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EMFNet: Enhanced Multisource Fusion Network for
LLand Cover Classification

Chengxiang Li, Renlong Hang

Abstract—Feature extraction and fusion are two critical issues
for the task of multisource classification. In this article, we propose
an enhanced multisource fusion network (EMFNet) to address
them in an end-to-end framework. Specifically, two convolutional
neural networks are employed to extract features from two differ-
ent sources. Each network is mainly comprised of three convolu-
tional layers. For each convolutional layer, feature tuning modules
are designed to enhance the extracted feature of one source by
taking advantage of the other source. After getting the features of
two sources, a weighted summation method is used to fuse them.
Considering that fusion weights should vary for different inputs, a
feature fusion module is designed to achieve this goal. In order to
test the performance of our proposed EMFNet, we compare it with
state-of-the-art fusion models, including the traditional models and
the deep-learning-based models, on two real datasets. Experimental
results show that the EMFNet can achieve competitive classification
results in comparison with them.

Index Terms—Convolutional neural network (CNN), feature
fusion module, feature tuning module, multisource fusion.

1. INTRODUCTION

CCURATE and up-to-date land cover classifications are

fundamental and important for a variety of applications.
In comparison with ground surveys, remote sensing techniques
are capable of providing a larger view and faster acquisition
of land cover information, thus becoming a dominant tool for
land cover classification. With the development of imaging tech-
nologies, different kinds of remote sensors have been applied,
providing different observation views of land covers. Typically,
hyperspectral sensors record rich spectral information of land
covers through the visible bands to the infrared bands. In contrast
to the passive sensing of hyperspectral sensors, light detection
and ranging (LiDAR) is an active sensing method. It adopts laser
light as an illumination source and provides the height and shape
information of the land surface.
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Since the spectral properties of different materials vary, hyper-
spectral data are effective to discriminate objects with different
materials, which have been widely used in land cover classifi-
cation [1]-[3]. However, if two different objects are comprised
of the same material, e.g., the building roof and the road, the
individual use of hyperspectral data is difficult to differentiate
them. Similarly, LIDAR is powerful enough to separate objects
with different elevations, but cannot distinguish different objects
with the same elevation, e.g., asphalt and concrete roads. In order
to cope with their respective shortcomings, an intuitive method
is fusing the complementary information from hyperspectral
and LiDAR data [4]-[6]. To achieve this goal, one needs to
answer two critical issues. The first one is feature extraction.
How to effectively represent hyperspectral and LiDAR data is
the precondition of the fusion problem. The second one is how
to combine the multisource information based on the extracted
features.

During the past few decades, a lot of methods have been
proposed to deal with the firstissue. For example, as an extension
of a morphological profile, an attribute profile (AP) has been
adopted to extract spatial features from both hyperspectral and
LiDAR data in [7] and [8]. Due to the high dimensionality
of hyperspectral data, dimensionality reduction is needed to
acquire some principal components before extracting APs. To
further improve the capability of the AP, the extinction profile
was proposed [9] and employed to hyperspectral and LiDAR
data [10]-[12]. In addition to these morphology-related fea-
tures, a local binary pattern was also used to extract features
from both sources [13]. In recent years, the success of deep
learning [14]-[17] has motivated its applications to the field
of multisource fusion. Typical models include convolutional
neural network (CNN) [18]-[21], autoencoder [22], [23], and
recurrent neural network [24], [25]. In [ 18], Chen et al. proposed
a two-branch fusion framework based on 2-D CNNs. One CNN
was used to extract convolutional features for hyperspectral data,
and the other was for LiDAR data. Differently, Xu ef al. [19]
simultaneously employed the 1-D CNN and the 2-D CNN to
extract spectral and spatial features from hyperspectral data,
respectively, thus achieving better representations for hyper-
spectral data. In [23], Hong et al. designed two autoencoders to,
respectively, process hyperspectral and LiDAR data. Compared
to the CNN-related models, the training of autoencoders is based
on the reconstruction strategy, alleviating the requirement of
labeling samples. To sum up, most of the existing models attempt
to extract handcrafted or deep features from different sources
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(e.g., hyperspectral and LiDAR) separately, while ignoring their
complementary information. We argue that such information
will enforce the discriminative ability of extracted features if
fully explored.

For the second issue, decision-level fusion and feature-level
fusion are two popular strategies to combine multisource infor-
mation. The former one aims to derive a classification result
from each source and then integrate them to get the final result.
The key is selecting proper classifiers and integration strategies.
In [26], support vector machine (SVM) was adopted as classi-
fiers for each source, and a weighted summation strategy was
employed to combine classification results. The combination
weights were determined by the classification accuracies of each
source. In [27], Zhong et al. used three different classifiers, in-
cluding SVM, maximum likelihood classifier, and multinomial
logistic regression, to classify the extracted features. Weighted
voting was applied to obtain the final result, and the weights of
each classification map were optimized by a differential evolu-
tion algorithm. In [13], the derived features of each source were
classified by a collaborative representation-based classifier with
Tikhonov regularization. Different from decision-level fusion,
the purpose of feature-level fusion is to integrate features of
different sources. Concatenation is a simple but efficient fusion
method, which has been widely applied [7], [18], [19], [28]. To
address the high-dimensionality issue induced by concatenation,
Liao et al. [29] proposed a generalized graph model. Besides
concatenation, a multiple-kernel learning model was constructed
to integrate heterogeneous features in [30]. The weights of the
kernels with different features were determined by finding a
projection based on the maximum variance. In [31], canonical
correlation analysis was adopted as a basic unit for fusing
features. Although a lot of works have been developed to combine
the multisource information, most of them use fixed combination
weights for different sources. We argue that the weights should
vary for discriminating different objects. For instance, larger
weights should be given to LiDAR data when classifying the
building roof and the road, both of which are comprised of
concrete; on the contrary, hyperspectral data should have larger
weights when discriminating roads made up of asphalt and
concrete.

To address the above two issues, we propose an enhanced
multisource fusion network (EMFNet), which adopts a two-
branch framework. The basic structure of each branch is CNN,
consisting of three convolutional layers. Different from the tra-
ditional CNN:ss, feature tuning modules are designed to enhance
the convolutional features by taking advantage of the comple-
mentary information between two sources. Specifically, they are
capable of using the channel features of the hyperspectral branch
to enhance the convolutional features of LiDAR data, while
using the spatial features of the LiDAR branch to enhance the
features of hyperspectral data. When the third-layer convolution
features are acquired from two sources, they will be fused in a
weighted summation manner. The fusion weights are decided
by a feature fusion module, whose inputs are the first-layer
convolution features of two sources. The convolutional layers,
feature tuning modules, and the feature fusion module are finally
combined to construct an end-to-end network for multisource
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fusion. The major contributions of this article are summarized
as follows.

1) To make full use of the complementary information be-
tween two sources during feature extraction, feature tun-
ing modules are embedded into CNNs for enhancing the
discriminative ability of each convolutional feature.

2) In order to sufficiently consider the contribution of each
source during multisource information fusion, a feature
fusion module is designed to dynamically allocate fusion
weights according to the input objects.

3) Extensive experiments are conducted on two real hyper-
spectral and LiDAR data. The comparisons with state-of-
the-art traditional and deep-learning-based models certify
the effectiveness of our proposed model.

The rest of this article is organized as follows. Section II
first presents the framework of our proposed method and then
describes the detail of the feature tuning module and the feature
fusion module. Section III introduces the experimental datasets
and results in comparison with state-of-the-art models. Sec-
tion I'V concludes this article.

II. METHODOLOGY

The framework of our proposed EMFNet is shown in Fig.1,
where “Conv 7" represents the 7 th convolutional layer. The
inputs of the EMFNet are comprised of hyperspectral data and
LiDAR data. Considering the redundancy of high-dimensional
spectral information in hyperspectral data, principal component
analysis is adopted to extract h principal components. For a given
pixel, a small cube X ;; € R¥*“*" centered at it is cropped from
the dimensionality reduced hyperspectral data, where w is the
selected cube size. In comparison with hyperspectral data, the
LiDAR-derived digital surface model is relatively easier, which
often contains a single channel. Therefore, we can directly crop
a small patch X € R*¥*" centered at the same position.

After preprocessing, X ;7 and X, are separately fed into three
convolutional layers to learn hyperspectral and LiDAR features.
The kernel size of each convolutional layer is 3 x 3, while the
channel sizes from the first to the third layer are set to 32, 64,
and 128, respectively. Assume the output of the (7 + 1)th layer is
F;H,i € {0,1,2},5 € {H, L}; the process of feature learning
can be expressed as

i+l _ i
F;™ = Conv(F}) (D

where “Conv” denotes the convolutional operator, F% equals
Xy, and F9 equals X ..

Itis well known that hyperspectral data have abundant spectral
information, leading to better channel features in Fig{l than
that in F2"'. On the contrary, LiDAR data contain rich height
and shape information, making F"L+1 have discriminative spatial
features. Inspired by such information, we attempt designing a
feature tuning module to enhance the channel features of FiL+1 by
exploring I, while enhancing the spatial features of Fgl by
taking advantage of FiLJrl. Therefore, (1) can be reformulated as

FIt! — FT(Conv(F})) )

where “FT” refers to the feature tuning operator.
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Fig. 1. Flowchart of the proposed network.
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Fig. 2. Detail of our proposed feature tuning module. The left figure is the
channel tuning module, while the right figure is the spatial tuning module. Note

that “FC” represents the fully connected operators, “BatchNorm” denotes the
batch normalization operator, and “®” is the multiplication operator.

A. Feature Tuning Module

Fig. 2 demonstrates the detailed structure of our proposed fea-
ture tuning module, which consists of a channel tuning module
and a spatial tuning module. For the ith convolutional layer, a
global pooling operator, shown in the left part of Fig. 2 is first
adopted to squeeze the spatial dimension of Fi; € RV *H*C o
1 x 1, because the channel tuning module mainly aims to make
use of the channel features of F}{ After that, two fully connected
layers are sequentially used to F%,, which can be formulated as

Ay = fo(Wax f1 (W1 xFly)) 3)

where W1 and Wy, are the connection weights of the first and
second fully connected layers, respectively. fi; and fy corre-
spond to the activation function ReLU and Sigmoid, respec-
tively. The number of neurons in these two fully connected
layers is empirically set to 2 and C, respectively. Finally, A €
R s applied to refine the channel information of F?% as
follows:

t < F" ®Rep(Ap) 4)

where Rep(A ) refers to repeating values in A ; along spatial
dimensions, and “®” denotes elementwise multiplication.

In contrast to the channel tuning module, the spatial tuning
module aims at taking advantage of the spatial features of F7 .
As shown in the right part of Fig. 2, The channel tuning module
containsa 1l x 1convolutional layer, a batch normalization layer,
and an activation layer. The convolutional layer can reduce the
channel dimension of F% to 1, making it focus on the exploration
of spatial features. After the channel tuning module, F%; is
refined as

Fi < F' O Rep(Ap) (5)

where A € RW>Hx*1 ig the final result after the ReLU layer,
Rep(A ) represents repeating values in A, along the channel
dimension, and “®” denotes elementwise multiplication.

B. Feature Fusion Module

The feature tuning module allows us to acquire an enhanced
feature representation of hyperspectral data and LiDAR data, but
how to combine them is also another key issue for multisource
fusion. In this article, we adopt F2; and F3 as the final feature
for hyperspectral and LiDAR data, respectively, and design a
feature fusion module to adaptively combine them together.
Fig. 3 shows the detailed structure of our proposed feature fusion
module, whose inputs are F}; and F . These two inputs are first
concatenated along the channel dimension, followed by a global
pooling layer. Then, two fully connected layers are employed to
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Fig. 3.  Detail of our proposed feature fusion module. Note that FC represents
the fully connected operators and “(¢)’ is the concatenation operator.

get the final result. The whole process can be described as
w =AW« (f{(W!«GP(F; ©F1))  (6)

where w € 2 is the output of the feature fusion module, “©)’
represents the concatenation operator, and “G P is the concate-
nation operator. W' and W?2 are the connection weights of
the first and second fully connected layers, respectively. f! and
f 2 correspond to the activation function ReLU and Softmax,
respectively. Since the expected number of fusion weights is 2,
the second fully connected layer contains two neurons. For the
first fully connected layer, we empirically set its neurons to 16.
Once the fusion weight w is obtained, we can derive the fusion
result as

F =F3 «w; + F3 «w, (7

where w; and ws are the two elements of w. It is worth noting
that w is dependent on the input samples. In other words, for
different hyperspectral and LiDAR inputs, their fusion weights
are different, which is more reasonable in real applications.

III. EXPERIMENTS
A. Data Description and Experimental Setup

In order to test the performance of our proposed EMFNet,
we conduct comprehensive experiments on two hyperspectral
and LiDAR fusion datasets. The first dataset contains Houston
data, acquired over the University of Houston campus and the
neighboring urban area in June 2012 [4]. The spatial size of both
hyperspectral and LiDAR data is 349 x 1905 pixels, but not all
of them are used in the experiments. Table I reports the specific
number of training and test pixels in 15 classes. For the hyper-
spectral data, there exist 144 spectral bands. In Fig. 4, we show a
pseudocolor image of the hyperspectral data using bands 64, 43,
and 22, a grayscale image of the LiDAR data, and ground-truth
maps of the training and test pixels. Note that the effect of cloud
shadows in the Houston hyperspectral data was detected using
the thresholding of illumination distributions calculated by the
corresponding spectra. In this context, relatively small structures
in the thresholded illumination map were eliminated w.r.t. the

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
NUMBERS OF TRAINING AND TEST SAMPLES IN EACH CLASS OF
THE HOUSTON DATA

Class No. Class Name Training  Test
1 Healthy grass 198 1053
2 Stressed grass 190 1064
3 Synthetic grass 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking lot 1 192 1041
13 Parking lot 2 184 285
14 Tennis court 181 247
15 Running track 187 473
- Total 2832 12197

TABLE II

NUMBERS OF TRAINING AND TEST SAMPLES IN EACH CLASS OF
THE TRENTO DATA

Class No. Class Name Training Test
1 Apple trees 129 3905
2 Buildings 125 2778
3 Ground 105 374
4 Wood 154 8969
5 Vineyard 184 10317
6 Roads 122 3252
- Total 819 29595

assumption that cloud shadows are larger than structures on the
ground.'

The second dataset contains Trento data, which were captured
over a rural area in the south of Trento, Italy. The hyperspectral
data were acquired by the AISA Eagle sensor with 63 spectral
bands, while the LiDAR data were acquired by the Optech
ALTM 3100EA sensor. In comparison with the Houston dataset,
this dataset has a smaller spatial size (i.e., 166 x 600 pixels). The
total number of classes is 6. Table II lists the specific number
of pixels in each class. Fig. 5 visualizes the hyperspectral data
using bands 40, 20, and 10, the LiDAR data, and the distributions
of the training and test pixels.

On these two datasets, we compare the EMFNet with state-
of-the-art fusion models, including the traditional models and
the deep-learning-based models. Some descriptions about them
are as follows.

1) SVM: It adopts the fused hyperspectral data and LiDAR
data as input and SVM as the classifier. Since the work
in [32] also did the same experiment, it is reasonable to
cite the results from [32].

2) CHOTF: 1t is a coupled higher order tensor factorization
(CHOTF) model for hyperspectral and LiDAR fusion
proposed in [33].

!The enhanced dataset was provided by Prof. Naoto Yokoya from RIKEN,
Japan.
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Fig. 4.
for the LiDAR data. (c) Training data map. (d) Test data map.

3) CNN(H): It is a three-layer CNN whose input is hyper-
spectral data only. The spatial size of all convolutional
kernels is 3 x 3. The number of channels from the first
to the third convolutional layers is set to 32, 64, and 128,
respectively.

4) CNN(L): This network has the same structure as that of
CNN(H), but with LiDAR data as input.

5) EMFNet-FF-FT: This network has the same structure as
the EMFNet, but without using feature tuning modules in
Fig. 2 and the feature fusion module in Fig. 3.

6) EMFNet-FF-ST: This network has the same structure as
the EMFNet, but without using the spatial tuning modules
in the right part of Fig. 2 and the feature fusion module in
Fig. 3.

7) EMFNet-FF: This network has the same structure as the
EMFNet, but without using feature tuning modules in
Fig. 2.

All of the deep learning models are implemented in the
PyTorch framework, and the Adam algorithm is chosen as the
optimizer. The same as in [20], 11 x 11 patches are used as
inputs for them. The classification performance of each model

Visualization of the Houston data. (a) Pseudocolor image for the hyperspectral data using 64, 43, and 22 as R, G, and B, respectively. (b) Grayscale image

is evaluated by the overall accuracy (OA), the average accuracy
(AA), the per-class accuracy, and the Kappa coefficient. The
OA defines the ratio between the number of correctly classified
pixels and the total number of pixels in the test set, the AA
refers to the average of accuracies in all classes, and Kappa is the
percentage of agreement corrected by the number of agreements
that would be expected purely by chance.

B. Experimental Results

Table III compares the classification performance of different
models on Houston data in terms of each class accuracies,
OA, AA, and Kappa values. From this table, one can observe
that CNN(H) achieves significantly higher OA, AA, and Kappa
values than CNN(L), because hyperspectral data provide richer
discriminant information than LiDAR data. In comparison with
CNN(H), EMFNet-FF-FT, which combines hyperspectral data
and LiDAR data together in a parallel framework, can im-
prove OA, AA, and Kappa values. This conclusion certifies
that hyperspectral data and LiDAR data contain complementary
information, which is beneficial to the classification task. It is
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TABLE III
CLASSIFICATION PERFORMANCE OF DIFFERENT FUSION MODELS APPLIED ON THE HOUSTON DATASET

Class No. SVM CHOTF CNN(H) CNN(L) EMFNet-FF-FT EMFNet-FE-ST EMFNet-FF EMFNet

I 8243  83.00 82.91 60.30 83.29 88.22 83.10 83.57

2 82.05  95.68 99.91 24.34 99.44 99.25 100.00 99.62

3 99.80  100.00  91.29 66.53 99.60 98.02 100.00 98.02
4 9280  95.83 95.93 88.73 98.48 99.72 99.91 100.00
5 98.48 9991  100.00  24.81 99.81 100.00 100.00 100.00

6 95.10  95.10 93.71 25.87 97.20 98.60 95.80 95.80

7 7547  89.93 91.60 61.19 94.40 95.15 96.74 97.01

8 4691 8243 87.18 84.33 91.45 94.59 95.54 95.73

9 7753 9443 86.87 40.32 85.55 86.50 96.51 91.88
10 60.04  68.24 97.59 53.86 96.81 95.17 95.95 96.24
11 81.02  99.15 89.56 80.46 95.54 94.21 98.10 99.91
12 8549  96.06 91.16 29.30 94.72 95.29 89.72 96.83
13 75.09  80.70 88.77 81.05 88.07 84.91 87.02 83.51
14 100.00  99.60 89.07 52.63 91.09 89.88 98.79 100.00
15 9831  98.94 90.91 29.81 97.67 99.58 99.37 100.00
OA 8049  91.24 92.05 54.52 94.17 94 .84 95.77 96.10
AA 8337 9193 91.76 53.57 94.21 94.61 95.77 95.87
Kappa 7898  90.50 91.36 50.82 93.67 94.40 95.41 95.76

(d)
Buildings

.Ground

Roads

-Apple trees

. Wood

Fig. 5. Visualization of the Trento data. (a) Pseudocolor image for the hyper-
spectral data using 40, 20, and 10 as R, G, and B, respectively. (b) Grayscale
image for the LiDAR data. (c) Training data map. (d) Test data map.

Vineyard

also worth noting that not all classes have been improved because
CNN models need to balance the contributions of hyperspectral
and LiDAR sources on the whole data. Although some classes
(e.g., Soil) have been slightly degraded, more classes have been
improved. For example, the accuracy of Synthetic grass has
been improved from 91.29% to 99.60%. Upon EMFNet-FF-FT,

when the channel attention module shown in Fig. 2 is added,
EMFNet-FF-ST is capable of increasing the classification per-
formance in terms of OA, AA, and Kappa. This can be explained
by the enhanced feature representation ability of LIDAR with the
help of hyperspectral data. If the spatial tuning module is added
again, the feature representation ability of hyperspectral would
be enhanced, resulting in better performance. Specifically, the
OA, AA, and Kappa values have been increased about 1% using
EMFNet-FF. Compared to all the aforementioned deep models,
the EMFNet can obtain the best performance in terms of OA,
AA, and Kappa values, which validate the effectiveness of our
proposed model. In addition to the deep learning models, the
EMFNet also shows significant improvement when compared
with SVM and CHOTFE. Besides the quantitative comparisons,
Fig. 6 also qualitatively analyzes the classification maps of the
deep-learning-related models. It is shown that our proposed
EMFNet demonstrates more consistent results with the ground-
truth map than the other models, but all of them tend to get
oversmoothing results, especially in the object boundary areas.

Similar to Table IIT and Fig. 6, Table IV and Fig. 7 show
quantitative and qualitative results on the Trento dataset, re-
spectively. At the first glance, all models acquire better results
than that on the Houston dataset because these data are much
easier to classify. Nevertheless, some conclusions are the same
as those in the Houston data. In particular, CNN(H) achieves
better classification performance than CNN(L). By combining
hyperspectral data and LiDAR data, EMFNet-FF-FT can im-
prove the performance of CNN(H) by more than 2% in terms
of OA, AA, and Kappa. Both EMFNet-FF-ST and EMFNet-FF
outperform EMFNet-FF-FT, which can be attributed to the fea-
ture tuning modules employed in those techniques. Additionally,
the conventional models (i.e., SVM and CHOTF) also obtain
satisfactory performance. CHOTF shows slightly higher OA,
AA, and Kappa values than EMFNet-FF. However, when the
feature fusion module is incorporated, the proposed EMFNet
will outperform CHOTF, which confirms the advantage of the
proposed architecture.
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Fig. 6. Classification maps obtained for the Houston data using different fusion models. From top to bottom are the maps generated by CNN(H), CNN(L),

EMFNet-FF-FT, EMFNet-FF-ST, EMFNet-FF, and EMFNet.

TABLE IV

CLASSIFICATION PERFORMANCE OF DIFFERENT FUSION MODELS APPLIED ON THE TRENTO DATASET

Class No. SVM CHOTF CNN(H) CNN(L) EMFNet-FF-FT EMFNet-FF-ST EMFNet-FF  EMFNet

1 85.49  100.00 99.85 99.92 99.89 99.67 99.62 99.21

2 89.76  98.62 94.67 93.16 99.03 97.98 99.53 99.53

3 59.56  95.62 82.09 60.43 78.07 81.02 81.02 97.86
4 97.42 9991 98.73 99.12 100.00 99.91 99.97 100.00

5 93.85  99.75 99.73 95.63 99.92 100.00 100.00 99.81

6 89.96  91.15 76.31 50.59 90.33 91.61 90.69 94.10

OA 9230  98.76 96.31 91.91 98.58 98.63 98.69 99.14
AA 86.01  97.51 91.90 83.14 94.54 95.03 95.14 98.42
Kappa 89.71  98.30 95.05 89.17 98.10 98.16 98.24 98.85
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Fig.7. Classification maps obtained for the Trento data using different fusion
models. From top to bottom are the maps generated by CNN(H), CNN(L),
EMFNet-FF-FT, EMFNet-FF-ST, EMFNet-FF, and EMFNet.

IV. CONCLUSION

This article proposed an EMFNet to classify hyperspectral and
LiDAR data. It attempts to take advantage of the complementary
information from both sources in the feature extraction phase
and the feature fusion phase. In order to achieve this goal, two
different modules, named feature tuning module and feature
fusion module, are designed and incorporated into CNNs. The
feature tuning module is comprised of two different modules,
which are expected to enhance hyperspectral features and Li-
DAR features, respectively. The feature fusion module is desired
to dynamically learn two fusion weights for hyperspectral and
LiDAR data. To test the performance of our proposed network,
several experiments are conducted on two different datasets, i.e.,
Houston data and Trento data. When compared with state-of-
the-art fusion models, including two traditional models and five
deep-learning-related models, our proposed model is capable
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of achieving better performance on both datasets in terms of
classification accuracies.
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