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An Improved Inherent Optical Properties Data
Processing System for Residual Error Correction in

Turbid Natural Waters
Jun Chen , Wenting Quan, Hongtao Duan , Qianguo Xing, and Na Xu

Abstract—Being able to accurately estimate inherent optical
properties (IOPs) at long time scales is key to comprehending
the aquatic biological and biogeochemical responses to long-term
global climate change. We employed the near-infrared band and
combined it with four “common bands” at visible wavelengths
(around 443, 490, 551, and 670 nm) to adjust the IOPs data pro-
cessing system, IDASv2. We applied the IDASv2 algorithm further
to correct for the residual error in images of turbid waters. We
evaluated the performance of the IDASv2 algorithm using datasets
covering a wide range of natural water types from clear open
ocean to turbid coastal and inland waters. Due to the water-leaving
signals’ sensitivity to the optically significant constituents of highly
turbid waters, the near-infrared band was very important for re-
trieving IOPs from those waters. In our analysis, we found that the
IDASv2 algorithm provided IOPs data with <28.36% uncertainty
for oceanic waters and <37.83% uncertainty for inland waters,
which was much more effective than what a quasi-analytical al-
gorithm provided. Moreover, the near-infrared band was better
at removing the residual error and partial intermission bias in
satellite remote sensing reflectance (Rrs) data because of the strong
absorption of pure water. We tested the IDASv2 algorithm with
numerically simulated and satellite observed data of turbid water.
After applying IDASv2, the IOPs data were accurately determined
from Rrs data contaminated by the residual error. Furthermore, the
mean intermission difference between Medium Resolution Spectral
Imager 2 and Visible Infrared Imaging Radiometer Rrs data at 443
and 551 nm decreased from 8%–25% to 1%–9%. These results
suggest that we can accurately estimate IOPs data for natural
waters including naturally clear and turbid waters.
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I. INTRODUCTION

OCEANIC color remote sensing initially focused on esti-
mating the chlorophyll-a concentration in the upper ocean

at basin and global scales [1], [2]. This narrow view focused
on using chlorophyll-a products to indicate plankton biomass,
to input chlorophyll-a concentration into primary production
models, or to trace oceanographic plumes [3]. However, ocean
scientists in the 1980s began to realize that sensors in space were
not simply interesting novelties but were essential for developing
their research at a global scale [4]. Water color is determined
by inherent optical properties (IOPs) like the absorption coeffi-
cient (a) and backscattering coefficient (bb), and chlorophyll is
just one of the optically significant constituents that influences
the IOPs of a water body [5]. Ocean color satellites can and
should generate more bio-optical products than just chloro-
phyll pigment concentration. The absorption and backscattering
coefficients are directly associated with optically significant
constituents in the water column [6], [7], and can be used to
determine the type of water [8], [9], subsurface light intensity
[10]–[12], phytoplankton community composition [13], [14],
carbon cycles [15], [16], and so on [5]. At present, absorption
and backscattering coefficient data are widely used to assess the
health of aquatic ecosystems.

Many IOPs processing systems include empirical, quasi-
analytical, or semianalytical algorithms and were established
over the past several decades [16]–[19]. These algorithms effec-
tively process satellite data when the satellites’ spectral bands
are similar to the algorithms’ requirements. However, some
problems can arise when the spectral bands do not agree well
with the algorithms’ inputs. For example, when applying the
algorithms proposed by Garver and Siege [17] and Smyth et al.
[19], modifications are needed to quantify the absorption coef-
ficients from Moderate Resolution Imaging Spectroradiometer
(MODIS) and visible infrared imaging radiometer (VIIRS) data
because these sensors do not have the spectral band at 510 nm
that the Garver and Siege algorithms require. As a result, for
practical applications we always have to adjust the retrieval
procedures according to the satellites’ spectral characteristics.
In addition, it is well known that different algorithms always
respond differently to the residual errors and intermission bias in
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satellite data [20], which can cause inconsistent outputs among
the different algorithms even for the same water-leaving signals
[21]. This is a disadvantage for generating smooth and long-term
series of IOPs data on global or local scales.

Second-generation satellites have four “common bands”
around 443, 490, 551, and 670 nm at visible wavelengths. By
using the remote sensing reflectance (Rrs) in these four “common
bands” as inputs, a quasi-analytical algorithm (QAA) [18] and an
IOP data processing system (Version 1, abbreviated to IDASv1)
[21] can estimate the IOPs from any visible band as long as the
Rrs for this visible band is known. For most of the open ocean,
because Rrs(551) and Rrs(670) are relatively stable, and Rrs(443)
and Rrs(490) are sensitive to phytoplankton and covarying op-
tically significant constituents [22], it is possible to effectively
derive IOPs from Rrs at these four “common bands.” However, if
the water is turbid, like some coastal water, optically significant
constituents absorb so much light that there is little radiance
escaping at blue bands [23]. Having such small amounts of
radiance escaping from turbid water means that small variations
in the IOPs might lead to the covarying magnitude of Rrs being
ignored at the blue bands. For example, Doxaran et al. [24] and
Han et al. [25] showed that the Rrs values at visible bands tend
to saturate because of the suspended particulate in highly turbid
water. Thus, it is questionable whether the four “common bands”
can offer sufficient optical information for estimating the IOPs of
highly turbid water. Fortunately, there is sufficient scattering that
overcomes the strong absorption at near-infrared wavelengths,
so the near-infrared wavelengths should be combined with the
“common bands” to retrieve IOPs from highly turbid water.

For a perfectly calibrated instrument, where the top-of-
atmospheric radiance or reflectance is error free, imperfect
atmospheric correction is the main source of error in the satellite-
derived Rrs. Considering all potential error sources in the at-
mospheric correction, Chen et al. [20] showed that there are
4.70% and 12.04% uncertainties in SeaWiFS Level-2 global
area coverage (GAC) Rrs(443) and Rrs(555) data for the open
ocean, respectively. The uncertainties for turbid waters are much
larger than for the open ocean [23], [26]. In the QAA algorithm,
because the Rrs data contained substantial uncertainties, when
a at reference wavelength (λ0) is “fixed” with high accuracy,
the uncertainties in Rrs(λ0) propagates to bb(λ0) following the
IOPs–Rrs relationship [27]. Thus, it is impossible to simulta-
neously obtain highly accurate absorption and backscattering
coefficients from satellite Rrs that is contaminated with errors
using the QAA or IDASv1 algorithms unless the uncertainties are
removed by correcting for the residual error [21]. Furthermore,
to accurately derive absorption and backscattering coefficients,
it is necessary to reconstruct the method of the QAA or IDASv1

algorithm.
Neural network models would be good candidate methods for

retrieving absorption and backscattering coefficients from satel-
lite or field Rrs data, if we can assimilate some spectral properties
of the residual error into the neural network procedures. Using
443, 490, 551, 670, and 865 nm as five “common bands,” in
this study, we updated the IDASv1 algorithm, used to retrieve
IOPs from natural waters, and we renamed it IDAS version 2
(IDASv2). Our specific goals were as follows:

TABLE I
RANGE OF OPTICAL PROPERTIES OF THE SYNTHETIC DATASET, OCEANIC

DATASET, LAKE DATASET, AND MATCHUP DATASET USED FOR TO INITIALIZE

AND EVALUATE THE MODEL

STD represents the standard derivation, while Y represents the power coefficient of the
particle backscattering coefficients.

1) to improve the IDASv1 algorithm with neural network
technology so that we could estimate absorption and
backscattering coefficients at near-infrared bands;

2) to test the accuracy and stability of the new IDASv2

algorithm at predicting the absorption and backscatter-
ing coefficients using field measurements collected from
natural waters;

3) to compare the performance of the IDASv2 algorithm with
the QAA algorithm for water with widely varying optical
properties; and

4) to analyze how well the IDASv2 algorithm corrects the
intermission consistency in data of turbid water.

II. DATA AND METHODS

A. Data Used

We used synthetic data, in situ data, matchup data, and satellite
data to train the IDASv2 algorithm and test how well it retrieves
the absorption and backscattering coefficients and corrects for
the residual error.

1) Synthetic Dataset: While we trained our model and tested
our procedures, we were limited by the availability of adequate
datasets because individual groups measured data from limited
regions, which made it difficult to assess how well the algo-
rithms performed at broader scales [5]. To overcome these data
limits, we generated a large synthetic dataset (see Table I) using
Hydrolight, which we used to train the IDAS algorithm. This
dataset had 443, 490, 551, 670, and 865 nm bands that contained
90,000 data points with chlorophyll-a kept randomly fixed from
0.003 to 80 µg l−1. We kept mineral material randomly fixed
from 0.006 to 1600 mg l−1, and we kept the gelbstoff absorption
coefficient at 443 nm randomly fixed from 0.001 to 10 m−1. All
these parameter ranges followed the default “Case 2” model that
is included in Hydrolight 5.2 [28]. Furthermore, we generated
another 6029 data points with Hydrolight to test if IDASv2 could
be applied to correct for residual errors in turbid waters. The
Hydrolight-simulated data can be considered error-free data,
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Fig. 1. Locations of field measurements. The blue triangle, red star, and green
circle represent Lake, matchup, and oceanic data sets, respectively.

noting that the Rrs data usually contain substantial uncertainty.
To keep consistent data quality with the Rrs data, we used a
numerical approach proposed by Chen et al. [20] to simulate the
residual error in Rrs and added these simulated residual errors
to the Hydrolight-simulated Rrs data.

2) Field Measurements: We collected three field datasets to
evaluate the accuracy and stability of IOP retrieval algorithms
for oceanic and inland lake waters (see Table I and Fig. 1).

The first dataset was a global set of field measurements
archived by the National Aeronautics and Space Administration
(NASA) SeaWiFS Project, known as the NASA Optical Marine
Algorithm Dataset (NOMAD). However, there were no Rrs(865)
data in the NOMAD dataset. To overcome this problem, for
each point, we calculated bb(865) using a bb spectral model
determined from field-measured IOPs data, and then we esti-
mated Rrs(865) using the IOPs–Rrs relationship that Bailey et al.
[29] developed. We augmented the NOMAD data with 218 data
points from the Yellow and the China Eastern Seas, 182 data
points from the Bohai Sea, 53 data points from the Hangzhou
Bay, 76 data points from the Oujiang River Estuary, and 74 data
points from the South Chinese Sea, and we called the augmented
data the oceanic dataset.

For our second dataset, we collected 187 data points from the
Taihu Lake, 30 data points from the Chaohu Lake, 25 data points
from the Dianchi Lake, 13 data points from the Qinghai Lake, 25
data points from the Three Gorges Reservoir, and 58 data points
from lakes in the United States, and we called these data the lake
dataset. Note that these data were rigorously measured following
the community-defined protocols for experiment deployment
and data collection that Mueller et al. [30] outlined.

Finally, we collected a matchup dataset from the SeaW-
iFS Bio-optical Archive and Storage System to evaluate how
accurate the IDAS algorithm is at deriving absorption and
backscattering coefficients from satellite Rrs. These matchup
data were field-measured IOPs versus satellite Rrs, but there
was no Rrs(865) in this matchup dataset. We implemented the
same procedure that we used for the NOMAD dataset to estimate
Rrs(865) and add it to the matchup data. In addition, we added
26 data points from the South China Sea, 27 data points from
the Yellow Sea and the East China Sea, 27 data points from the
Bohai Sea, and 10 data points from the Oujiang River Estuary.

We used the SeaBASS default exclusion criteria that Bailey and
Werdell [31] proposed to discard any “low-quality” data from
the matchup data.

3) Satellite Data: The Medium Resolution Spectral Imager 2
(MERSI2) is the second generation of China’s polar orbiting me-
teorological and oceanographic instruments. The satellite was
launched on 15 November 2017. To test how well the IDASv2

algorithm removed the residual error and provided consistent
intermission IOPs data from turbid water, we collected three
VIIRS and MERSI2 image pairs on 17 April 2018 from the
Eastern China Coastal Seas. We stitched together those three
images to make one big image that covered the entire Eastern
China Coastal Seas. Because there were many uncertainties in
the original calibration coefficients of the MERSI2 data, we used
the cross-calibration model that Chen et al. [32] developed to
improve the data quality of the MERSI2 images. To obtain the
Rrs of the turbid water, we removed the atmospheric effects in the
images using an iterative near-infrared atmospheric correction
[29].

B. IDASv2 Algorithm for IOPs Retrievals

The IDASv1 algorithm is a stepwise algorithm that first de-
rives the absorption and backscattering coefficients at reference
wavelengths from Rrs at four visible bands. Then the coefficient
estimates are extended to the blue and red wavelengths after ap-
plying a spectral model of the particle backscattering coefficient
(see detail in Appendix). However, the Rrs at visible bands is
less sensitive to variation in the optically significant constituents
than at the near-infrared bands for highly turbid water [24],
so the stepwise process meaningfully combines Rrs(865) into
the IDASv1 algorithm to retrieve IOPs from optically complex
water. Furthermore, to accurately obtain bb data from satellite
Rrs data contaminated with the residual error, we do not es-
timate the power coefficient (Y) of the particle backscattering
coefficient (bbp) directly from Rrs at visible bands in the IDASv1

scheme. Instead, we directly determine bb(670) from Rrs data.
Directly determining bb(670) ensures that bb(670) might be
highly accurate and be somewhat tolerant to the residual error in
satellite Rrs, which is very important for estimating suspended
sediment in turbid water [24], [33].

Based on those considerations for determining the two coeffi-
cients, we suggest the following conceptual models for estimat-
ing a(551) and bb(670):

a (551) = fnn [Rrs (443) , Rrs (490) , Rrs (551) ,

× Rrs (670) , Rrs (865)] (1)

bb (670) = gnn [Rrs (443) , Rrs (490) ,

× Rrs (551) , Rrs (670) , Rrs (865)] . (2)

fnn and gnn are neural network models for the a(551) and
bb(670) estimates. When a(551) is known, then bb(551) is
determined from Rrs following the relationship between IOPs
and Rrs as outlined by Gordon et al. [27]. Thus, Y is analytically
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Fig. 2. Flowchart for the IDASv2 algorithm.

determined as follows:

Y = 0.0849 log

[
bbp (551)

bbp (670)

]
. (3)

After applying the spectral model of the particle backscatter-
ing coefficient [34], bbp(670) can be extended to other wave-
lengths, which can be converted into the absorption coefficients
by substituting into the IOPs–Rrs relationship (see Fig. 2).

The absorption of pure water at 865 nm is one order of mag-
nitude larger than the absorption at 670 nm [34]. Moreover, the
phytoplankton absorption can be ignored at near-infrared wave-
lengths compared with pure absorption [35], so the variations
in a(865) mainly depend on the sum of detritus and gelbstoff
absorptions (adg). Generally, the adg(865) is far smaller than
adg(670) due to the exponential decrease of particle absorption
as wavelengths decrease [5]. Carder et al. [36], Kowalczuk
et al. [37], Tiwari and Shanmugam [38], and Hancke et al.
[39] showed that, from historical precedence, the average of
the spectral slope for adg is between 0.014 and 0.015 nm−1,
so adg(670) is more than one order of magnitude larger than
adg(865). Thus, the ratio of anw to a at 865 nm is at least two
orders of magnitude smaller than the ratio to a at 670 nm. In
other words, to correct for residual errors for turbid water, it is
more advantageous to use the 865 nm band than the 670 nm band
because it is easier to accurately obtain Rrs(865) than Rrs(670)
using the IOPs–Rrs relationship [29]. Thus, we suggest using the
865 nm band instead of the 670 nm band in IDASv2 to correct
for the residual errors for turbid water (see Fig. 2).

C. Statistical Criteria

In this study, we used the mean absolute percent differ-
ence (MAPD), root-mean-square of the log transformed error
(RMSElog), and unbiased mean relative error to assess the
accuracy of the IOPs retrieval algorithms. These statistics are
expressed as follows:

MAPD =
1

n

n∑
i=1

∣∣∣∣xnc,i − xc,i

xc,i

∣∣∣∣× 100% (4)

Fig. 3. Scatterplots of model-derived versus known a(551) and bb(670) for
the synthetic dataset. (a) and (b) Results obtained with the IDASv2 algorithm.
(c) and (d) Results obtained with the QAA algorithm. The “known” values are
from the Hydrolight simulations.

UMRE =
1

n

n∑
i=1

∣∣∣∣ xnc,i − xc,i

0.5xnc,i + 0.5xc,i

∣∣∣∣× 100% (5)

RMSElog =
1

n

√∑n

i=1
[log (xnc,i)− log (xc,i)]

2 (6)

xnc,i is the IOPs product of the ith element provided by retrieval
model. xc,i is the equivalent product of the ith element provided
by Hydrolight and in situ measurements. xm is the mean of the
absorption coefficients for a 3 × 3 box, and n is the number of
elements.

III. RESULTS AND DISCUSSION

A. Training the IDASv2 Algorithm With the Synthetic Dataset

Two neural network models in the IDASv2 algorithm retrieve
a(551) and bb(670) from Rrs at five “common bands” in the
second-generation ocean color satellites. For the purpose of
prediction, we trained two models using the synthetic dataset
that included errors in Rrs (see Table I). The scatterplots in
Fig. 3(a) and (b) present the a(551) and bb(670) that we de-
rived from the synthetic dataset versus the known Hydrolight
a(551) and bb(670), respectively. We found that, even though
large random residual errors were added into Rrs (e.g., ∼37%
random uncertainty at 670 nm band), the neural network models
estimated a(551) and bb(670) well, at least for this specific
synthetic dataset. Most points of the model-derived data and
known values centered around the 1:1 line, and the coefficients
of determination (R2) were no lower than 0.98. These results
indicate that the two neural network models effectively derived
a(551) and bb(670) from our error-included Rrs.
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Fig. 3(c) and (d) shows the scatterplots of the QAA model-
derived versus the known a(551) and bb(670) for the same
synthetic dataset that contained the errors. Overall, the QAA
algorithm performed well for the moderately turbid water, but it
is hard for us to explain the variation in the IOPs for the extremely
turbid waters. The difficulty arose because of the following.

1) The QAA algorithm was originally designed to retrieve
IOPs from the open ocean [18] and from moderately turbid
water [40], and it might not have been technically correct
to apply the QAA algorithm to the optically complex
turbid water.

2) The Rrs at visible bands became less sensitive to the
variations of optically significant constituents in the highly
turbid water [24].

3) There are many band ratio approaches in the QAA al-
gorithm, which made the algorithm very sensitive to the
residual errors in the Rrs data for clear or turbid water [20].

After comparing the IDASv2 algorithm results to the QAA al-
gorithm results, we found that IDASv2 more effectively retrieved
IOPs. Specifically, at the higher end (a(551)>2 m−1), there was
no statistically significant relationship between QAA-derived
and known a(551), but the IDASv2 algorithm significantly
strengthened the relationship between its derived a(551) and
the known a(551).

We noted that the QAA algorithm more effectively retrieved
a(551) than it did bb(670) [see Fig. 3(c) and (d)]. For example,
the statistical relationship between the QAA-derived and the
known a(551) is much more significant than the same relation-
ship for the algorithm-derived and known bb(670) values. This
discrepancy between the a and b relationships exists because of
the IOPs-Rrs relationship in the QAA algorithm, which causes
the uncertainty in a(551) and the Rrs data to propagate to
bb(670).

B. Algorithm Evaluation and Comparison

1) Testing the Algorithms for Open Ocean Water: We evalu-
ated the performance of the IOPs retrieval algorithms by compar-
ing the predicted IOPs produced by the algorithms to equivalent
field measurements. Table I describes that water bodies from the
oceanic dataset had wide dynamic ranges of optical properties.
For example, a(551) varied from 0.0597 to 26.0632 m−1, and
bb(670) varied from 0.0004 to 5.2761 m−1. Fig. 4 shows how
well the IDASv2 and QAA algorithms estimated a(551) and
bb(670) from global oceanic waters when we ran the algorithms
with the oceanic dataset. The results indicate that the IDASv2

algorithm effectively derived IOPs from the clear open ocean
and from turbid coastal water. Specifically, the IOPs derived
from the algorithm agreed very well with their equivalent in
situ measurements, and the determination coefficients were all
greater than 0.55. After comparing the IDASv2 model results to
the QAA model results, we found that IDASv2 more effectively
retrieved a(551) and bb(670). The MAPD values of the a(551)
and bb(670) that we retrieved with the IDASv2 algorithm were
less than 28.36% and were much lower than the MAPDs of the
a(551) and bb(670) that the QAA algorithm produced.

For most oceanic waters, including the open ocean and
some moderately turbid coastal water, the QAA algorithm can

Fig. 4. Comparison of field-measured with model-derived a(551) and bb(670)
for the oceanic dataset. (a) and (b) Results from the IDASv2 algorithm. (c) and
(d) Results from the QAA algorithm.

determine (a(551) < 0.5 m−1), a(551) with high accuracy
(∼16% MAPD value). Usually, the field measurements for Rrs

contain substantial uncertainty even though rigorous protocols
were followed for experiment deployment and data collection
(Mueller et al. 2003). Because bb(670) and Rrs(670) are very
small for the open ocean [20], a small absolute uncertainty in
the Rrs(670) data can lead to very large errors in retrieving
bb(670) when using the QAA algorithm. Consequently, many
scatterplots of field-measured versus QAA algorithm-derived
bb(670) deviated significantly from the 1:1 line at the lower end
(<0.002 m−1), even though the QAA algorithm performed well
at retrieving a(551) from oceanic waters. These results confirm
that the QAA algorithm is not noise tolerant for IOP retrievals,
at least for bb(670) in the open ocean.

The QAA algorithm was originally developed to retrieve IOPs
from clear and moderately turbid waters [5], even though there
already were successful cases of retrieving IOPs from some
natural turbid water [41]–[43]. However, the optical properties of
natural turbid water are quite different from the optical properties
of clear and moderately turbid water [16], [24], [44]. This means
that the QAA algorithm might produce unexpected results when
retrieving a(551) and bb(670) from turbid water. Fig. 4(c) shows
that the QAA algorithm was less effective at retrieving IOPs from
turbid water than from the open ocean. Specifically, the QAA
algorithm significantly underestimated a(551) when a(551) was
more than 0.9 m−1. When we excluded the data samples with
a(551) > 0.9 m−1, the MAPDs for the QAA algorithm results
decreased to 16.28%, and were comparable to the MAPDs of
the IDASv2 algorithm estimates for a(551).

Fig. 4(d) shows that bb(670) was underestimated at the higher
end (bb(670) > 0.1 m−1). Underestimating a(551) can lead to
underestimating bb(551) from Rrs(551) when using the QAA
algorithm according to the IOPs–Rrs relationship [27] when
Rrs(551) remains constant. Because the ratio of the 670–551 nm
wavelengths was very close to 1.0 (∼0.83), a large uncertainty
in the computing Y retrievals gives only a very small error
when extrapolating bb(670) from bb(551) using the power model
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Fig. 5. Comparing field-measured with model-derived a(551) and bb(670) for
the inland lake dataset. (a) (b) Results from the IDASv2 algorithm. (c) and (d)
Results from the QAA algorithm.

[34], [40]. Thus, the underestimation of a(551) can lead to
underestimation of bb(670) in QAA results. By comparison,
the IDASv2 algorithm interpreted the variations of a(551) and
bb(670) from the open ocean and turbid coastal water by signif-
icantly improving the systematic bias in the QAA results at the
higher end [see Fig. 4(a) and (b)]. Thus, we concluded that the
IDASv2 algorithm effectively derives a(551) and bb(670) from
water with a wide range of optical properties.

2) Testing the Algorithms for Lakes: Generally, the
chlorophyll-a concentration in lakes has a much wider dynamic
range than in the open ocean and coastal waters [45]. Table I
describes that bb(670) in our oceanic dataset varied from 0.0004
to 5.2761 m−1, which was a ∼50% wider range than our lake
dataset, but the dynamic range of the power coefficient was 20%
narrower than the lake’s. These results indicate that the optical
properties of inland lakes are quite different from the optical
properties of oceanic waters. Thus, it might be interesting to
show how robust the IDASv2 algorithm is when retrieving IOPs
retrievals for these inland waters.

Fig. 5 compares the a(551) and bb(670) derived with the
IDASv2 algorithm to the measured a(551) and bb(670) from
the inland lake dataset. We found that the IDASv2 algorithm
derived the two coefficients very well from inland lakes data
without our having to reconfigure the neural network models
in the algorithm. Specifically, the MAPDs for the a(551) and
bb(670) retrievals were 37.84% and 29.79%, respectively. The
R2 values were no lower than 0.68 [see Fig. 5(a) and (b)], which
means that the IDASv2 algorithm interpreted at least 68% of the
variations in a(551) and bb(670) for the inland waters. According
to the average a(551) and bb(670) listed in Table I, overall, our
inland lake data were much more turbid than the oceanic water.
This could be why the MAPDs of the IDASv2 algorithm for the
oceanic waters were clearly lower than for the lakes (see Figs. 4
and 5).

Like its performance for the oceanic and coastal waters, the
QAA algorithm was robust at retrieving a(551) from moderately

Fig. 6. Comparing field-measured with satellite-observed a(551) and bb(670)
for the matchup dataset. (a) and (b) Results from the IDASv2 algorithm. (c) and
(d) Results from the QAA algorithm.

turbid waters (a(551) < 0.2 m−1), but the algorithm seriously
underestimated a(551) for the turbid water (a(551) > 0.3 m−1).
The critical point where a(551) transitioned from an underesti-
mate to an overestimate for oceanic waters was ∼3 times larger
than for the inland waters, indicating that the optical properties
of the lake dataset might have been more complicated than the
optical properties of the oceanic dataset. With the constraint of
the IOPs–Rrs relationship, underestimating a(551) can result in
bb(670) being underestimated [see Fig. 5(c)], which is consistent
with the results in Fig. 4(c) and (d). Consequently, the bb(670)
that the model derived was significantly lower at its higher
end (>0.1 m−1) than the bb(670) measured in the field [see
Fig. 5(d)]. By comparison, the QAA and IDASv2 algorithms
were applicable to the IOPs retrievals from the inland lakes,
but the IDASv2 algorithm was more effective than the QAA
algorithm, for our dataset. The IDASv2 algorithm derived a(551)
and bb(670) whose MAPDs were 13.95% and 3.20% lower,
respectively, than the MAPDs for the IOPs derived by the QAA
algorithm.

C. Matchup Dataset Analysis and Comparison Between the
IDASv2 and QAA Algorithms

We implemented our matchup analysis by comparing field
measurements to the IOPs derived from satellite data using our
two algorithms. Fig. 6 shows the satellite-derived data plotted
against the IOPs measured in the field, indicating that the IDASv2

and QAA algorithms generated IOPs that were consistent with
the field measurements. Specifically, the MAPDs did not exceed
34.22%, and the corresponding R2 was no lower than 0.70
meaning that the IDASv2 or QAA algorithms interpreted >70%
of the variance in the IOPs from the satellite Rrs data. However,
the IDASv2 algorithm more effectively derived IOPs from the
satellite Rr than the QAA algorithm did. The MAPD values for
a(551) and bb(670) retrieved by the IDASv2 algorithm were
4.2% and 11.21% less than the MAPDs for the QAA algorithm
results, respectively. These results indicate that the IDASv2
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algorithm can be used to retrieve IOPs from satellite Rrs for
natural waters.

Because the IDASv2 algorithm was designed to semianalyt-
ically derive IOPs from satellite Rrs, and, at the same time, to
account for the residual errors in the satellite Rrs [20], [21], the
IDASv2 algorithm tolerates noise better than the QAA algorithm
does. For example, many points in the scatterplots of the QAA
results deviated from the 1:1 line, but the IDASv2 algorithm
results tended to gather around the 1:1 line. Furthermore, the
QAA algorithm significantly underestimated bb(670) at the
lower end (<0.002 m−1), which is consistent with the results
presented in Fig. 4.

We noted that the dynamic ranges of the IOPs in the matchup
dataset were narrower than in the oceanic and lake datasets
(see Table I). This is because most of the data in the matchup
dataset were collected from clear and moderately turbid waters.
As a result, the MAPDs for the IDASv2 algorithm results from
the matchup datasets were significantly smaller than from the
oceanic and lake datasets (see Figs. 4–6). Those matchup data
results indicate that optical complexity can influence the perfor-
mance of the IDASv2 algorithm, but this influence was much less
than the influence of optical complexity on the QAA algorithm.

D. Intermission Consistency Analysis

Due to imperfect data processing systems and sensor per-
formance, satellite-observed Rrs always includes substantial
residual errors and intermission biases [21], which can cause
inconsistencies in the IOPs derived from different ocean color
data. The IOPs derived from the data of one satellite-observed
Rrs would be highly consistent with the IOPs derived from
other satellite-observed Rrs data if the IDASv2 algorithm could
absorb the residual errors and intermission bias in the data.
Therefore, we demonstrate how capable the IDASv2 algorithm is
at consistently producing a(551) and bb(670) data from multiple
missions.

Fig. 7 shows the IOPs derived from cloud free VIIRS and
MERSI2 images on 17 April 2018. Both VIIRS and MERSI2 Rrs

data were achieved using near-infrared and shortwave infrared
bands combined atmospheric correction algorithm developed by
Wang and Shi [46]. Chen et al. [32] showed that the MERSI2
instrument could provide accurate Rrs data comparable with
the VIIRS in the turbid coastal waters. We found that a(551)
and bb(670) had large dynamic ranges in the Eastern China
Coastal Seas. For example, the a(551) varied from 0.0597 to
53.0889 m−1 with an average of 0.3588 m−1, and bb(670) ranged
from 0.0004 to 22.3044 m−1 with an average of 0.1090 m−1.
The highest a(551) values exceeded 5 m−1 and were around the
Oujiang River Estuary, Hangzhou Bay, the Subei shoal patch,
the Changjiang River Estuary, the Yellow River Estuary, and the
Liaohe River Estuary. The lower a(551) values of <0.07 m−1

were in the ocean far away from the coastline. The bb(670)
data were spatially distributed like the a(551) data whose values
decreased from the coast to the open ocean [see Fig. 7(e) and (f)].
This spatial decreasing pattern was due to strong tidal currents
and other factors discharging sediment from the land into the
outer estuary [47].

Fig. 7. Different satellite observed (a)–(d) a(551) and (e)–(h) bb(670) from
Rrs data. The top four images were MERSI2 results, while the bottom four
images were VIIRS results. (a) and (b), and (c) and (d) IDASv2 and QAA
a(551), respectively; while (e) and (f), and (g) and (h) IDASv2 and QAA bb(670),
respectively. The white colored patches are clouds or land.

Overall, the a(551) and bb(670) derived with the QAA algo-
rithm were patterned spatially like the IDASv2 IOPs results for
the Eastern China Coastal Seas. For example, the IOPs of the
coastal regions were much higher than those of the open ocean
[see Fig. 7(c) and (d), and (g) and (h)]. However, because the
QAA algorithm routinely underestimates values at the higher
end (see Figs. 4 and 5), the QAA IOPs were much lower than
the retrieved IDASv2 IOPs. Specifically, the a(551) varied from
0.0597 to 4.0395 m−1 with an average of 0.2251 m−1, and
bb(670) ranged from 0.0001 to 1.7064 m−1 with an average of
0.0663 m−1. Overall, the mean QAA a(551) and bb(670) were
∼50% lower than the mean IDASv2 results, which indicates that
the IDASv2 algorithm can generate broad and flat IOP frequency
distributions compared to results that the QAA algorithm pro-
vides.

Chen et al. [21] showed that the IDAS algorithm removed
most of the residual error and partial intermission bias from
IOPs estimates. Fig. 7 shows that the IDASv2 algorithm provided
consistent intermission IOPs from the VIIRS and MERSI2 in-
struments. For example, the estimates from the two instruments
had similar spatial patterns with the same complex distribution
of the IOPs such as tongue-shaped plumes in the same river
estuary for each satellite image. Like in Fig. 7, Fig. 8(a) and (b)
shows a(551) and bb(670) that the IDASv2 algorithm estimated
in a box-by-box manner from the VIIRS and MERSI2 images.
The box-by-box method effectively decreases pseudovariations
in the satellite signals associated with mismatched geometry
and instrumental random noise [32]. We found that, despite
the satellite Rrs data being contaminated by residual errors and
intermission bias, the IDASv2 algorithm still performed well in
providing consistent intermission IOPs data. Specifically, the
points in the scatterplots of the VIIRS versus MERSI2 IOPs
cluster around the 1:1 line, and the statistics show that the
UMREs did not exceed 27.73%, even though the VIIRS bb(670)
were systematically lower than the MERSI2 bb(670) at the lower
end (<0.01 m−1).
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Fig. 8. As in Fig. 7, but for comparing intermission (a) and (b) IDASv2 and
(c) and (d) QAA IOPs in a box-by-box manner. (a) and (c) a(551) while (b)–(d)
bb(670) results.

Comparing VIIRS with MERSI2 QAA a(551) and bb(670)
[see Fig. 8(c) and (d)] indicates that the QAA algorithm provided
consistent intermission IOPs data from optically complex water,
even though many points deviated from the 1:1 line at the lower
end [<0.01 m−1 for bb(670) and <0.1 m−1 for a(551)]. By
comparison, the IDASv2 algorithm provided more consistent
intermission a(551) or bb(670) results than the QAA algorithm,
even for turbid coastal water. The intermission differences for
a(551) and bb(670) were 7.45% and 10.17% lower, respectively,
when we used the IDASv2 algorithm than the intermission
difference when we used the QAA algorithm. Mélin [48] showed
that it is hard to obtain the correct temporal change trend from
multimission satellite data with ±5% intermission difference.
Thus, improving the intermission consistency by >7% would
be beneficial for learning about the impacts of global climate
change on coastal ecology using continuous ocean color data
from multimission satellites. In addition, using the QAA algo-
rithm produced 140 (∼1.9% of the total valid samples) negative
IOPs estimates (i.e., bad samples), which we excluded from
the QAA results when we evaluated the statistics. If we had
considered these “bad samples” in the uncertainty analysis, then
the intermission difference of the QAA algorithm would have
been significantly larger. Our results confirmed that the IDASv2

and QAA algorithms effectively process ocean color data for
retrieving IOPs, yet IDASv2 performed significantly better than
the QAA algorithm for our satellite data.

E. Compared IDASv1 With IDASv2 Algorithm in Residual
Error Correction

Chen et al. [20] showed that the original IDAS (IDASv1) algo-
rithm removes the residual error in satellite Rrs associated with
imperfect atmospheric correction in the open ocean, as long as
the spectral relationship of the residual error is known. However,
we do not know if the IDASv2 algorithm can correct for residual

Fig. 9 . Comparison of derived a(551) and bb(551) from Rrs (a)–(c) before
and (d)–(i) after residual error correction. (d)–(f) IDASv1 results and (g)–(i)
IDASv2 results. “Known” represents a(551) or bb(551) derived from error-free
Rrs data.

errors in IOPs data from turbid waters. To account for this, we
generated 6029 error-free Rrs spectra with Hydrolight, and we
added random uncertainty into these Rrs data. Fig. 9(a) shows
that there was 16.52% uncertainty in the Rrs(551). Because
the IDASv2 algorithms was trained with Rrs data that included
errors, the algorithm absorbed some of the effects of the residual
errors in the Rrs and obtained good estimates of a(551) from the
turbid water [see Fig. 9(b)]. When we accurately determined the
a(551), the uncertainty in Rrs(551) propagated to the bb(551)
estimates following the relationship between IOPs and Rrs that
Gordon et al. [27]. Thus, it is hard to accurately derive bb(551)
from Rrs data before residual error correction [see Fig. 9(c)].

In the IDASv1 algorithm, we corrected for the residual error
for 670 nm, and we used a simple power approach to estimate
anw(670) from anw(551) [20], [21], where anw was the total
absorption minus absorption of pure water (aw). In the open
ocean, it is always acceptable to assume that aw>>anw at
670 nm [34], so it is reasonable to ignore the impacts of anw(670)
retrieval uncertainty on a(670) estimates. However, assuming
aw>>anw at 670 nm might not be true for highly turbid water
because the absorption by particulate matter can be almost equal
to or even much larger than anw(670) in natural turbid water [49].
So the accuracy of the a(670) estimate would significantly affect
how well the IDASv1 algorithm corrects for residual errors, but it
is challenging to accurately determine a(670) from turbid water
due to the complex optical properties [34]. Consequently, after
applying IDASv1, the data quality of Rrs and the IOPs products
were even worse than the data quality when the data errors
were not corrected [see Fig. 9(d) and (f)], and the systematic
overestimates of Rrs(551) and bb(551) are displayed in Fig. 9(d)
and (f), respectively. As in Chen et al. [20], [21], we conclude
that the IDASv1 algorithm will work with residual errors in
open ocean and some moderately turbid waters, but it might
not work for a highly turbid environment unless we accurately
know anw(670).



6604 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 10 . Histograms of Rrs(443) and Rrs(551) values of the (a) and (b) original
images. (c) and (d), and (e) and (f) images with residual error corrected using
IDASv1 and IDASv2 algorithms, respectively.

Having the 865 nm band instead of the 670 nm band to correct
for the residual error (see Fig. 2), Fig. 9(g) and (i) showed how
well the IDASv2 algorithm retrieved Rrs and the IOPs. We found
that using IDASv2 significantly improved the data quality of
Rrs and the IOPs products. For example, for a(551) varying
from 0.0658 m−1 to 13.1346 m−1, the MAPDs for Rrs(551) and
bb(551) were 2.76% and 3.00%, respectively. By comparison,
the MAPDs for the IDASv2 Rrs(551) and bb(551) products
were at least six times lower than the earlier version IDASv1

algorithm. Specifically, the IDASv1 bb(551) results at the higher
end (>1.0 m−1) were clearly underestimated, but the IDASv2

bb(551) data were consistent with known bb(551) for those
data points. The underestimation occurred because assuming
aw>>anw at the 865 nm band was more acceptable than at the
670 nm band for highly turbid water. These results confirmed
that the IDASv2 algorithm can potentially improve Rrs and IOPs
products for turbid waters.

We used VIIRS and MERSI2 images of the Eastern China
Coastal Seas on 17 April 2018 to learn if the IDAS algorithm
could remove the residual error uncertainty and partial intermis-
sion bias in satellite Rrs for turbid water. With the 443 and 551 nm
bands, as examples, Fig. 10 compares the histogram of Rrs from
the MERSI2 and VIIRS images before and after correcting for
the residual error. For the original images, the intermission ratio
of averaged VIIRS to MERSI2 Rrs were 1.25 and 1.08 at 443 and
551 nm, respectively, which means that the VIIRS Rrs(443) and
Rrs(551) were 25% and 8% larger than the MERSI2 Rrs(443) and
Rrs(551), respectively. The Rrs differences occurred for the two
instruments even though the nominal ascending equator local
crossing times for VIIRS and MERSI2 were very close. Simi-
larly, due to nonnegligible anw(670), it was hard to use IDASv1

algorithm to remove the intermission difference in Rrs data in
the turbid coastal waters, even though it worked well in the open
oceans [21]. Specifically, a clear mismatch could be observed
from Fig. 10(c) and (d) for Rrs(443) > 0.009 sr−1 or Rrs(551) >
0.016 sr−1, while the intermission ratios were 1.26 and 1.27 for
Rrs(443) and Rrs(551), respectively. Fortunately, after applying
the IDASv2 algorithm, the intermission difference between the
VIIRS and MERSI2 Rrs was minimized. For instance, IDASv2

produced a narrow and sharp frequency distribution of Rrs(443)
and Rrs(551) compared to the distribution for the original data
[see Fig. 10(e) and (f)]. After correcting for the residual error, the
intermission ratios were 1.09 and 1.01 for Rrs(443) and Rrs(551),
respectively, which were>0.15 and>0.07 times smaller than the
original and IDASv1 data. These results indicate that the IDASv2

algorithm can potentially provide consistent intermission ocean
color data from turbid water for climatic research due to its
effectiveness in correcting for the residual error and partial
intermission bias [21].

F. Discussion

Lee et al. (2009) used the red to blue band ratio approaches
to derive absorption coefficients at reference bands in the QAA
algorithm. In general data collection practice, remote sensing
reflectance is derived from above-surface optical measurements,
which include water-leaving radiance, sky radiance, and total
incident radiance flux [30]. Because the total incident radi-
ance flux can be accurately measured on cloud free days, the
Rrs uncertainties originate from measuring uncertainties of the
water-leaving radiance and from uncertainties from calculating
the sky radiance in the water-leaving radiance [50]. Therefore,
the uncertainties in Rrs measurements are more like additive
uncertainties and have the spectrally dependent characteristics as
described by the Rrs calculation equation [34]. In addition, Chen
et al. [21] showed that the residual error in satellite Rrs is not a
multiplying uncertainty, which is like the uncertainties in field
measurements. Hu et al. [51] showed that the band difference
approach is more advantageous than the band ratio approach
for minimizing the spectrally related and additive uncertainties.
Specifically, the practical field measurements indicate that field-
measured Rrs always contains substantial uncertainties at red
and near-infrared wavelengths. By merging the band difference
approach into neural network models, the IDASv2 algorithm
can absorb the systematic spectrally dependent uncertainty in
satellite or field Rrs and at least provide accurate a(551) and
bb(670) for natural waters (see Figs. 4 and 6).

Doxaran et al. [24], Volpe et al. [52], and Mao et al. [47]
showed that the sensitivity of the red to blue band ratio de-
creases with increasing optically significant constituents for
turbid water, so the near-infrared bands are usually suggested
for IOPs retrieval from extremely turbid water [53]. Our study
shows that IOPs can be accurately derived from turbid water
using the IDASv2 algorithm with near-infrared wavelengths.
NASA’s default data processing system determines Rrs for the
open ocean using a near-infrared atmospheric correction method
[2], and the data processing system determines Rrs for turbid
water using an iterative near-infrared atmospheric correction
approach [29]. The near-infrared approach assumes that the
remote sensing reflectance at near-infrared wavelengths can be
ignored due to the strong absorption by pure water in the open
ocean, so there is always no near-infrared data for running the
IDASv2 algorithm. Therefore, combining IDASv2 with IDASv1

might be a good choice for retrieving IOPs from global natural
waters; for example, deriving IOPs products from natural turbid
waters (chlorophyll-a concentration ≥ 1.3 µg l−1) with the
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IDASv2 algorithm, and switching to the IDASv1 algorithm for
the open ocean (chlorophyll-a concentration≤ 0.7 µg l−1). Note
that the water-type classification results are consistent with the
classification results used for iterative atmospheric correction
[29], [54].

The IDASv2 algorithm contains two components, the IOPs
retrieval algorithm and the residual error correction algorithm.
The retrieval algorithm provides highly accurate a(551) and
bb(670) data. When Rrs contains uncertainties, it is hard to
accurately obtain bb(551) using the IOPs–Rrs relationship [18]
so determining Y would contain some uncertainty using the
relationship displayed in Fig. 2. The uncertainty in Y would lead
to substantial uncertainty in the bb(λ) data, which is extrapolated
from bb(670) using an exponential model [34]. From a trend
analysis of bb(551), Chen et al. [21] showed that the residual
errors and intermission bias can result in misleading conclu-
sions. To obtain reliable bb(λ), the residual error in Rrs data
must be removed (see Fig. 9), suggesting that, when processing
the data, it is very important to correct for the residual error
before retrieving the IOPs.

Table I describes that the a(551) data vary from 0.0598 to
1.2657 m−1, with a median of 0.0789 m−1, indicating that the
sample points in the matchup dataset varied from the clear to
turbid waters, but most of these samples were from the open
ocean (see Fig. 1). Thus, it is not surprising that the MAPDs
for the matchup dataset were much lower than the MAPDs
for the oceanic and lake datasets. The lower statistics occurred
because the optical properties of clear water are much simpler
than the optical properties of turbid water [55]. Consequently, it
is very important to perform a matchup analysis with the IDASv2

algorithm for highly turbid water. To achieve the needed signal to
noise ratio for ocean color detection, the satellite’s instrument is
usually designed with a reasonable dynamic range for radiance
collection. For extremely turbid water, the incoming radiance is
so strong that the instrument’s electrical signal is easily saturated
or responds nonlinearly to the incoming radiance. Thus, it is
hard to scientifically evaluate the accuracy of the ocean color
products for extremely turbid water even though we employed
a rigorous matchup analysis [31]. Fortunately, there are many
optical instruments, such as Landsat-8 and Sentinel-2, with
dynamic signal ranges that are much wider than ocean color in-
struments such as VIIRS and MERSI2. Moreover, Landsat-8 and
Sentinel-2 have data around the same five “common bands” we
defined in this study. Thus, with some adjustment, the IDASv2

algorithm can be used to retrieve IOPs from Landsat-8 and
Sentinel-2 images. We encourage researchers to evaluate how
accurately IDASv2 retrieves IOPs from Landsat-8 and Sentinel-2
data.

Due to the short lifespan of ocean color satellites, it is common
to combine several successive missions into a single dataset to
increase observation time scales beyond the limited lifetime of
a single mission [56]. However, due to instrument noise and
imperfect data processing procedures, it is hard to find two
satellites with the same ocean color data. Chen et al. [21] sug-
gested that the IDASv1 algorithm could simultaneously remove
the residual error in satellite Rrs to absorb the intermission bias
and provide consistent intermission ocean color products for

the open ocean. However, the open ocean occupies ∼78% of
the global ocean area [51]. Even though coastal waters only
account for ∼32% of global ocean area, global coastal waters
support 90% of the world’s fish catches [57] and are important
ecosystems impacted by global climate change [58]. Ocean
color data, including Rrs and IOPs, are essential variables of
the global climate observation system [59]. Consistent intermis-
sion ocean color data are required to understand the long-term
impacts of the climate change on the ecology of natural turbid
waters. Fig. 10 indicates that the IDASv2 algorithm can provide
the consistent intermission ocean color data for turbid coastal
waters. Our confidence in the results that we acquired from
applying multimission ocean color data at climatic time scales
lies in the algorithm’s accuracy and intermission consistency
[21]. The results of our analysis confirmed that the IDASv2

algorithm can improve the robustness of the long-term multimis-
sion ocean color data. It is noteworthy that the different satellite
platforms might have some difference in nearinfrared bands,
so the band shifting for Rrs at near-infrared bands should be
corrected before running the IDASv2 algorithm for residual error
correction.

IV. CONCLUSION

Accurate and consistent intermission IOPs data are critical to
understanding the impacts of global climate change on the ecol-
ogy of natural turbid waters. We proposed using the near-infrared
bands to improve the performance of the IDASv1 algorithm for
retrieving IOPs from and correcting residual error in satellite
images of natural turbid waters. We called the updated (Version
2) algorithm, IDASv2. In the IDASv2 algorithm, two neural
network models first determine a(551) and bb(670) and then the
estimates are used to calculate bb(551) and construct a power
model for the particle backscattering coefficient. The IOPs at
other wavelengths are obtained from the Rrs data after adopting
the power model for the particle backscattering coefficient.
Finally, the derived IOPs data are used to remove any residual
error in the satellite Rrs data of the natural turbid water. It is
important to note that we used the 865 nm band instead of the
670 nm band to correct for the residual error because it is much
easier to accurately determine a(865) than a(670) from those
waters. Determining a(865) is easier because the pure water
absorption coefficient at 865 nm is about one order of magnitude
larger than the pure water absorption coefficient at 670 nm.

We evaluated the stability and accuracy of the new IDASv2

algorithm using synthetic data, field measurements, and satellite
images, all covering a wide and varied range of optical prop-
erties. We found that applying the IDASv2 algorithm to field
measurements and the satellite data resulted in our more effec-
tively retrieving IOPs and correcting the residual error correction
than when we used the QAA algorithm for natural waters. For
example, when we tested our algorithm with bio-optical datasets
collected from global oceanic waters and inland lakes, the R2

values between the IOPs derived with the IDASv2 algorithm and
known IOPs were no lower than 0.68, and the corresponding
MAPDs did not exceed 38%. Furthermore, after applying the
IDASv2 algorithm to correct for the residual error from VIIRS
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and MERSI2 images, the residual error and partial intermission
bias in the satellite Rrs data were effectively removed, and the
VIIRS IOPs were consistent with the MERSI2 IOPs. All these
results confirm that the IDASv2 algorithm potentially provides
accurate and consistent intermission IOPs for natural turbid
water. Although we still need to validate the corrected data
products, these preliminary results are encouraging and indicate
that the IDASv2 algorithm can provide high-quality IOPs data
with intermission consistency.

APPENDIX A
BRIEF DESCRIPTION OF IDASv1 ALGORITHM

With properly parameterized, Chen et al. [20], [49] suggested
the following conceptual models for estimating a(551) and
bb(670):

a (551) = Pnn [Rrs (443) , Rrs (490) , Rrs (551) , Rrs (670)]
(A1)

Y = Qnn [Rrs (443) , Rrs (490) , Rrs (551) , Rrs (670)]
(A2)

where Pnn and Qnn are neural network models for the a(551) and
bb(670) estimates. Considering the residual errors in satellite Rrs

(�Rrs), the IOPs–Rrs relationship can be revised as [20], [21]
follows:

g0
bb (λ1)

a (λ1) + bb (λ1)
+ g1

[
bb (λ1)

a (λ1) + bb (λ1)

]2

=
Rrs (λ1)−m0ΔRrs (λ2)−m1

0.52 + 1.7 [Rrs (λ1)−m0ΔRrs (λ2)−m1]
(A3)

g0
bb (λ2)

aw (λ2) + bb (λ2)
+ g1

[
bb (λ2)

aw (λ2) + bb (λ2)

]2

=
Rrs (λ2)−ΔRrs (λ2)

0.52 + 1.7 [Rrs (λ2)−ΔRrs (λ2)]
(A4)

where g0 and g1 are known empirical coefficients [27], while
m0 and m1 are known spectral relationship of residual errors.
λ1 and λ2 are two wavelengths, which are 551 and 670 nm
for IDASv1 algorithm, but are 551 and 865 nm for IDASv2

algorithm. When a(λ1) and Y are known, (A3) and (A4) would
only contain two unknowns [bb(λ1) and �Rrs(λ2)], which can
be solved algebraically for each satellite Rrs spectrum [20], [21].
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