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Deriving Digital Surface Models from Geocoded
SAR Images and Back-Projection Tomography
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Abstract—Digital surface models (DSMs) are sets of elevation
data of the Earth’s surface, useful for applications such as urban
studies and height estimation of buildings. They can be derived
from a set of synthetic aperture radar (SAR) images acquired
in an interferometric or tomographic configuration. Each image
acquisition is usually focused in radar geometry. In this work,
we present steps required to derive DSMs from SAR single-look
complex (SLC) products focused in map geometry (geocoded). We
modified existing tomographic reconstruction techniques to be able
to operate with geocoded SLCs and extended methods to operate
with 3-D geocoded SLCs. The performance analysis showed that
methods using 3-D geocoded SLC products yielded DSMs with
fewer outliers and retained more information of the illuminated
area, with a cost of higher computational complexity. Compressive
sensing methods using 2-D geocoded SLCs can be a good alternative
due to their comparatively moderate computational complexity.

Index Terms—Digital surface model (DSM), synthetic aperture
radar (SAR), tomography, urban.

I. INTRODUCTION

R EMOTE sensing systems enable mapping the Earth’s sur-
face as a digital set of elevation data, or digital surface

models (DSMs). These models are useful for urban studies and
building detection [1]–[6]. DSMs can be derived from optical
images, LiDAR or synthetic aperture radar (SAR) data [7]. The
operation of LiDAR and cameras depends on the availability of
daylight and on weather conditions. In contrast to an airborne
laser scanning (ALS) or terrestrial laser scanner (TLS), the
side-looking view of SAR offers simultaneously information
on the facades and walls of buildings as well as the rooftops and
the heights of the objects [8]. In addition, InSAR can provide
a global digital elevation model (DEM) of the earth’s surface
at a lower cost [9], [10]. SAR sensors can provide 3-D imag-
ing by extending the synthetic aperture also in elevation. This
configuration is known as interferometric SAR (InSAR) [11] or
tomographic SAR (TomoSAR) [12] depending on the aperture
length in elevation and number of baselines.

SAR tomography enables topographic mapping after process-
ing a set of images taken at slightly different viewing angles or
different times. During the course of the data collection, the
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illuminated area is assumed to be unchanged. The images are
typically 2-D and focused in radar geometry [12] after applying
azimuth compression in the frequency domain. This alleviates
the computational complexity of the subsequent processing.
However, azimuth compression in the frequency domain of data
acquired with 1) nonlinear flight paths, 2) strongly varying flight
attitude angles (roll, pitch, and heading), or 3) topographic vari-
ations have to be performed in a block-wise manner [13]. Block-
wise pulse compression involves a degraded azimuth resolution,
and thus, the resulting DSM has fewer details. This dilemma can
be resolved by aligning the azimuth signals with a DEM of the
area and performing pulse compression in time domain. Images
formed or projected onto a DEM are referred to as geocoded [14],
typically in a map geometry. SAR image formation in time
domain requires a comparatively high computational complexity
and offers few benefits for data recorded in stable illumination
conditions, like spaceborne SAR. The small angular diversity of
a tomographic spaceborne SAR data acquisition does not require
back-projection for 3-D reconstruction [15], [16]. These reasons
explain the scarce use of map geometry for 3-D image formation
purposes. The use of map geometry was promoted in [17],
where the authors presented a method to convert interferometric
products derived in slant range geometry into map geometry. The
work in [18] describes some differences in terms of sensitivity to
errors in baseline length and angle for interferometric processing
with SAR images in radar or map geometry.

Exceptionally, tomographic reconstruction in [19] and [20]
has been performed by applying diverse spectral estimation
methods to a set of 3-D geocoded SLC products focused by
means of a time domain back-projection algorithm (TDBP).
A similar approach has been used in [21] and [22] to analyze
glaciers and forest structure. A combination of TDBP and the
maximum likelihood spectral estimation method was applied
in [23] for change detection purposes. Tomographic reconstruc-
tion with circular SAR data [24] is often performed in map
geometry with TDBP or fast factorized back-projection [25].
The aforementioned literature exemplifies the link between air-
borne SAR data and geocoded SLC products formed by means
of the TDBP algorithm. Aside from accommodating adverse
illumination conditions, the use of TDBP and geocoded SLCs
is of special interest as the resulting DSMs are formed in a
3-D grid of the real world. The subsequent postprocessing, such
as noncoherent tomographic processing and change detection,
simplifies as 1) DSMs formed in the same 3-D grid coregister
automatically, 2) it enables operations at a voxel level, and 3)
if the 3-D grid is built above the digital terrain model (DTM)
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of the area, then the SAR-based DSM does not contain vox-
els below the ground level. In addition, if the use of a DEM
is recommended for azimuth compression, then 3-D images
formed with a 3-D grid could be more suitable for compression
in elevation, as targets are focused at their real 3-D position. As a
consequence, tomographic reconstruction methods based on 3-D
geocoded imagery might offer some performance improvements
in comparison to that obtained with 2-D images.

In this work, we study diverse tomographic reconstruction
techniques suitable for deriving DSMs. We first describe adap-
tions of the existing tomographic reconstruction methods when
using 2-D geocoded SLC products. For this purpose, we describe
the procedure to derive the normal dimension (perpendicular to
the slant-range and azimuth plane) in map geometry with TDBP.
This permits extraction of the signals in the normal dimension
and to perform pulse compression in elevation. We extend the
methods published in [19] and [23], by deriving DSMs when
applying techniques capable of operating with 3-D geocoded
SLCs. The performance of the methods is then evaluated and
compared in terms of their respective ability to reproduce the
corresponding airborne laser scanning (ALS) DSM. On the one
hand, we provide a global comparison of the DSMs obtained
with the different tomographic reconstruction methods, and on
the other hand, we provide insight into a particular method when
it uses 2-D or 3-D images.

The rest of this article is organized as follows. Section II sum-
marizes the different tomographic reconstruction techniques.
Section III presents a four-stage procedure to derive DSMs from
geocoded SLC products. We describe each stage, and emphasize
differences to methods applied to SAR images in radar geometry.
Section IV illustrates the results with high-resolution airborne
SAR data acquired in medium density urban scenarios. Sec-
tion V wraps up with a discussion of the results and conclusions.

II. REVIEW OF 3-D RECONSTRUCTION METHODS

A DSM can be derived from K acquisitions of a TomoSAR
dataset by a) applying pulse compression to the signals acquired
in the three imaging dimensions, often referred to as range,
azimuth, and elevation [12], and b) deriving the 3-D coordinates
of the scatterers with the power of the resulting compressed
signals. Fig. 1 shows a schematic tomographic acquisition with
K flight passes. The azimuth dimension is parallel to the flight
path, and the normal or elevation dimension is perpendicular to
both range and azimuth. We focus here on pulse compression in
elevation. The techniques to process the signals in elevation can
be divided into two categories [26], [27]: spectral estimation,
and compressive-sensing.

Spectral estimation methods can be nonparametric or para-
metric. The former apply a set of filters to the K-length re-
ceived signal. The most popular method is the matched filter,
or beamforming (BF) [12]. BF is computationally efficient but
delivers images with poor resolution and prominent sidelobes
in elevation [28]. The method in [29] exploits the singular
value decomposition of the steering vector matrix to achieve
better resolution in elevation. Adaptive BF [19], [30], [31], or
Capon beamforming (CBF), employ the covariance matrix of

Fig. 1. TomoSAR acquisition geometry. In TomoSAR, each normal line can
contain a set of 0 ≤ ns ≤ (K − 1) scatterers of the 3-D world, while for
an InSAR configuration 0 ≤ ns ≤ 1. The aperture length in elevation is bs
determines the spatial resolution in that dimension δn. Some normal lines
contain scatterers of the ground (red squares), of the buildings (black dots),
and the tree (green dots).

the received signals to reduce sidelobes in elevation. CBF is
sensitive to errors in the steering vectors [19]. This can be solved
by applying a diagonal loading factor to the covariance matrices
as in robust CBF [32], or the variants described in [33] and [34].

Parametric methods model the received K-length signal as a
sum of sinusoids based on their statistical properties. Multiple
signal classification (MUSIC) is one of the most utilized super-
resolving 3-D reconstruction methods in this domain. It is based
on the eigen-decomposition of the covariance matrix [20], [30],
[35] and involves a 1-D parameter search, i.e., MUSIC searches
for one scatterer at a time. If a ground cell contains multiple
correlated scatterers, the covariance matrix becomes singular
and the performance of MUSIC degrades.

Multidimensional MUSIC (MD-MUSIC) [36], [37] is the
natural extension of MUSIC when performing a multidimen-
sional search. Two additional variants of MUSIC were proposed
in [36], and applied to SAR tomography in [38]. These meth-
ods, referred to as weighted signal subspace fitting (SSF) and
weighted noise subspace fitting, can cope with data showing
complex statistical properties and can be applied in the presence
of highly correlated targets [38]. Alternative methods such as
nonleast squares (NLS) [15], [39], [40] and the maximum like-
lihood estimator (MLE) [41]–[43] perform a multidimensional
search to derive the elevation and amplitude of ns layovered
scatterers within each resolution ground cell. These methods
can improve the performance but their computation complexity
make them unpractical for high numbers of images [44].

Methods based on compressive sensing aim to reduce the
computation complexity of the multidimensional search while
providing the performance similar to NLS or MLE. The main
idea is to find an orthogonal basis where the signal in eleva-
tion becomes sparse, i.e., the signal has nonzero samples at
the elevation positions of the targets. The three-staged method
in [44], referred to as SL1MMER (scale-down by L1-norm
minimization, model selection, and estimation reconstruction),
performs first a sparsification of the signals in elevation to
alleviate the need for a multidimensional search. Subsequently,
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a refinement of the solution is performed by removing spu-
rious peaks that might result from the minimization process;
and finally, the complex-valued reflectivity of each scatterer is
derived with least squares. The works in [6] and [45] summarize
the performance and characteristics of additional tomographic
reconstruction methods, such as M-RELAX [30] or those based
on the generalized-likelihood ratio test [46]–[48].

The tomographic reconstruction methods can be categorized
as single-look or multilook [26]. The former, e.g., BF, provide
a valid solution when operating with K single-look images.
These methods preserve the range and azimuth resolution of
the K images but are more sensitive to phase noise. Multilook
methods [49] exploit information from neighboring samples to
increase robustness against phase noise at the cost of slightly de-
graded spatial resolution. Single-look methods can be translated
into their corresponding multilook variant.

III. DERIVING DSMS WITH GEOCODED SLC PRODUCTS

A DSM can be derived from geocoded SLC products by
applying the following four-stage procedure:

1) compute the 2-D or 3-D K input SAR images;
2) for each ground resolution cell derive the number of

0 ≤ ns ≤ (K − 1) scatterers in layover and its elevation
dimension;

3) perform pulse compression with the signals in elevation;
and

4) apply detection of the maxima in elevation, i.e., locate
the 3-D coordinates of the ns strongest peaks of the
compressed signal in elevation.

Some pulse compression methods can exploit 3-D geocoded
SLC products, such as BF, Capon, and MUSIC [19]. For this
reason, the pulse compression scheme utilized in step 3) deter-
mines whether the user has to focus 2-D or 3-D K images in
step 1). The fourth step is not applied if the pulse compression
method requires a multidimensional search. Fig. 2 shows the
general procedure to derive DSMs from geocoded 2-D or 3-D
images. In the following, we describe each of these steps.

A. Focusing 2-D or 3-D Geocoded SLC Products

From the overviews of TDBP and setups in [20] and [50], the
2-D K images of a TomoSAR acquisition can be automatically
focused and geocoded by means of TDBP and the use of an
external DEM. If a DEM is not available, we can use a plane
located at the lowest ground height of the area. Omitting radio-
metric calibration factors and signal weightings, the backscatter
of an element acquired from channel k is computed at height hi

via

γk,i(e, n, hi) =

[
τ2∑

τ=τ1

sM

(
2Rsr

c
, τ

)]
· e−j·(4π/λ)·Rs (1)

where (e, n, hi) are the map coordinates of the voxel, τ2 − τ1 is
the aperture length in azimuth, sM is the bandpass upsampled
range compressed signals (i.e., after matched filtering, upsam-
pling and signal bandpass conversion), Rsr the slant range at

Fig. 2. Processing chain for deriving DSMs with geocoded SAR SLC prod-
ucts. First stage: focusing of the 2-D or 3-D geocoded SLC products with TDBP
using an external DEM. If the pulse compression in elevation works with 3-D
images, then the 3-D geocoded SLC products can be focused using TDBP and
a 3-D grid. The 3-D grid is often based on an external DEM. Second stage:
computation of the scatterers map and the elevation dimension. This permits
pulse compression in elevation and detection of maxima. Third stage: perform
pulse compression in elevation. An SAR-based DSM is obtained after applying
detection of the maxima with the pulse compressed signals in elevation. The
SAR-based DSM is a 3-D image, where a voxel is left empty when the corre-
sponding sample of the elevation signal is not a maximum. Detection of maxima
is not applied when pulse compression in elevation is performed with parametric
spectral estimators or techniques based on compressive sensing theory. The 3-D
geocoded SAR image provides information on the radar brightness and 3-D
location of the targets, while the SAR-based DSM provides information on the
3-D location only.

slow time τ , and c the speed of light. λ is the wavelength and
Rs is the slant range at closest approach.

The user has to focus 3-D geocoded SLCs instead of 2-D SLCs
if the pulse compression method in stage 3 (see Fig. 2) works
with those products. A 3-D geocoded SLC γk can be obtained
by using (1) withhi = h0 + iδh, i = 0, . . . , iamb whereh0 is the
height of the ground given by the DEM, δh is the height sampling
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spacing and hamb = h0 + iambδh is the ambiguity height [11].
γk,0 is the 2-D geocoded image from channel k focused on
the ground. From now on, we assume the use of a horizontally
regularly spaced DEM with a sample interval of δe × δn, and that
the geocoded SLCs are processed in single look. The baseband
conversion term in (1) is required for pulse compression in
elevation. In this term, the distance at closest approach has to be
computed during TDBP focusing. In contrast to SAR products
in radar geometry, the value of the slant range of a geocoded
image sample is not inherent to the raster grid being used.

B. Map of Scatterers and Elevation

The number ns of scatterers in layover of ground resolution
cell with coordinates (e, n) can be computed with diverse meth-
ods [51]. Here, we use the efficient detection criterion, where
0 ≤ ns(e, n) ≤ (K − 1) is given by

ns(e, n) = arg min
m∈[0,K−1]

[(Nlooks − k) ·m

· ln
⎛
⎝ K−m

√∏K
i=m+1 λi(e, n)

1

(K−m)
∑K

i=m+1 λi(e,n)

⎞
⎠

+m · (2K −m) · CNlooks ] (2)

where Nlooks is the number of looks used to compute the
K ×K sample covariance matrix of the resolution cells, and
λi=1,...,K(e, n) are the corresponding eigenvalues in descending
order. In (2), a more accurate map of the number of scatterers
was obtained when CNlooks =

√
Nlooks · log(Nlooks). Other tech-

niques are the Bayesian information criterion or the minimum
description length [52]. The map of scatterers computed with
(2) is required for detection of maxima and the parametric pulse
compression methods.

For geocoded SLC products, the elevation or normal line
of a ground cell cannot be derived analytically but can be
calculated in postprocessing, e.g., with the method described
in [23]. Assuming a stripmap mode with a linear trajectory, the
vector with the coordinates of a normal line (vector normal to
the slant range-azimuth plane) n of γk

0 with origin at the ground
cell (e, n) can be approximated by

n(e, n) = (e+Δei, n+Δni, hi)i=0,...,iamb
(3)

where Δei and Δni are the offsets in samples of the 2-D
displacement field, computed by cross correlation between im-
ages γk,i and γk,0 geocoded at heights hi = h0 + iΔh and h0,
respectively, with Δe0 = Δn0 = 0. The expression in (3) is
required to 1) perform pulse compression in elevation, and 2)
perform maxima detection. We simplify notation by assuming
that the offsets Δei and Δni are identical for all samples in γk,i.
This assumption is a valid approximation for data acquired with
linear trajectories and stripmap mode, since in that case we can
assume that in the image domain (range, azimuth, and eleva-
tion) are perpendicular to each other, and a common elevation
dimension exists [16]. The tracks are assumed to be parallel to
each other in case of using datasets recorded in multiple passes.
For data acquired with nonlinear flight paths or in a spotlight

mode, the values of Δei and Δni are sample dependent and the
three imaging dimensions (radial distance, azimuthal angle, and
elevation) are not perpendicular to each other. Fig. 2 shows in
the second stage a voxelized 3-D image highlighting the normal
line of the ground cell (e, n) of its corresponding 2-D geocoded
image.

To derive n(e, n), we need to focus one 3-D geocoded SLC
γk product. This can be performed using a patch of γk as input
to reduce computation time. However, one must recognise that
the size of the patch needs to be large enough to enable the
computation of Δeiamb and Δniamb . To obtain a more reliable
displacement field, it is desired that the patch contains objects
with strong edges or point targets, discarding uniform areas
such as grasslands or water bodies using, for example, the local
coefficient of variation [53].

C. Pulse Compression in Elevation With 2-D geocoded
SLC products

Tomographic reconstruction methods based on 2-D im-
ages use those focused at a height hi = h0, i.e., use the set
{γ1,0, γ2,0, . . . , γK,0}. The backscatter at the ground resolution
cell (e, n, h0) of the kth acquisition is computed with (1) and
denoted as γk,0(e, n, h0). From [40], the received signal y at
ground cell (e, n) can be expressed as the sum of the elevation
profile weighted by a linear phase term as follows:

y = Rx+ ε (4)

where y = (γ1,0(e, n, h0), . . . , γ
K,0(e, n, h0))

T is of size K ×
1, R is the K × Le matrix with the steering vectors in
its columns, i.e., R(k, l) = e−j2kcΔRs(k,l), being kc is the
wavenumber, l is the discrete elevation position, and Le is the
length of the discretized elevation dimension; x is the unknown
reflectivity vector in elevation of size Le × 1, and

ΔRs(k, l) =

{
1 , k = 1
ΔRs(k, l) = Rs(k, l)−Rs(1, l) , k > 1

(5)

with Rs being the slant range. In map geometry, the slant
range of a ground cell is not derived in postprocessing but
simultaneously during pulse compression in azimuth. This in-
creases memory requirements, as we need to store the distance
at closest approach corresponding to each voxel (e, n, hi) and
image k. The elevation position l refers to the voxel at location
(e+Δel, n+Δnl, hl). The matrixR is evaluated in the normal
dimension of the ground cell (e, n) with (3). For CBF and
MUSIC, the power of the compressed signals x is given by

|xCBF(l)|2 =
1

rH(l)Ĉ
−1
r(l)

(6)

|xMUSIC(l)|2 =
1

rH(l)ÊnÊ
H

n r(l)
(7)

where (.)H indicates the Hermitian operator, r(l) is the lth
column (steering vector at elevation position l) of the matrix
R, Ĉ = 1

Lk

∑Lk

n=1(yny
H
n ) is the covariance matrix for the

signals at ground cell (e, n), yn is the measurement vector of
the nth look, and Lk is the number of looks. The noise space
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Ên is determined by the (K − ns) eigenvectors corresponding
to the (K − ns) smallest eigenvalues. The calculation of the
covariance matrices Ĉ varies depending on the distribution of
the phase centers (uniform or not) [51]. The covariance matrices
can be computed by an adaptive ensemble averaging inside a
sliding window [54] or with nonlocal means [55], [56].

If the pulse compression method performs a multidimensional
search, then the DSM is computed by maximizing an objective
function. Let us rewrite (4) by assuming the presence of ns

scatterers with elevations l = [l1, . . . , lns
] as

y = R(l)x(l) + ε (8)

where R(l) is of size K × ns depending on the unknown
elevations of the scatterers derived by means of aK-dimensional
search of l, and li is the voxel at location (e+Δei, n+
Δni, hi). The objective function of the methods studied in this
work is

lMD-MUSIC = argmax
R(l)

Tr(PAÊs(l)Ê
H

s (l)) (9)

lSSF = argmin
R(l)

Tr[(I − PA(l))Ês(l)WSSF(l)Ê
H

s (l)] (10)

lNLS = argmax
R(l)

[yHR(l)(R(l)HR(l))
−1
RH(l)y] (11)

lMLE = argmax
z(l)

[e−zH(l)Γ̂
−1

z(l)] (12)

where PA(l) = R(l)[R(l)HR(l)]
−1
R(l)H . The matrix R(l)

contains the steering vectors of the corresponding ns scatterers,
and Ês is the signal space determined by the ns eigenvectors
corresponding to the ns largest eigenvalues and

WSSF(l) = [Ds(l)− σ̂2
nI]

2Ds
−1(l). (13)

In (13), Ds(l) = diag([λ1, . . . , λns
]), I is the identity matrix

of size ns × ns, and σ̂2
n is the noise standard deviation. In (12),

z(l) =
∑ns

n=1 R(ln), R(ln) is the steering vector of the nth
target at elevation position ln, and Γ̂ is the coherence matrix.

The DSM is derived in a similar fashion using methods based
on compressive sensing theory. In the absence of noise, and
based on the model in [44], the reflectivity at elevation x can be
estimated with

x = argmin
x

{||y −Rx||22 + λK ||x||1} (14)

or

x = min
x

||x||1 s.t. ||y −Rx||2 < σε (15)

being λK , a Lagrange multiplier that depends on the number of
images K and the noise level σε. The expressions in (14) and
(15) are solved here with the least angle regression algorithm
(LARS) and the stage-wise orthogonal matching pursuit algo-
rithm (StOMP) [57], respectively. After LARS (or StOMP), only
a few elevation positions remain plausible for each location of
the ns scatterers. We finally minimize (14) or (15) based on the
value of ns.

D. Pulse Compression in Elevation With 3-D Geocoded SLC
Products

Tomographic reconstruction methods based on 3-D geocoded
SLCs use {γ1,γ2, . . . ,γK}. The number of applicable recon-
struction methods is reduced by the required computational
complexity or because the method does not admit 3-D inputs.
For CBF, the power at location (e, n, hi) is given by

|xCBF(e, n, hi)|2 =
1

rHi Ĉi
−1
rHi

(16)

where ri is the ith steering vector at position (e, n, hi) of the
matrix R and

Ĉi =
1

Lk

Lk∑
n=1

(yn(e, n, hi)y
H
n (e, n, hi)). (17)

The covariance matrix is computed from the recorded signals at
heighthi. This operation increases significantly the computation
time. However, the signal to noise ratio of a scatterer improves
when focused at its actual 3-D position [19]. The main rationale
behind this approach is that for a target located at (e, n, hi),
the signal in yn(e, n, hi) is expected to be more accurate than
yn(e, n, h0), and by extension, the corresponding covariance
matrix. This modification can be applied to MUSIC in (7).

Multidimensional search-based parametric spectral estima-
tors become impractical due to prohibitive computational com-
plexity. For this reason, we evaluate here the performance of a
single-dimensional search-based MLE, operating in a fashion
similar to MUSIC. First, we compute the power given by (12)
with

xMLE(e, n, hi) = e−zH(hi)Γ̂i
−1

z(hi) (18)

where z(hi) = R(hi) is the steering vector of the voxel
(e, n, hi), and Γ̂i is the sample coherence matrix at height hi.
The argument of the exponential function in (18) resembles
the CBF in (6) with the difference being that MLE utilizes the
coherence matrix instead of the covariance matrix [41].

E. Maxima Detection

Maxima detection is applied to the output power resulting
from (6), (7), or (18). For each ground cell (e, n), we retain the
3-D coordinates (e, n, h) of the ns largest peaks in x(n(e, n)).
This operation consists of an examination of the normal lines
of each ground cell with the expression in (3). After applying
maxima detection or maximizing the resulting DSM, referred
to as IDSM, we have a 3-D image with a voxel size given
by (δe × Le) · (δn × Ln) · δh, with Lk = Le × Ln being the
multilook factor in easting and northing, and δe × δn is the
ground sample distance (GSD). The occupancy matrix O is
a 3-D binary matrix whose elements take the value 0 or 1
indicating absence or presence of a scatterer, respectively, in
each voxel v of IDSM. O(v) = 1 if and only if the backscatter of
the voxel v ∈ n(e, n) is one of the ns(e, n) strongest. Note that∑iamb

i=0 O((e+Δei, n+Δni), hi) = ns(e, n).
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F. Experimental Settings

The methods in this work were evaluated using multilooking.
In map geometry, an SAR image focused on a DEM with a
sample interval of (Leδe × Lnδn) is not equivalent to the (Le ×
Ln)-multilooked version of the SAR image focused on a DEM
with a GSD of (δe × δn). In (1), the height sampling spacing δh
tradesoff the precision of the geolocation of the scatterers and
the computation time of the entire 3-D image focusing chain.
To avoid aliasing, we ensure δh ≤ δn · cos(θinc), where δn is the
Rayleigh resolution in elevation [12] given by δn = λRs

2bs
, θinc is

the incident angle, and bs is the aperture length in elevation. In
practice, the achieved resolution in elevation is better than the
Rayleigh resolution δn, and thus, a finer δh should be used. In this
work, we use δh = 25 cm for datasets with a Rayleigh resolution
of approximately 30 m in the best cases. The sample intervals in
northing and easting were set to 10 cm for the images acquired
in the first test site and to 25 cm for those of the second test
site. These values were chosen based on the ground resolution
cell size, the size of DEM used for image focusing, and the
computation time required by TDBP.

The scatterers map was obtained after denoising with block
matching 3-D [58], the eigenvalues of the covariance matrices.
For illustration purposes only, the SAR-based DSMs shown here
were filtered using the entropy [59]. In this case, we removed all
points where entropy was lower than 0.3. We did not apply any
additional filtering or denoising to the signals in the processing
chain nor to the resulting DSMs.

G. Performance Analysis

The performance of the methods was evaluated based on
an ALS-based DSM of the area of interest. Based on this
ALS-based DSM, we built a 3-D voxelized image with height
information with a voxel size equal to that of the DEM used for
SAR focusing. This enables the derivation of quality indicators
in a fashion similar to image classification or change detection,
i.e., a voxel to voxel comparison. We used the κ coefficient [60]
as a tradeoff between false alarms and correct detections to
evaluate the capability of each method to reproduce the ALS-
based DSM. False alarms were assumed to be caused by outliers,
related to sidelobes or phase noise. A false alarm occurs when
IALS

DSM(v) �= ISAR
DSM(v), where IALS

DSM and ISAR
DSM are the ALS-based

DSM and the SAR-base DSM under evaluation. A correct de-
tection occurs in the case of equality. To better emphasize the
differences between the performances of the different methods,
we list the ratios between the κ achieved by the best approach in
comparison to the others. This indicator is referred to here as κr,
and has the value of unity for the SAR-based DSM resembling
the ALS-based DSM most.

As global quality indicators, we computed the mean and
standard deviation of the absolute value of the height error
as μΔI and σΔI . These indicators, expressed in meters, were
obtained from the difference image ΔI given by

ΔI(e, n) =

hamb∑
h=h0

(| ISAR
DSM(e, n, h)− IALS

DSM(e, n, h) |) . (19)

If the SAR-based DSM is identical to the ALS-based DSM,
then μΔI and σΔI are zero. The standard deviation provides a
measure of the number of outliers in the SAR-based DSM under
evaluation. The quality indicators μΔI and σΔI are computed
with the entire area of interest and can be used to compare
the performance of the methods; however, the values of those
indicators do not provide a representative estimate of the height
accuracy achieved by a particular method because 1) many
objects, such as rooftops, trees, shadows, water bodies, and
asphalt-covered roads, might not have a significant backscatter
at a particular frequency band, and thus, the SAR-based DSM
does not contain information about them, 2) the SAR data
and the LiDAR-based DSM were not acquired simultaneously,
and thus, the presence of cars or other small objects differ,
3) the SAR data are acquired from a downward side-looking
antenna in a single flight, while the ALS-based DSM is acquired
from a downward off-nadir-looking laser, and 4) the SAR-based
DSM contains errors caused by presence of moving objects and
artifacts. To provide a more significant estimate of the height
accuracy achieved by a given method, we derived the meanμHALS

and standard deviation σHALS of the height of some objects in
the ALS-based DSM. We performed the same process with the
objects in the SAR-based DSMs to obtainμHSAR andσHSAR . If the
SAR- and ALS-based DSMs are identical, then μHALS = μHSAR

and σHALS = σHSAR . The differences in the values of μH provide
an estimate of the respective height bias, while the differences
between the values of σH provide a measure of presence of
outliers. To ease interpretation of the results, we report the
difference in the mean values of the ALS- and SAR-based DSMs
given by ΔμH = |μHALS − μHSAR |.

Finally, we also provide the ratio between the computation
times of the fastest method with respect to the other. This
ratio, referred to as tr, provides the user an indicator of the
computational complexity required by each approach. For the
fastest method, tr = 1. The method’s computational footprint is
determined by the time required to perform pulse compression
in range, azimuth, and elevation.

In this work, we do not analyze the super-resolution capabil-
ities provided by each method, as ALS-based DSM products do
not contain information on the walls or facades of the buildings.
As a consequence, SAR-based DSMs from methods providing
super-resolution could yield a lower κ coefficient in comparison
to those without super-resolution capabilities. The usage of a
combined TLS- and ALS-based DSM could be a better solu-
tion in order to account for this property. The super-resolution
capability of a method is independent of whether or not it is
applied to images in radar or map geometry. We refer the reader
to e.g., [61], [62] for more details.

IV. EXPERIMENTAL RESULTS

A. Data and Test Site

Here, we introduce SAR datasets that were acquired with
Fraunhofer FHR’s Ka-band MEMPHIS sensor [63] over two test
sites. The first test site was Hinwil (Switzerland); an orthophoto
is shown in Fig. 3(a); the second test site was Memmingen
(Germany)—an orthophoto is shown in Fig. 5(a). The sensor
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Fig. 3. Orthophoto, SAR image, scatterers map, and DSMs of the test site in Hinwil (Switzerland). In the SAR image, red rectangles indicate two objects where
the height accuracy was computed locally.

was equipped with four receiving antennas, enabling single-pass
multibaseline cross-track interferometry (3 baselines). Table I
lists the main system parameters. The 2-D SAR image focus-
ing was performed with a graphic processor unit-based TDBP
processor [64]. The geolocation error of the images provided
by MEMPHIS was found to be a few centimeters in an analysis
of the signatures of corner reflectors deployed in the area of
interest [65].

B. Graphical and Numerical Results

The four-stage procedure described in Section III was applied
to the MEMPHIS data recorded over the test sites.

The first test site is located in the industrial quarter of Hinwil
(Switzerland). Fig. 3(a) and (b) shows an orthophoto of the
test site and the radar brightness of one channel after applying
multilooking with a 5 × 5 sliding window. The red polygons



4346 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 4. Top view of six DSMs of the building used for numerical evaluation
in Hinwil. The colormap encodes the height above the ground in meters.

TABLE I
MEMPHIS SYSTEM PARAMETERS

indicate areas where the average (μHSAR ) and standard deviation
(σHSAR ) of the height was computed. Fig. 3(c) and (d) illustrates
maps of the local number of scatterers and the top view of
the ALS-based DSM used for the performance analysis. The
map of scatterers shows an absence of targets (dark blue) in the
shadows cast by buildings or trees. The ground cells usually
contain a single scatterer (light blue). Fig. 3(e) and (f) shows
two SAR-based DSMs obtained with StOMP and MLE after
filtering points with an entropy higher than 0.3. The SAR-based
DSMs did not have scatterers on some asphalt-covered roads
due to their inherent high entropy value. Visual inspection of
the images in Fig. 3(e) and (f) shows that the DSMs derived
using MLE based on 3-D geocoded SLCs resembles more the
ALS reference DSM than does the StOMP-based DSM.

Table II lists quality indicators obtained after applying the
different pulse compression methods in elevation. Methods
based on 3-D geocoded SLCs as input provided better global
quality indicators (κr, μΔI , and σΔI ), than those based on 2-D
images. The local indicators ΔμH and σHSAR were computed
with two objects, each containing a section of the same building.
The first object, labeled “1” in Fig. 3(a), is a flat rooftop. The
second object, labeled “2,” is a flat octagonal-like shaped rooftop
module. The mean and standard deviation of the height above
ground of the first rooftop are 9 m and 0.17 m based on the
DSM derived with ALS data. The octogonal rooftop component
has an average height of 15.5 m and a standard deviation of
0.24 m. Fig. 3 shows that the radar brightness of the two rooftops
of the building is significant at Ka-band, and thus, a robust
SAR-based reconstruction of the DSM is possible. For the two
objects, based on ΔμH in Table II, MLE, LARS, and StOMP
provided the best results, while the methods based on 3-D images
performed in last position. However, MLE yielded the best val-
ues for σHSAR when operating with 3-D images. The parametric
spectral estimators and the compressive sensing approaches are
a tradeoff solution based on the values of ΔμH and σHSAR .
The multidimensional search-based variants of MUSIC, such
as MD-MUSIC and SSF, outperformed the single-dimensional
search-based MUSIC based on all quality indicators listed in Ta-
ble II. The nonparametric spectral estimator MUSIC was found
to be the fastest approach when operating with 2-D images,
followed by StOMP. The spectral parametric approaches SSF
and MD-MUSIC demanded the most computation time due to
the presence of many ground cells with more than two scatterers
in layover.

Some graphical results from Hinwil are shown in Fig. 4. The
ALS-based DSM of the two objects used for evaluating locally
the height errors is depicted in Fig. 4(a). Fig. 4(b)–(f) illus-
trates some SAR-based DSMs—one will observe that the DSMs
derived with 2-D images have more outliers (dark red points)
than those with 3-D images. This reflects the values of σHSAR in
Table II. Comparison of the DSMs generated with (e) the com-
pressive sensing approach LARS and (f) the parametric-spectral
estimation method MLE shows that the former generated more
errors above the rooftops of the buildings.

The second test site is located at the Allgäu airport in Mem-
mingen (Germany). Fig. 5(a) and (b) shows an orthophoto of the
test site and the amplitude of the radar brightness of one channel
after applying multilooking with a 5 × 5 sliding window. Red
rectangles indicate the objects for computing the local quality
indicators μHSAR and σHSAR . Fig. 5(c) and (d) illustrates a map of
the number of scatterers and the top view of the ALS-based ref-
erence DSM used for the performance analysis. The map shows
an absence of targets (dark blue) on some rooftops, the apron
of the airport, a portion of the airport runway, and the shadows
cast by buildings or trees. The ground cells usually contained
a single scatterer (light blue). Double scatterers (yellow) are
mainly found in trees. Fig. 5(e) and (f) shows two SAR-based
DSMs obtained with StOMP, and MLE after filtering points with
an entropy greater than 0.3. In contrast to the Hinwil test site,
the rooftops of some buildings in Memmingen did not have a
significant backscatter and thus, the SAR-based DSMs did not
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Fig. 5. Orthophoto, SAR image, scatterers map, ALS- and two SAR-based DSMs of the test site in Memmingen (Germany). In the orthophoto the red rectangles
indicate the two objects used for computing locally the accuracy in height.

contain them when compared to the ALS-based DSM. The areas
indicated by red polygons contained trees; here, one observed
the most significant differences between the multiple SAR-based
DSMs.

Table III shows the performance analysis after applying the
methods described in Section III. Based on the global indicators
κr, μΔI , and σΔI the methods based on 3-D geocoded SLCs
performed best. The local indicators were computed with two
objects, labeled as 1 and 2 in Fig. 5. The first object is a flat
rooftop. The mean and standard deviation of the height above
ground of the rooftop were 5.5 m and 0.24 m, respectively. For
this object, based on ΔμH in Table III, the compressive sensing
approach StOMP, and the nonparametric spectral estimators
using 2-D geocoded SLCs had the smallest errors. The methods
based on 3-D images performed worst, but did yield the smallest
values of σHSAR . Similar to the Hinwil case, MUSIC operating
with 2-D images and StOMP were the fastest methods; however,
the spectral parametric approaches required less computation

time, as there were fewer ground cells with two or more scatterers
in layover. A comparison of Δt obtained with the parametric
spectral estimators in Table II with Table III shows the influence
of the multidimensional search on the computational complex-
ity. No such influence was observed in the values of tr provided
by the compressive sensing-based approaches.

Fig. 6(a) illustrates the ALS-based DSM of the object used for
evaluating locally the height estimation accuracy. The building is
located on the left in the DSM. Visual inspection of Fig. 6 shows
that the DSM derived with 2-D images and MUSIC had a large
number of outliers, reflected in the value of σHSAR in Table III.
One can also observe that for a particular pulse compression
method, the derived DSM had fewer errors when using 3-D
images. Comparison of the DSMs generated by the compressive
sensing approach LARS and the parametric-spectral estimation
method MLE showed that the former had more errors above the
rooftops of the buildings but fewer than the MUSIC-based DSM
when operating with 2-D images.
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TABLE II
TEST SITE: HINWIL

σHALS was 0.17 m and 0.24 m for the first and second object, respectively. SnP-2D refers to spectral nonparametric methods using 2-D images,
SP stands for spectral parametric, and CS stands for compressive sensing.

TABLE III
TEST SITE: MEMMINGEN, GERMANY

σHALS is 0.24 m and 0.07 m for the first and second object, respectively. SnP-2D refers to spectral nonparametric methods using 2-D images, SP
stands for spectral parametric, and CS stands for compressive sensing.

The second object (red rectangle in Fig. 5) used for the perfor-
mance analysis is a large portion of grasslands surrounding the
runway and some asphalt-covered roads. The mean and standard
deviation of the height above ground of the object were 0.27 m
and 0.07 m. Based on the results listed in Table III, the methods
using 2-D geocoded SLCs were used to produce DSMs with
a more accurate height estimate of the ground surface than
those using 3-D images. The best performance was given by
MUSIC-based methods, while CBF and StOMP were ranked
last.

V. DISCUSSION AND CONCLUSION

A. Discussion

In this work, we evaluated multiple tomographic reconstruc-
tion methods to derive DSMs based on either 2-D or 3-D
geocoded SLC products. The methods were applied to single-
pass multibaseline InSAR data at Ka-band. Based on the κr,

the global mean and standard deviation of the height error in
Tables II and III, methods using 3-D geocoded SLCs were seen
to better reproduce the ALS-based DSM than those using 2-D
geocoded SLC products. Visual inspection of the corresponding
DSMs revealed that a pulse compression method introduced
fewer outliers when using a covariance matrix computed at each
height level. This suggests that these methods are less sensitive
to phase noise or involve weaker sidelobes in elevation. The
local and global standard deviation of height error was utilized
as a measure of this property. When the methods were based
on 2-D images, the parametric spectral estimators performed
best, followed by the techniques based on compressive sensing
theory and the nonparametric spectral estimators. As expected,
this performance ranking is similar to those reported when
images are used in radar geometry [26]. For data acquired
with a large number of baselines, methods operating with 2-D
geocoded SLCs can be expected to provide DSMs with fewer
errors due to sidelobes and phase noise than those shown here.



MÉNDEZ DOMÍNGUEZ et al.: DERIVING DIGITAL SURFACE MODELS FROM GEOCODED SAR IMAGES AND BACK-PROJECTION TOMOGRAPHY 4349

Fig. 6. 3-D reconstruction of buildings in Memmingen using different pulse
compression methods in elevation. The colormap encodes the height above
ground in meters.

In that case, the methods using 3-D geocoded SLCs and the
parametric spectral estimation methods might be impractical due
to the required additional computation time. Red rectangles in
Figs. 3(b) and 5(a) indicate objects with flat surfaces, and thus,
the parameter σHSAR in the tables relates to the smoothness of
the rooftops or ground of the corresponding DSMs. A measure
of the planarity [66] of the different DSMs could be an alter-
native quality indicator for comparing the performances of the
methods. In terms of the height accuracy given by ΔμH , the
parametric spectral estimators ranked in first place, followed by
the compressive sensing-based approaches. The methods using
3-D images performed worst, providing results comparable in
quality to the nonparametric spectral estimators operating with
2-D geocoded SLC products.

The DSMs shown in this work can be further improved
by applying additional denoising techniques. Denoising of the
covariance matrices could be performed with methods such
as [54]–[56] to reduce the standard deviation of the height
error. The computation of the covariance matrices can include
diagonal loading to achieve super-resolution, as in the CBF
variants [32]–[34]. However, this process can introduce 1) a
loss in the signal to interference noise ratio, 2) an incorrect
estimate of the output power if the iterative process involved
in the computation of the loading factor does not converge to a
valid solution, and 3) an incorrect estimate of the output power
without a priori knowledge of the error bound of the steering
vector. Nonparametric spectral estimation methods can offer
a better performance when exploiting volume denoising [67]

before detection of maxima. Exploiting the value of the entropy
and increasing the multilooking factor can help us to reduce
the standard deviation of the height error of a certain DSM as
the number of outliers decreases accordingly. Postprocessing
techniques, such as clustering, or the use of a priori knowledge
of the scene could be applied to further improve the DSMs. For
single-pass interferometric airborne SAR datasets, single-look
tomographic processing is challenging due to the typically lim-
ited number of baselines. To preserve details, we recommend
using a DEM with a fine sample interval in northing and easting
and computing the covariance matrices by adaptively averaging
inside a sliding window [54]. However, the sample interval
should be large enough to ensure that the covariance matrices
do not become singular.

The presence of speckle noise can affect the displacement
field and lead to inaccurate offsets when deriving the normal
dimension. This can be mitigated by using a 3-D image obtained
by incoherent summation of the 3-D K geocoded input images,
or by applying image denoising techniques, such as the work
in [67]. Raytracing methods are valid alternatives to derive
the elevation dimension without a need for focusing one 3-D
geocoded image.

In map geometry, a DSM can also be obtained by threshold-
ing the power of the pulse compressed signal along elevation.
However, evaluation of those approaches is not trivial, as the
computation of the threshold plays a key role in the quality of the
resulting DSM. If a DEM of the area of interest is not available,
the user can utilize a plane at the lowest ground height or located
below the ground. In those cases, the computation time increases
since we have to focus more images, and the resulting DSMs
might include some points below the ground due to phase noise
or sidelobes.

The computational complexity involved in the process of de-
riving DSMs using SAR images in map geometry is significantly
greater than algorithms applied in radar geometry. A possible
solution to reduce the computation time is the use of a coarser
height sample interval at a cost of degrading the height precision.
Interpolation of the signal in elevation could be an alternative
solution to be studied.

VII. CONCLUSION

In this work, we presented steps required to derive a DSM
from a set of geocoded SAR images acquired in a tomographic
configuration. We described diverse tomographic reconstruction
techniques and introduced the necessary operations so that the
methods can operate based on 2-D or 3-D images. The perfor-
mance of the methods was evaluated and compared in terms
of their capability to reproduce the corresponding ALS-based
reference DSM as well as the height accuracy of the resulting
DSM. Both numerical and visual inspections indicated that
methods using 3-D geocoded SLCs yielded the best perfor-
mance, i.e., the resulting DSMs had fewer outliers and retained
more information of the illuminated area at a cost in degraded
height accuracy. In terms of computational complexity, height
accuracy, and number of errors, compressive sensing methods
operating with 2-D SAR geocoded SLCs offered high accu-
racy with comparatively few outliers. Comparisons of DSMs
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obtained with SAR images in map and radar geometry is fore-
seen in future work. Adaptations of the parametric spectral es-
timators and the compressive sensing-based methods to operate
with 3-D images will also be studied.
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