitly calculated for each category and are defined,
respectively, as follows:

TP TP
Precision = ———— , Recall= ———— (11)
TP + FP TP + FN
TP
JoU= ———— 12
°“ T TP FP+EN (12)
P = 2 x Precision x Recall (13)

Precision + Recall

where TP, FP, and FN denote the number of true positives, false
positives, and false negatives, respectively. Note that all the
metrics for the Potsdam and Vaihingen datasets were computed
on eroded boundary ground truths, so as to reduce the impact of
uncertain boundary annotations.

V. RESULTS
A. Potsdam Dataset Results

Fig. 5 presents the classification results of ALRNet on the
Potsdam validation dataset. Comparing with the reference anno-
tated images, ALRNet obtained satisfactory results in different
scenarios. As shown in Table II, ALRNet achieved an OA
of 92.6% and a mean IoU of 76.4% and outperformed other
methods. ALRNet achieved the best classification accuracies
on extracting impervious surfaces, buildings, and trees. Fig. 6
displays some close-up views of the Potsdam validation images
and the results produced by the comparison methods. Both
U-Net and Att-U-Net have difficulties in detecting the complete
building objects (e.g., the second and third rows in Fig. 6), and
their results are less accurate than others (see Table II). SegNet
has misclassification between the building and the background
objects in some scenarios (e.g., the second row in Fig. 6). As
shown in the first row in Fig. 6, most methods did not extract
the entire building, whereas ALRNet did well in this case.

To further validate the semantic segmentation performance
of ALRNet, we applied the best training model to the Potsdam
test dataset. As shown in Table III, ALRNet achieved an OA of
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TABLE II
THE STATISTICAL RESULTS OBTAINED USING ALRNET AND COMPARISON METHODS ON THE POTSDAM VALIDATION DATASET

Model Imp surf Building Low veg Tree Car Clutter Overall
Fl1 IoU F1 IoU FI1 IoU FIl IoU FI IoU F1 IoU OA  mloU

Att-U-Net [30] 904 826 944 894 819 694 868 767 952 909 345 209 892 71.6
U-Net [45] 91.1 836 942 890 815 688 86.1 756 955 914 358 21.8 894 717
SegNet [25] 933 875 961 924 848 737 882 788 961 924 391 243 919 749
GRRNet [29] 934 876 967 936 845 731 880 786 961 925 38.0 235 92.1 748
G-FRNet [20] 93.8 884 968 937 855 747 882 789 955 915 432 275 925 758
ALRNet 939 88.6 973 947 853 744 883 791 960 923 451 291 92.6 764

The bold values represent the best result and the underlined values represent the second-best result achieved by models.

all categories.

Reference ALRNet

Image U-Net SegNet

GRRNet  Att-U-Net G-FRNet

|:|Impervxous surfaces [JJll Building |:| Low vegetatmn [ Tree |:| Car [l Clutter

Fig. 6. Close-up views of the Potsdam validation dataset and the classification
results using ALRNet and comparison methods. The distinct differences are
marked with yellow rectangles.

TABLE III
QUANTITATIVE COMPARISON (%) WITH STATE-OF-THE-ART METHODS ON THE
POTSDAM TEST DATASET

Method Elevation Imp sur Building Low veg Tree Car OA
SVL_3 [44]  w/ 84.0 89.8 72.0 59.0 69.8 77.2
UFMG_4 [58] w/ 90.8 95.6 84.4 843 924 879
RIT_L7 w/ 91.2 94.6 85.1 85.1 92.8 88.4
AZ2 w/o 92.3 96.0 86.4 87.6 95.1 89.9
DST_5 [60]  w/ 92.5 96.4 86.7 88.0 94.7 90.3
RIT4 [59] w/ 92.6 97.0 86.9 87.4 952 90.3
CAS_Y2 w/o 92.6 96.2 87.3 87.7 95.7 90.4
BUCTYS w/ 93.1 97.3 86.8 87.1 94.1 90.6
HUSTW2 w/ 93.2 96.5 87.3 88.3 93.9 90.9
CASIA3 [41]  w/o 93.4 96.8 87.6 88.3 96.1 91.0
ALRNet w/o 93.5 96.1 87.3 89.0 955 90.9

“w/0” denotes the method without using elevation data and “w/” denotes the
method using elevation data.

90.9%, which is competitive with some state-of-the-art methods
(e.g., HUSTW2, CASIA3 [41]). The F1 scores for impervious
surfaces and trees are 93.5% and 89.0%, respectively, both of
which are higher than the results derived from CASIA3. Com-
pared with other methods using elevation data, e.g., RIT4 [59]
and HUSTW?2, ALRNet has slightly lower accuracy on building
extraction but has a more robust performance on extracting
impervious surfaces and trees. The visual comparison results in
Fig. 7 further show that ALRNet identified accurate and precise
boundary objects in the Potsdam test images. Accordingly, AL-
RNet achieved reliable classification accuracy on the Potsdam
dataset using only spectral images, and the accuracy of some

'mloU” denotes the mean IoU of

Reference SVL_3 RIT L7 AZ2 CASIA3  ALRNet

Image

CAS_Y2

Elmpervxous surfaces [JJll Building [ Low vegetation [l Tree [ | Car [JIll] Clutter

Fig.7. Close-up views of the Potsdam test dataset and the classification results
using ALRNet and five state-of-the-art methods.

TABLE IV
QUANTITATIVE COMPARISON (%) WITH STATE-OF-THE-ART METHODS ON THE
VAIHINGEN TEST DATASET*

Method Elevation Imp surf Building Low veg Tree Car OA
SVL_4 [44] w/ 86.1 90.9 77.6 849 599 84.7
DST_2 [60] w/ 90.5 93.7 83.4 89.2 72.6 89.1
ONE_7 [61] w/ 91.0 94.5 84.4 89.9 77.8 89.8
INR [62] w/ 91.1 94.7 83.4 89.3 71.2 89.5
RIT_7 [59] w/ 91.7 952 83.5 89.2 82.8 89.9
DLR_9 [2] w/ 92.4 95.2 83.9 89.9 812 90.3
WUH_W4  w/o 923 94.9 83.2 89.0 85.3 90.1
GSN3 [28] w/o 922 95.1 83.7 89.9 824 90.3
ALRNet w/o 92.4 95.4 83.9 89.6 85.6 90.5

“w/o” denotes the method without using elevation data and “w/” denotes the method
using elevation data.

individual categories is better than some methods that currently
achieve top performance in the ISPRS contests.*

B. Vaihingen Dataset Results

As shown in Fig. 8, the prediction results of ALRNet on
the Vaihingen test dataset are close to the ground truth images
and the outlines of urban objects are distinguishable. Table IV
compares the quantitative results of ALRNet with state-of-the-
art methods. The OA of ALRNet is 90.5%, which is higher
than other methods that did not employ the auxiliary elevation
data, e.g., GSN3 [28] and WUH_W4. ALRNet obtained the
best accuracies on detecting impervious surfaces, buildings, and
cars. Fig. 9 exhibits the close-up results of ALRNet and other

4Online. [Available]: https://www2.isprs.org/commissions/comm2/wg4/
results/potsdam-2d-semantic-labeling/
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Fig.8. False-color-composite images (NIR-R-G) for the Vaihingen test dataset
(top row), the ground references (middle row), and classification results pro-
duced by ALRNet (bottom row) are shown for different image tiles. The ID for
image tile is shown for each column. (a) Image 2. (b) Image 8. (c) Image 22. (d)
Image 38.
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Fig. 9. Close-up views of the Vaihingen test dataset and the classification
results using ALRNet and five state-of-the-art methods.

methods. There were apparent missing building objects in the
results of SVL_4 [44], DST_2 [60], and ONE_7 [61] (e.g., the
fourth row in Fig. 9). ALRNet obtained robust classification
results, and notably, it correctly identified the overhead road
(e.g., the second row in Fig. 9).

C. WHU Dataset Results

While tests of ALRNet on the ISPRS benchmarks have
demonstrated that its ability to deal with the multiclass classifi-
cation problem in VHR images, we further validated ALRNet on
the WHU building dataset for recognizing the building objects
from images of different spatial resolution and band compo-
sition. As shown in Fig. 10, ALRNet performed well in di-
verse scenarios with excellent segmentation of object contours.
According to the quantitative results summarized in Table V,
ALRNet produced the best accuracies with an F1 score of 94.5%
and an IoU of 89.5% among all methods. SRI-Net [17] obtained
higher precision but lower recall than ALRNet. GRRNet has
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Fig. 10. Example images for the WHU building test dataset and the classifi-

cation results produced by ALRNet. The building boundary (marked in yellow
polygon) is obtained by vectorizing the segmentation results.

TABLE V
QUANTITATIVE RESULTS (%) OBTAINED USING ALRNET AND OTHER
METHODS ON THE WHU BUILDING TEST DATASET

Method Precision Recall F1 ToU
U-Net [45] 90.6 95.7 93.1 87.0
SegNet [25] 94.0 94.0 94.0 88.7
GRRNet [29] 94.8 90.4 92.6 86.2
Att-U-Net [30] 929 94.8 93.8 88.4
G-FRNet [20] 94.2 93.8 94.0 88.7
SiU-Net [54] 93.8 93.9 — 88.4
SRI-Net [17] 95.2 93.3 94.2 89.1
ALRNet 94.9 94.1 94.5 89.5

The bold values represent the best result and the underlined values represent the
second-best result achieved by models.

SegNet GRRNet
A ) A

Fig. 11.  Visual comparison with comparison methods on the WHU building
test dataset.

the lowest recall, indicating that this method needs to be im-
proved in terms of completeness. In our experiments, U-Net and
Att-U-Net obtained low precision, which affected their OA. As
shown in Fig. 11, ALRNet obtained more accurate and complete
extraction results than other tested methods.

VI. DISCUSSIONS

A. Ablation Experiments for Model Components Analysis

To examine the contribution of each component on the perfor-
mance of ALRNet, some ablation experiments were conducted.
Tables VI and VII list some ALRNet variants’ results on the
Potsdam and the WHU building validation dataset, respectively.
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TABLE VI
VALIDATION RESULTS (%) OBTAINED USING ALRNET AND ITS VARIANTS ON THE POTSDAM DATASET

Model Imp surf Building Low veg Tree Car Clutter Overall
Fl1 IoU Fl IoU FI1 IoU FI IoU Fl IoU Fl IoU OA  mloU

ALRNet_noMSS 93.6 88.1 968 93.8 847 735 881 787 957 918 431 275 921 755
ALRNet_noMSS_noRec 934 87.7 96.8 938 842 726 877 781 956 916 404 253 919 749
ALRNet_ResNet 933 875 966 934 847 734 882 789 962 927 430 274 920 755
ALRNet_noFF 932 873 964 930 841 72,6 882 788 926 863 412 259 917 740
ALRNet_FF 93.6 879 969 940 850 738 882 788 960 924 457 297 92.1 76.1
ALRNet_GFF 93.6 879 966 934 848 735 880 786 959 920 385 238 921 749
ALRNet_noRec 937 88.1 967 937 8.2 742 883 791 962 927 435 278 924 76.0
ALRNet 939 88.6 973 947 853 744 883 791 960 923 451 29.1 92.6 764

“« ¢

_noMSS” denotes the network without using multi-scale supervision. “_noRec” denotes the network that applies the AGFF module without recursion.
“_noFF” denotes the network without transferring encoding features. “_ResNet” denotes the network that replaces the VGG-16 with ResNet-50.

TABLE VII
VALIDATION RESULTS (%) OBTAINED USING ALRNET AND ITS VARIANTS ON
THE WHU BUILDING DATASET

Method Precision Recall F1 TIoU
ALRNet_noMSS 96.2 94.3 95.2 90.9
ALRNet_noMSS_noRec 94.5 95.6 95.0 90.5
ALRNet_ResNet 92.1 93.4 92.7 86.5
ALRNet_noFF 89.7 87.3 88.5 79.4
ALRNet_FF 94.4 94.8 94.6 89.8
ALRNet_GFF 96.3 93.5 94.9 90.3
ALRNet_noRec 95.3 94.7 95.0 90.5
ALRNet 95.9 94.8 95.3 91.1

Here, we use ALRNet with AGFF module as the baseline (AL-
RNet). The accuracy of ALRNet_noMSS was lower than ALR-
Net, indicating that the multiscale supervision schema could ef-
fectively improve the performance of ALRNet. According to the
results of ALRNet_ResNet, an encoder with deeper depth did not
increase the OA of ALRNet. The model with no encoding feature
transferred (ALRNet_noFF) got the lowest accuracy among all
methods, indicating that the proper use of encoding features is
key to improving our model. By comparing the performance
of different feature fusion modules (i.e., FF and GFF module),
the AGFF module has better performance than others, showing
that the channelwise attention is feasible for feature fusion
and feature selection in ALRNet. ALRNet with recursion has
higher accuracy than that without recursion (ALRNet_noRec).
By comparing the accuracies of “ALRNet_noMSS_noRec” and
“ALRNet_noMSS,” we found that the AGFF module without
recursion was still effective and could improve the performance
of ALRNet without multiscale supervision.

B. Model Visualization

To better understand the attention mechanism, we carried out
feature map visualization to analyze how the AGFF module
affects the performance of ALRNet. Fig. 12 shows the stagewise
classification results of ALRNet using different feature fusion
modules for an input image. All the methods obtained coarse
prediction results in the first decoding stage. The AGFF module
progressively rectified the misclassification pixels since the sec-
ond decoding stage, whereas the FF and GFF modules had dif-
ficulties in improving the subsequent outputs. ALRNet_noMSS
did not obtain precise classification results until the last decoding
stage because it did not apply the deep supervision schema,
but once again shows the effectiveness of the proposed AGFF
module.
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Fig. 12.  Visual comparisons of stagewise classification results among the
proposed ALRNet (ALRNet_AGFF) and its variants on the close-up view of
the Potsdam validation image.
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Fig. 13.  Weight values and selected feature maps in the second feature fusion
stage. (a) Close-up view of the Potsdam validation image. (b) Weight value
frequency histogram. (c)—(e) Selected features from different feature fusion
modules. (f) Six features with the highest weight value.

The proposed AGFF module has an effect on ALRNet by
influencing feature weighting and selection. Figs. 13 and 14
display the obtained feature maps in the second and the fifth
feature fusion stages, respectively. The feature weight values
are mostly distributed between 0.3 and 0.6 and decrease toward
both ends [see Figs. 13(b) and 14(b)]. That means a few numbers
of features have high weight values and are emphasized by
the attention-guided modules. Figs. 13(f) and 14(f) show top
six features with the highest weight values, respectively. These
features represent different locations of the image, and some
are particularly sensitive to edges and textures. By the channel-
wise feature reweighting, the AGFF module could reduce the
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Fig. 14.  Weight values and selected feature maps in the fifth feature fusion
stage. (a) Close-up view of the Potsdam validation image. (b) Weight value
frequency histogram. (c)—(e) Selected features from different feature fusion
modules. (f) Six features with the highest weight value.
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Fig. 15. Feature selection and prediction results of ALRNet in different feature
fusion stages.

features passed in the network and obtain more representative
characteristics to refine the coarse labeling maps. Figs. 13(c)—(e)
and 14(c)—(e) display the selected (convolved) features that are
passed to the label refinement unit. Compared to the FF and the
GFF modules, the features obtained by the AGFF module are
not duplicated but have distinguishable object outlines and extra
response to different locations.

To further analyze how the AGFF module influences the re-
finement process of ALRNet, Fig. 15 shows the feature selection
results and prediction results obtained by ALRNet in each stage.
We found that the selected features were close to the inputimage,
and their spatial details were more prosperous than the coarse
labeling maps at the corresponding stage. The coarse labeling
maps contained much information related to the category deter-
mination but without more precise object outlines. By merging
the selected features from the AGFF module, the coarse labeling
maps were gradually rectified into higher resolution and higher
confidence labeling maps.
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Fig. 16. Classification results of ALRNet in typical scenes containing small
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Fig. 17. Multistage training losses of ALRNet on the Potsdam dataset.
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Fig. 18. Comparisons of the efficiency among different methods. The Caffe
time command was applied to calculate the time requirements as averaged over
200 iterations with an input image size of 480 x 480 pixels.

C. Effect of Multiscale Supervision

According to Section VI-A, multiscale supervision can ef-
fectively improve the classification accuracy of ALRNet in
different categories. The bilinear interpolation operators with
various scaling factors are employed to capture target objects’
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interaction on different scales. To analyze whether such upsam-
pling operations will affect small objects’ classification results,
some sample images from the Potsdam and the WHU building
test datasets were predicted. As Fig. 16 shows, ALRNet could
successfully detect small objects such as cars and small-size
buildings at different supervision stages (scales). Meanwhile,
the small objects in the earlier supervision stages were gradually
refined with sharper edges.

D. Model Efficiency Analysis

Fig. 17 displays the training convergence of ALRNet under
different supervision stages. Specifically, the training losses in
different stages show a rapid downward trend until 8000 itera-
tions, and they reached convergence at around 160 000 iterations.
In general, the early stages’ losses (e.g., loss 1) are higher than
the losses in the later stages (e.g., loss 6). The coarse labeling
maps in the early stages lack more accurate spatial details, so it
is challenging to keep alike with the ground truth images.

Fig. 18 compares the time complexity of ALRNet with other
methods. GRRNet requires less training and inference time than
others because of its ResNet-based encoder and limited feature
maps transferred. The computational complexity of ALRNet
is close to G-FRNet, meaning that the introduction of the SE
module does not largely affect the efficiency of model training
and testing. ALRNet has higher computational efficiency as
compared to U-Net and SegNet because the latter two models
do not constraint the number of features transmitted from the
encoder. The AG module introduced by Att-U-Net [30] increases
the computational time as compared with U-Net because the AG
module performs more complicated feature fusion operations.

E. Failed Attempts Using Different Attention Strategies

Before developing the AGFF module, many efforts have
been made to find alternative attention strategies feasible for
multilevel feature fusion in ALRNet. On the one hand, a global
attention upsample module proposed in [26] was adapted to
ALRNet. As Fig. 19(a) shows, the global context aggregated
from higher level features are passed to a 1 x 1 kernel-size
convolutional block and multiplied by the lower level features.

v
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Schema of three tested models with different attention strategies. (a) Model_1. (a) Model_2. (a) Model_3.

TABLE VIII
QUANTITATIVE COMPARISON (%) WITH TESTED MODELS ON POTSDAM
VALIDATION DATASET WITH OA, MEAN I0U AS WELL AS IOU SCORE FOR
EACH CATEGORY

Models Imp_suf Building Low veg Tree Car OA mloU
Model_1  87.9 94.1 73.5 784 920 923 76.0
Model_2 87.3 94.2 74.0 79.0 927 92.1 758
Model_3 87.6 93.5 73.9 79.1 923 922 762
ALRNet  88.6 94.7 74.4 79.1 923 92.6 764

On the other hand, motivated by Roy et al. [47], we combined
the channelwise SE module with an SSE for feature fusion. In
the SSE module, input features are first compressed into 1-D
and then passed to the sigmoid activation function. Two models
[see Figs. 19(b) and (c)] are designed by placing the SSE module
on top of the lower level and higher level features, respectively.
According to the accuracy reported in Table VIII, ALRNet with
AGFF module surpasses other tested models, showing that the
channelwise SE module is more suitable for ALRNet.

VII. CONCLUSION

In this article, we presented an ALRNet for VHR image
segmentation. ALRNet progressively refines the coarse labeling
maps of different scales by using the channelwise attention
mechanism. Specifically, a novel AGFF module is proposed
based on the SE module to reduce the semantic gaps among fea-
tures of different levels. The AGFF module not only improves the
category discriminability of each pixel in the lower level features
but also assigns different weights to the fusion features that are
helpful for a subsequent feature selection. The ablation experi-
ments demonstrate that our AGFF module can effectively refine
the stagewise classification results of ALRNet. Moreover, model
visualization indicates that the proposed module effectively as-
signs different weights to the fusion features, which helps select
representative and nonredundant features. The proposed method
not only achieves the outstanding performances on the ISPRS
2-D Semantic Labeling Contest for Potsdam and Vaihingen but
also surpasses the state-of-the-art methods on the WHU aerial
building dataset. The designed attention-guided module can be
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integrated with other FCNs. Source code’ and pretrained models
are made publicly available for further studies.
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