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Multimodal Urban Remote Sensing Image
Registration Via Roadcross Triangular Feature

Kun Yu , Xiao Zheng, Bin Fang, Pei An , Xiao Huang, Wei Luo, Junfeng Ding, Zhao Wang, and Jie Ma

Abstract—Automatic image registration of multimodal urban
remote sensing images remains a critical challenging task in re-
mote sensing image analysis due to significant nonlinear radiation
distortions between multimodal image pairs; most of the traditional
methods focus on the feature point detection and its local descrip-
tion and ignore the robust road information in multimodal urban
remote sensing images. Motivated by this, we propose a fast and
robust registration method for multimodal urban remote sensing
images via road intersection triangular features. The proposed
method obtains three main stages: Road lines extraction from im-
ages, intersection triangular feature construction, and triangular
feature matching. The qualitative and quantitative experimental
results show that the proposed method significantly outperforms
other state-of-the-art methods, even when others completely fail to
achieve the registration task of cross-modal images, our method
still maintains good robustness and matching efficiency.

Index Terms—Image matching, multimodal image registration,
road intersection triangular feature, urban remote sensing.

I. INTRODUCTION

IMAGE registration is a fundamental and challenging prob-
lem in multimodal urban remote sensing images, the primary

goal of which is to align the reference image and sensed image,
which are about the same target scene captured by different
sensors, at different times or even from different viewpoints.
Multimodal urban remote sensing image registration is a critical
prerequisite in a wide range of applications, such as image
mosaic, image fusion [1], [2], environmental monitoring, change
detection, autonomous positioning of unmanned aerial vehicle
(UAV) [3].

The registration problem of urban remote sensing image is
typically addressed by two types of methods: Area-based meth-
ods [4] and feature-based methods [5]–[9]. Area-based methods
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mainly search the optimal geometric transform with a specified
similarity metric and depend on an appropriate patch similarity
measurement for creating pixel-level matches between the ref-
erence image and sensed image, in which mutual information
(MI) [10] and Kullback–Leibler [11] are widely accepted. As a
direct registration strategy, the area-based methods are generally
sensitive to intensity change and illumination change. Another
classic adopted pipeline is the feature-based method, including
feature detection and descriptor, feature registration, and trans-
form modal estimation.

Compared with area-based methods, the feature-based meth-
ods are more robust, which can overcome the above defects
and establish the geometric relation more effectively via reg-
istration points [12], lines, contours, or regions [13], [14]. In
particular, feature detection can extract the distinctive structure
from the image, and feature description may be regarded as
an image representation method that is widely used in image
coding and similarity measurements. The representative method
is scale-invariant feature transform (SIFT) [15], which can
extract feature point as the local extrema in a DoG pyramid,
filtered using the Hessian matrix of the local intensity values.
Subsequently, the speed-up robust feature (SURF) [16] have
been proposed that accelerates the SIFT by approximating the
Hessian matrix-based detector using Haar wavelet calculation.
To extract robust tie-points between multimodal remote sensing
images, HOPC [17]and DLSS [18] are proposed based on phase
congruency. Although HOPC performs feature detection, HOPC
relies on accurate geographic information, it is essentially a
template matching method, and unfortunately it is designed for
a slight translation and have some limitations in case image pairs
with scale and rotation issues. Besides, HOPC uses Harris [19]
detector to detect the feature points; however, Harris is sen-
sitive to nonlinear radiation distortions of multimodal images.
Based on HOPC, Li proposed a feature matching method named
radiation-variation insensitive feature transform (RIFT) [20].
RIFT uses phase congruency information instead of image inten-
sity for feature point detection, and adopts maximum index map
(MIM) which is constructed from the log-Gabor convolution
sequence for feature description. However, RIFT does not build
a scale space for feature detection and description, so that when
the scale of the multimodal image is inconsistent, RIFT cannot
be applied to matching at all. In order to evaluate a local patch
similarity to find correspondences between multimodal images,
the DoG detector [21] and a local EHD descriptor [22] are
proposed. The EOH descriptor [23] can construct the feature
description by using the edge distribution of four directional
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Fig. 1. (a) and (b) show the key points between optical (left) and NIR (right) urban remote sensing images, which are respectively detected by SIFT and SURF.

edges and one nondirectional edge, and it can keep structure
information even when there are significant intensity variations.
Different from the EOH descriptor, based on the local EHD
descriptor the Log-Gabor histogram descriptor (LGHD) [24]
uses multiscale and multioriented Log-Gabor filters to replace
the multioriented spatial filters. Bian [25] proposed a grid-based
motion statistics method (GMS), a simple means of encapsulat-
ing motion smoothness as the statistical likelihood of a certain
number of matches in the region. Since GMS does not consider
the size of the image when dividing the grid, the rectangular
grid will be generated for images with inconsistent size, which
will make the feature points distribution uniformly in the grid. In
addition, GMS does not have rotation invariance in pursuit of real
time. In addition, in the multimodal image matching problem,
it is another important task to obtain the reliable and stable
correct matching relationship while removing the mismatching
relationship. Different from the traditional Ransac [26] method,
the locality preserving matching method (LPM) [7] is designed,
the main principle of which is to maintain the local neighborhood
structures of potential true matches.

The remote sensing images are generated by different imaging
mechanism, there are wide differences in image pixel quality in
the same urban area at different times (i.e., season), different
sensors (i.e., near-infrared (NIR), SAR). Therefore, traditional
methods such as SIFT use image local neighborhood informa-
tion to extract feature points from the multimodal images have
become unreliable. For multimodal images of the same scene,
due to the difference in imaging principles and spectral ranges,
the grayscale distribution between the images has obvious char-
acteristics of the nonlinear gap. Based on this, the grayscale
transformation function will be complicated, and it is difficult
to express the function uniformly in a simple form. Aiming at
the registration problem of urban remote sensing images, the
traditional methods based on local point feature registration such
as SIFT and have the following four problems.

1) A lot of unreliable feature points will inevitably be detected.
As shown in Fig. 1, due to the severe variation in the statistic of
gradients around the feature point, a large number of nondupli-
cate feature points are detected redundantly in the multimodal
image, which interferes with the subsequent feature description

Fig. 2. 128-dimensional feature description values of corresponding key
points between optical (left) and NIR (right) by SIFT. The closer the curves
are, the more equivalent the description information of key points are. Due
to the nonlinear radiation distortion of multimode image pairs, the description
information of corresponding key points have obvious differences, which will
reduce the robustness for matching.

and registration process. In Fig. 1 (a), although there are about
3819 feature points in the optical image and 4876 feature points
in the NIR image detected by SIFT, only about 45% feature
points are duplicate and have the same pixel location. As for
Fig. 1(b), there are about 1972 feature points in the optical
image and 1600 feature points in the NIR image detected by
SURF, and 49.4% feature points are duplicate. A large number
of unreliable duplicate points will seriously affect the efficiency
of the registration process.

2) The differences in local feature description between mul-
timodal images. The feature description is a vital step for im-
age registration; however, due to the different sensor imaging
mechanisms and different imaging environmental conditions,
different degrees of gradient inversion and nonlinear radiation
distortions will exist between multimodal images. Hence, the
traditional local feature description of the corresponding points
cannot keep consistent, and the invariance of registration gets
lost. It can be seen in Fig. 2 that the 128-dimensional local
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Fig. 3. Proposed method for multimodal urban remote sensing image registration.

feature description of the corresponding points marked with a red
circle in the optical and NIR images have obvious differences.
The lower the degree of polyline coincidence, the greater the
difference in characteristics.

3) Feature point registration will be easily affected by the
local repetitive structure. After using local features to describe a
certain feature point, due to the lack of contextual information, it
is more likely to be affected by the local repetitive structure and
the symmetry structure. This will cause mismatches between
feature points and ultimately affect the registration accuracy.

4) High-registration time complexity. It will cost a lot of
registration time to match a mass number of feature points with
high-dimensional feature description, which is the disadvantage
of the local feature point registration methods. Although the
emergence of fast search methods such as KD-tree alleviated
this problem, the issue has not been solved fundamentally.

To address these issues, we propose a fast and robust mul-
timodal remote sensing image registration method based on
road intersection extraction and intersection triangular feature,
the diagram is shown in Fig. 3. The road is a robust feature
that can be seen everywhere in urban remote sensing image,
although the number of the road intersections is small, these
intersections are also extremely stable, which is an excellent
solution to replace traditional feature points for matching. The
contribution of proposed method mainly includes the following
fourfold.

1) We proposed a fast and robust registration method for
multimodal urban remote sensing images. The proposed method
is more robust than others. Even when other methods completely
fail to achieve the registration task of cross-modal images, our
method still maintains good robustness and matching efficiency.

2) Road lines and intersections extraction: Based on the road
segmentation model of remote sensing image and training a large
number of labeled datasets, we can extract the road network from
multimodal urban remote sensing image pairs and the skeleton
and line fitting methods are adopted to detect more accurate

road centerlines. Subsequently, the road intersections can be
calculated by the road centerlines, these road intersections are
used for feature points for our next description.

3) Triangular feature construction: Due to the differences in
the texture pixel between the local neighborhood around the
feature point, the information provided by these local neighbor-
hood is limited, which is not conducive to distinguishing the
repetitive and symmetrical structures. Therefore, we construct
the intersections triangular feature to describe the relationship
between feature points. These triangular features not only main-
tain nonneighborhood information within a certain range but
also speed up the process of feature matching due to the simple
feature description.

4) Triangular feature matching: We adopt the NNDR to obtain
the corresponding triangular feature structures in the multimodal
images. Since each triangular feature structure can estimate a
set of transformation parameter R and t, combined with the
best matching function we proposed, we filter out the most
accurate R and t as the matching result. In this step, because
the dimensionality of the triangular feature structure is extremely
low, and the number of feature points is much less than traditional
local descriptors, the matching efficiency is higher. Besides,
since the proposed repetitive rate of road centerlines is used
to evaluate the R and t of each triangular feature structure,
theglobal optimization method can be achieved. The remainder
of this article is organized as follows. Section II introduces the
proposed registration method. In Section III, the experimen-
tal results and corresponding analyses are exhibited. Finally,
Section IV concludes this article.

II. PROPOSED REGISTRATION METHOD

A. Road Network Extraction From Multimodal Urban Remote
Sensing Image

Road network extraction is the most important salient feature
in multimodal urban satellite and aerial images, and it can also be
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Fig. 4. Diagram of road extraction. (a) Input image. (b) Inferred road. (c) Binarization. (d) Morphological operation. (e) Road skeleton.

considered as a segment problem. Although manual extraction
of roads from these images is possible and more accurate than
computational work, in terms of cost and time manual, extracting
road information automatically and efficiently has more practi-
cal application significance. In recent years, a variety of methods
have been proposed to extract the road network. Traditional un-
supervised methods mostly use different threshold segmentation
schemes based on the difference between the grayscale value
of the road and background [27]. However, in complex urban
scenes, there is no obvious diffidence of grayscale value between
the road and the backgrounds such as buildings and squares.
Besides, the deep neural networks are adopted to understand the
road information of remote sensing image [28], such as a seman-
tic segmentation neural network (ResUnet), which combines the
strengths of residual learning and U-Net, is proposed for road
network extraction [29]. The segmentation model ResUnet has
the rich skip connections, which allow designing the networks
with fewer parameters and outperforms U-Net [30] and other
state-of-the-art deep learning methods of road extraction [31].
ResUnet as a semantic neural network combines the strengths
of both U-Net and residual neural networks.

The input training images with three channels and labels are
tiled into 1300× 1300 pixel chips. The topology contains several
residual blocks, stacked on top each other, having different filter
sizes. Residual blocks are meant to make the network to converge
faster and the basic concept is to use addition to merge the initial
feature map with the information from the extracted patterns
resulted after one pass through the residual block. ResNet can
serve as an encoder for a semantic segmentation problem. In
this article, inspired by the segmentation model ResUnet and
the winning SpaceNet3 [32], we use a ResNet34 encoder with
a U-Net inspired decoder. The size of the convolution kernel is
7×7, and the stride is 2. In each residual block, the step size of
the first convolution is 2, and the step size of the rest convolution
operations is 1. We utilize SpaceNet3 satellite imagery and
geocoded road centerline labels to build training datasets for
our models. We include skip connections at every layer of the
network, and the Adam optimizer is with the default parameter.
The skip connection is to solve the problem of gradient disap-
pearance, the skip connection can better transmit the gradient
to a shallower level in the process of later transmission. Adam
as an optimizer can make our model converge faster and reduce
the time cost. The loss function is defined as follows [33]:

L = αLBCE + (1− α)LDice (1)

where LBCE means the loss of binary cross entropy and LDice

is the Dice coefficient.When α = 0.75, it can reach the best
performance.

The inferred road information can be seen in Fig. 4 (b), which
is predicted by our adopted model, and the grayscale value
represents the coefficient level of the inferred road information.
In order to refine these road vectors, we attempt to close the small
gaps and remove spurious connections not already corrected
via the image preprocessing methods including binarization,
opening and closing procedures, and road skeleton [see in Fig. 4
(c)–(e)].

B. Road Intersection Extraction and Triangular Feature
Construction

The fitting centerlines of the road, and the subsequent detec-
tion and description of intersection points are all built based on
the single-pixel skeleton image. Once the skeleton images are
extracted from the multimodal image pairs, the road intersec-
tion points extraction and description are needed to distinction
between center lines.

In multimodal urban remote sensing images, the road inter-
section is still an excellent robustness feature. Even if part of
the predicted road is missing, such as being blocked by clouds,
as long as most of the roads can be accurately predicted, the
centerline of the road can be fitted from the binary skeleton
image. Subsequently, the intersection points of centerlines can
be considered as point structures with distinguishability and
matchability. In particular, if the intersection point is on the
extension of the road centerline and not on the actual road, the
point can still be regarded as a feature point and constructed
triangular feature. The concept of intersection points in this
article is a broad term.

To speed up the straight lines detected time, the uniform
sampling operation is adopted first for the skeleton image of
the road to get more sparse data. The next step is dedicated to
obtaining the vector map of the centerline by using RANSAC.
In RANSAC algorithm, a sample of data is randomly selected
which is considered as the primary model. A set of data points
within threshold distance t of the model has been computed by
the algorithm to reestimate all of the points leading to the best-fit
line selection.

In addition, we will remove the interior points from data when
there is a best-fit line, to further accelerate the speed of fitting
straight lines. The schematic diagram of interior point removal
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Fig. 5. Schematic diagram of interior point removal. The green line is the
fitting line, the red dotted box is the range of removing the internal points, and
the pixel width of the red dotted box is �W.

Fig. 6. Result of intersection point extraction. The white layer overlaid on the
optical layer means inferred road. The green lines mean fitting straight lines.
The red dots are road intersections as feature points. The yellow dots are the
intersection of the straight lines.

Fig. 7. Diagram of triangular feature matching.

is shown in Fig. 5. When the RANSAC is used to successfully
fit the road center line, we take the centerline of the road as the
benchmark and remove the redundant internal points within a
certain pixel width range �W, so that we can fit all the center
lines more quickly and accurately. The fitted straight lines are
shown as the green line in Fig. 6 , and the yellow dots mean the
intersections of straight lines within the image size. Obviously,
there are some yellow dots in the neighborhood which are shown
in the left diagram of Fig. 6. Hence, we construct a search tree
for all intersection points of lines and replace these points in the
Euclidean distance threshold with the center point in (2). The
result of road intersections is shown in Fig. 6

P (xc, yc) =
1

n

n∑
i=1

P (xi , yi), n = 1, 2, 3, · · · (2)

C. Triangular Feature Matching

1) Definition of Triangular Feature Matching: Given two
multimodal urban remote sensing image pairsS andT, the fitting
road line sets SL and TL can be extracted, respectively. We use
the intersection of randomly nonparallel road lines to build triple
elements denoted as SLi

and TLi
. By comparing the similarity

of the orderly interior angles {θ1, θ2} of the triples, the initial
matching set C = {(STi,TTi)}Mi=1 can be obtained. Given set
C, the task is to estimate the 4DOF similarity transformation
parameters

f(TTi|s, θ, t) = s[R(θ)STi + t] (3)

where θ is the rotation parameter and its range is θ ∈ [0, 2π]. t
is the translation vector and t ∈ R2. s is the scale parameter.
After the similarity transformation, our goal is to align as many
road lines as possible.

2) Nearest Neighbor Line and Overlap Rate of Lines: The
line on the 2D plane can be represented by the two parameters
r and θr. The parameter r means the distance from the line to
the original point, and the parameter θr is the angle between
the positive direction of the X axis and the vertical line which
is from the original point to the road line. Given two lines in
the multimodal image pair Li = (r, θr)i and Lj = (r, θr)j , the
similarity degree between these two lines can be defined as

LDLi,Lj = 0.5 ∗
(
| rirj − 1|+ | θiθj −1|

)
(4)

when LD is less than a given threshold ε, the two lines Li and
Lj are considered as corresponding lines.

When the transformation parameters s, θ, and t are solved, the
road line set SL can be transformed into the target road image
space, and the transformed road lines can be denoted as S′

L. For
each transformed road line, the best similar line can be found in
TL by (4), the measure distance of the line pair can be denoted
as

Dist(S′
Li,TL) = min(LDLi,Lj , Lj ∈ TL). (5)

When Dist(S′
L,TL) is less than the threshold ε, there will exist a

pair of overlapping road lines in the multimodal image pair. After
executing all the lines, the number of road lines which satisfy
the transformation can be presented as NLOs,θ,t. Finally, the
normalized overlap rate is used for measuring the parameters s,
θ, and t, and the normalized overlap rate is defined as follows:

NLOs,θ,t =
NLOs,θ,t

max(|SL|, |TL|) . (6)

For each triplet, it can get a normalized overlap rate of lines,
and we take the transformation parameter at the maximum
overlap rate as the final initial transformation parameter

s∗, θ∗, t∗ = argmax
s,θ,t

(NLOs,θ,t|ε). (7)

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

1) Train Dataset and Test Image Pairs: Train dataset: We
use the SpaceNet 3 datasets and road labels [34] including Las
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Fig. 8. Examples of multimodal image pairs from different datasets.

Vegas, Paris, Shanghai, and Khartoum datasets to train our model
of road network extraction. In order to improve the ability of
generalization, the selected datasets and road labels contain
a large number of road remote sensing and aerial imagery at
different times of the world, and cover a huge geographic area
from 400 to 3600 square kilometer. Training images with three
channels and labels are tiled into 1300 × 1300 pixel chips and
the image resolution is about 30 cm/pixel.

Test image pairs: The experiment test image pairs include
three kinds of multimodal urban remote sensing images as
shown in Fig. 8. optical −NIR image pair is from the Potsdam
dataset [35] which contains 38 the same size patches, each patch
consisting of a true orthophoto extracted from a larger mosaic.
The dataset mainly represents distant view remote sensing im-
ages and has a large number of ground repeatable structures.
Each patch image has the same size (6000× 6000) with op-
tical and NIR channels, and the resolution is 5 cm/pixel. The
resolution of the test image must be consistent with that of the
training image. To achieve this, we reduced the resolution of the
high-resolution test image through the down-sampling method.
optical − Intensity image pair as aerial image contains optical
spectral band and LiDAR intensity information on the Niagara
city in Canada. The image pair has certain difficulty in image
registration, due to the grayscale values of the corresponding
areas between the visible and intensity images present an ob-
vious nonlinear difference. optical −OSM image pair reflects
the square scene of the Huazhong University of Science and
Technology which contains the drone aerial photography and
open street map (OSM) area. As an abstract representation of re-
mote sensing image features, OSM map information has certain
common characteristics; high-resolution remote sensing images
and OSM map registration can be better applied to mapping
and geographic information update, and can also be used for
autonomous positioning of UAV. However, these image types are
completely different, and the OSM image is mainly composed
of simple geometric shapes that cannot reflect the real remote
sensing scene, this kind of cross-modal image is a huge challenge
for registration. To establish the ground truth of optical −OSM
image pair, we recorded the altitude, resolution, and direction
angle of the UAV.

2) Evaluation Metrics: To compare the robustness of the fea-
ture point detection and matching by our proposed method and

five other comparison methods (SIFT, SURF, EHD, LGHD, and
LPM). We use the repeatability Rep and the number of repetitive
correspondencesN c that can be established for detected features
as the evaluation metrics [36]. According to the homography
matrix between the two images, it can be calculated to determine
whether the feature points are repetitive. The repeatabilityRep is
a ratio between N c and the average number of features detected
in two image pairs S and T, repeatability Rep can be defined as
follows:

Rep =
N c

(ns + nt)/2
=

|{||xs
i −Hxt

i|| < 3}ns

i=1|
(ns + nt)/2

(8)

where H is the ground truth transformation between S and T;
xs
i and xt

i are the homogeneous coordinates of a feature in S
and T, respectively; ns and nt are the number of feature points
in S and T, respectively; |{||xs

i −Hxt
i|| <}ns

i=1| represents the
number of matches that satisfy ||xs

i −Hxt
i|| < 3.

The correct matches rate (CMR) is chosen as the evaluation
criterion [17]. The CMR is defined as follows:

CMR =
#CM

#C
(9)

where #CM represents the number of correct matching points;
#C represents the total number of matching point pairs. The point
pair with localization error less than threshold is regarded as the
correct match. The value of threshold is set to 3.0 pixel.

In order to directly evaluate the accuracy of the alignment
of the transformed image, we use the root mean square error
(RMSE) and mean error (ME) as the evaluation metrics.

B. Performance With Respect to Feature Point Detection

To demonstrate the advantages of our proposed road inter-
sections for multimodal images, experiments were performed
on the above test image pairs. Some state-of the-art methods
are compared which are SIFT, SURF, EHD, LGHD, and LPM,
among other five comparison methods, SIFT and SURF find
extreme points as feature points on the constructed scale space,
EHD and LGHD both adopt FAST [37] feature points. LPM
is used to remove the mismatching relationship when SIFT is
usually adopted to establish putative feature correspondences.
In order to evaluate the algorithm fairly and effectively, the pa-
rameters of each comparison method are fine-tuned to obtain the
best performance and are consistent in all test image pairs. SIFT
is implemented by the open-source VLFEAT toolbox [38], other
comparison methods are obtained from the authors’ website.

The Table I has shown evaluation results of the feature point
detection achieved by these six methods, the highest repeatabil-
ity values are highlighted with boldface font. As for all test image
pairs, although our method has a lower number of the repetitive
correspondences which depends on the road intersection points,
it can still maintain a high-feature point repetition rate. SIFT,
SURF, EHD, and LGHD almost have the same level of repetition
rate.

C. Performance With Respect to Matching Accuracy

To demonstrate the matching accuracy of our proposal, we
compare it with the above five state-of-the art methods. The
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TABLE I
REPEATABILITY RATE (REP) AND THE NUMBER OF REPETITIVE

CORRESPONDENCES(Nc) ACHIEVED BY COMPARISON METHODS AND OUR

PROPOSED METHOD

Fig. 9. Registration results of proposed method and other five methods on
optical-NIR image pair. The NIR image has affine transformation with rotate
transform (θ = 6◦) and scale transform (σ = 0.75). The feature matching points
in two images have been marked as red dots and green dots, and yellow and blue
matching lines mean true positive and true negative.

Fig. 10. Registration results of proposed method and other five methods on
optical-Intensity image pair. The Intensity image has affine transformation with
rotate transform (θ = 0◦) and scale transform (σ = 0.75). The feature matching
points in two images have been marked as red dots and green dots, and yellow
and blue matching lines mean true positive and true negative.

qualitative evaluation on the matching performance of the pro-
posed method and others are shown as Figs. 9, 10, and 11. The
test image pairs have different affine transformation, the NIR
image has affine transformation with rotate transform (θ = 6◦)
and scale transform (σ = 0.75) and the intensity image has
affine transformation with rotate transform (θ = 0◦) and scale
transform (σ = 0.75). For SIFT and SURF, they were matched
by the Euclidean distance ratio between the nearest neighbor
and the second nearest neighbor of corresponding features, and
the ratios is set as 0.7. The RANSAC algorithm was adopted for
SIFT, SURF, EHD, and LGHD these four comparison methods
to remove the mismatching points, LPM can remove mismatches
by preserving the local structure consistency of correct cor-
respondences matching. As for our method, we adopted the
proposed overlap rate of road lines as a global optimization
method to evaluate the rotate and scale result of each triangular
feature structure.

Fig. 11. Registration results of proposed method and other five methods on
optical-OSM image pair. The feature matching points in two images have been
marked as red dots and green dots, and yellow lines mean correct matching, blue
lines mean the fault matching and too many outliers to satisfy the RANSAC
conditions.

1) Qualitative Comparisons: In Figs. 9, 10, and 11, these
image pairs have different registration transformation including
rotation and scale changes. Therefore, matching on these mul-
timudal urban remote sensing image pairs is very challenging,
Figs. 9, 10, and 11 plot the matching results of SIFT, SURF,
EHD, LGHD, LPM, and proposed method.

As seen, SIFT, SURF, EHD, LGHD, and LPM have a certain
matching effect on optical −NIR image pair, the reason is
that the spectral range of the NIR image is closer to the optical
image’s, the feature description of image pair has a certain degree
of similarity. The number of correct matches (NCM) of EHD is
smaller among five comparison methods and NCM of LPM is
larger. The difference of NCM also proves that LPM is better
than RANSAC at eliminating mismatches, and RANSAC cannot
work well when the image transformation does not satisfy a
parametric model. LPM can obtain more robust correct matches
and perform the best among the five comparison methods. Our
proposed method can accurately extract the road intersection
points to complete the matching. In Fig. 10, due to the nonlinear
radiation distortions of optical and intensity image pair, the
traditional feature descriptions of correspondences such as SIFT
have a great difference, and the robustness of five comparison
methods is greatly reduced. Our method can still achieve a good
matching effect, accurately extract the main road intersection
points, and the robustness performance is far superior to other
comparison methods. In addition, the Fig. 11 represents a com-
pletely different cross-modal image pair. The OSM map to be
matched is a semantic label map, the map is structured by the
simple geometrical shape of buildings and roads which are not
real scenes, on this occasion other local description operators are
powerless. This image type is completely different from UAV
optical aerial image, this kind of image pair puts forward higher
and more difficult requirements for multimodal urban remote
sensing matching task. It can be seen that SIFT, SURF, EHD,
LGHD, and LPM completely fail to match on optical −OSM
image pair; however, only our method can extract feature points
effectively and match them accurately. The proposed method has
a unique advantage over the cross-modal matching problem.

The registration results of different multimodal urban remote
sensing image pairs are shown in Fig. 12, and affine transforma-
tion is used as the geometric model for checkerboard mosaic or
overlap images. As can be seen from the magnification displays
of the local areas, the alignment precision of our proposed
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Fig. 12. Registration results of the proposed method. (The top row is the
registration results with checkerboard or overlap, and the bottom row is the
magnification displays of the local area.).

Fig. 13. CMR scores of the proposed and comparison methods on three
multimodal image datasets. Some bars not shown mean that there are no correct
matches and CMR value is 0 by default.

method is very high and the local geometric distortion is very
small, which will meet the practical application.

The matching performance of the proposed method on the
multimodal urban remote sensing image pairs with nonlinear
radiation distortions is far superior to other state-of-the-art fea-
ture matching methods. The reasons may be as follows. a) We
choose the deep learning model to segment road information and
extract road intersection points from multimodal image pairs.
Although the number of road intersection points is not large,
these intersection points are robust enough to be considered as
feature points. b) The local description of the feature points
is abandoned, we propose to construct the intersection points
triangular features and describe the global information between
triangular features to prevent the description differences caused
by the local grayscale level information. In this way, the nonlin-
ear radiation distortions of multimodal images can be avoided
to disturb feature description. Therefore, the proposed method
is more robust than others on different multimodal datasets,
even when comparison methods completely fail to achieve the
registration task of cross-modal images, the proposed method
still maintains good robustness and matching efficiency.

2) Quantitative Comparisons: Fig. 13 is the quantitative re-
sults of the CMR metric, where shows the results of all methods
on three kinds of multimodal image pairs. As seen, the matching
performance of the proposed method is very stable and robust, it
is hardly affected by the type of radiation distortions, our method
is far superior to other methods. In optical −NIR image pair,
the difference in imaging mechanism between images is smaller
than that of the other datasets and image matching is relatively

TABLE II
QUANTITATIVE EVALUATION RESULTS OF THE PROPOSED METHOD

Fig. 14. Running time results of the proposed and comparison methods.

easy. In all comparison methods, LPM achieves better results
than SIFT, SURF, EHD, and LGHD, five comparison methods
can obtain higher matching scores on optical −NIR, EHD
performs the worst. In optical − Intensity image pair, the
difference is that the nonlinear radiation distortions are more
complex, CMR of most comparison methods declined signif-
icantly. However, the proposed method still has the highest
scores because of its resistance to nonlinear radiation distor-
tion changes. In optical −OSM image pair, five comparison
methods do not have the correct matches at all. Accordingly,
the green bar of each comparison method in the figure is not
marked, indicating that CMR value of the method is 0. CMR
result demonstrates that the comparison methods are completely
ineffective for this kind of cross-modal image pair.

In order to evaluate the alignment accuracy of the proposed
method, Table II reports the ME and RMSE of the proposed
method on all datasets. From the table, the precision of reg-
istration alignment is high, where the ME are approximately
1.32, 1.60, and 2.52 pixels on three datasets, and RMSE are ap-
proximately 1.47, 1.85, and 2.78 pixels. Due to optical −OSM
dataset is acquired by UAV, the ground truth of affine transforma-
tion in each image pair is mainly obtained by manually marking
a large number of control points, so ME and RMSE values of
optical −OSM dataset are higher than optical −NIR and
optical − Intensity, respectively. In spite of this, the ME and
RMSE values of optical −OSM dataset still remain within the
range of 3 pixels, which meets the matching requirements.

Furthermore, all methods are evaluated by the scale error
εS and rotate error εR metrics on three datasets in Table III,
the lowest values are highlighted with boldface font. As seen,
our proposed method compared with the other five methods
performs best and has the lowest error on each image pair.

D. Performance With Respect to Running Time

As well as the matching accuracy, the computational effi-
ciency is another important metric for evaluating the matching
performances. Fig. 14 reports the running time of each compared
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TABLE III
SCALE ERROR εS AND THE ROTATE ERROR εR ACHIEVED BY OUR AND COMPARISON METHODS

method on three datasets. The running time experiment has been
implemented in Matlab using a PC equipped with a 3.4 GHz CPU
and 4 GB of RAM. The running time metric of each method
contains all the matching processes including feature detection,
feature description, matching measurement, and mismatching
elimination.

As can be seen in Fig. 14, the proposed method performs best
and costs the smallest running time than other compared meth-
ods on three multimodal image datasets, the running time of the
proposed method is about half of SURF, which is the fastest of
all comparison methods. The green bars of comparison methods
on optical −OSM in the figure are not marked, indicating that
the methods cannot achieve the matching task, the running times
are infinite by default. Therefore it is meaningless to discuss the
running time results of comparison methods on optical −OSM
dataset. On the other two datasets, LGHD takes a longer running
time than other comparison methods.

It can be seen that our proposed method spent less time
than compared methods on the same multimodal image pair,
the reason is that our segmentation network model can quickly
extract the road information from the multimodal image pairs,
and several robust intersection points are used to construct
triangular feature. The constructed triangular features not only
maintain nonneighborhood information within a certain range
but also speed up the process of feature matching due to the
global feature description. In contrast, the comparison methods
have a lot of redundant feature points and local descriptions, the
redundant information will spend a lot of unproductive time.

In general, the proposed method can have a smaller running
time while maintaining a higher CMR score, and the matching
efficiency is the best than other compared methods.

E. Failure Cases

Although the proposed method has many advantages over
other comparison methods in multimodal urban remote sensing
image registration, there are some limitations and main failure
cases shown in Fig. 15. The limitations mainly include the
following aspects. 1) The resolution of the multimodal image
pairs must be consistent with that of training dataset images.
Fig. 15(a) shows that when the resolution of experimental
multimodal image pairs is higher than that of training images,
the width of segmentation road is smaller than actual road, the
red dotted lines indicate the width of actual road. 2) Since the
proposed method uses the straight lines to fit the segmentation
road information and obtains the intersection points, there are
errors and uncertainties in the coordinates of intersection points

Fig. 15. Failure cases that illustrate the limitations of the proposed method.
The red dotted lines indicate the width of actual road.

fitted by straight lines as shown in Fig. 15(b). 3) The proposed
triangular feature construction and matching need more than
three intersection points, so the method is not applicable to the
situation where the number of intersection points is less than
three as seen in Fig. 15(a) and (b).

IV. CONCLUSION

In this article, we proposed a fast and robust multimodal
remote sensing image registration method via road intersection
triangular feature. Our proposed registration method has mainly
three stages: Automatic road lines extraction from multimodal
urban remote sensing images, road intersection triangular fea-
ture construction, and triangular feature matching. The experi-
mental results show that the proposed method is more efficient
and robust than other state-of-the-art methods. Even when other
comparison methods completely fail to achieve the registration
task of cross-modal image pairs, the proposed method still main-
tains good robustness and matching accuracy. The qualitative
and quantitative comparisons on different multimodal urban
remote sensing image datasets demonstrate that our method has
superiority over the comparison methods.

Although the proposed registration method has many advan-
tages, there are some limitations and failure cases that have
been analyzed and discussed. In future, we will further study
how to improve the adaptation to the condition of fewer road
intersection points, we can assign a method that only one or
two road intersections are used to construct a matching struc-
ture. Multiscale feature integration can be adopted to combine
features of different scales to improve the robustness of feature
extraction under the conditions of complex backgrounds.
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