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Abstract—This article introduces a technique for using recur-
rent neural networks to forecast Ae. aegypti mosquito (Dengue
transmission vector) counts at neighborhood-level, using Earth
Observation data inputs as proxies to environmental variables.
The model is validated using in situ data in two Brazilian cities,
and compared with state-of-the-art multioutput random forest and
k-nearest neighbor models. The approach exploits a clustering step
performed before the model definition, which simplifies the task
by aggregating mosquito count sequences with similar temporal
patterns.

Index Terms—Deep learning, dengue risk, remote sensing,
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I. INTRODUCTION

ZOONOTIC diseases are one of the most widespread threats
to human lives in many parts of the world. Dengue is a very

prevalent one of such. This disease is transmitted by the female
Ae. aegypti mosquito species. The female Ae. aegypti is fully
adapted to urban areas and breeds in artificial water contain-
ers. The spread of Dengue has been shown to be significantly
influenced by the density of mosquito vector in any location,
which itself is a result of local biotic and abiotic environmental
interactions. Specifically, the environmental variables, which
have shown empirical relationship with the development and
population of female Ae. aegypti are precipitation, humidity,
vegetation condition, and land surface temperature (LST) [1]–
[4].

Manuscript received November 4, 2020; revised February 6, 2021 and March
20, 2021; accepted April 3, 2021. Date of publication April 14, 2021; date of
current version May 7, 2021. This work was supported in part by the European
Commission through Horizon 2020 Research and Innovation Programme, un-
der Grant 734541 - Project EOXPOSURE. (Corresponding author: Oladimeji
Mudele.)

Oladimeji Mudele and Paolo Gamba are with the Department of
Electrical, Computer and Biomedical Engineering, University of Pavia,
27100 Pavia PV, Italy (e-mail: oladimeji.mudele01@universitadipavia.it;
paolo.gamba@unipv.it).

Alejandro C. Frery is with the School of Mathematics and Statistics, Victoria
University at Wellington, Kelburn, Wellington 6012, New Zealand (e-mail:
alejandro.frery@vuw.ac.nz).

Lucas F. R. Zanandrez is with the Ecovec Ltda, Belo Horizonte 31310-260,
Brazil (e-mail: lucasfabrini93@gmail.com).

Alvaro E. Eiras is with the Laboratory of Technological Innovation
and Entrepreneurship in Vector Control Department of Parasitology, Fed-
eral University of Minas Gerais, Belo Horizonte 31270-901, Brazil (e-mail:
alvaro.eiras@gmail.com).

Digital Object Identifier 10.1109/JSTARS.2021.3073351

Many studies have explored ways to understand the inter-
action effects of these environmental variables on the diseases
spread, both locally and globally. While some of these studies
focus on modeling and prediction of risks [3] or vector pop-
ulation [5] based on environmental effects, others go further
to explain these interactions so as to gain better understanding
of the most important environmental driving mechanisms [2].
Regardless of the study goal, there is the need for quality and
scalable data sources with which to estimate these environmental
driving effects. As a result, due to their global availability and
free access in many cases, Earth Observation (EO) satellite
images have recently become prevalent for this application [1],
[2], [6].

The baseline of this study is obtained from studies presented
in [1], [2], [5], all devoted to “nowcasting” of Ae. aegypti
mosquito population temporal distribution at the municipality
level starting from environmental conditions estimated from
freely available satellite image products. Here in this study, for
the first time, a methodology for Ae. aegypti population forecast
model, which is spatially disaggregated at the neighborhood
level is presented. To this aim, the same freely available EO
satellite image products as in [1] and [2] are used for the estima-
tion of the environmental features of interest. Forecast models, as
opposed to nowcasting models (e.g., [1], [2], [5]), serve to enable
operational disease outbreak surveillance systems to anticipate
and better plan for future disease spreads.

Time series forecasting methods have found applications in
various domains e.g., economics [7], weather, and environmen-
tal state predictions [8]. Some of the most frequently used algo-
rithms include autoregressive moving average model (ARMA),
autoregressive integrated moving average (ARIMA) [9], random
forest (RF), and, more recently, neural and deep learning net-
works [10]. Among other neural network approaches, recurrent
neural networks (RNNs) [11], [12] have been used for sequential
data modeling, and show great capability to capture multivariate
nonlinear interactions in data sequences [13]. Due to RNNs’
capability to capture long-term temporal dependencies in input
data, they have proven to attain better quality than traditional
feed-forward neural networks for the specific purpose of time
series modeling [14]. However, vanilla RNNs suffer the problem
of vanishing and exploding gradients over long sequences [9].
As a result, long short-term memory (LSTM) [15] and gated
recurrent unit (GRU) [16], which are variants of RNN designed
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to mitigate the earlier stated setbacks, were designed. LSTM
and GRU have found successful application in many fields, e.g.,
machine translation [17], speech recognition [18], and other
time series forecasting tasks [10]. Recent state-of-the-art time
series forecasting applications consider the use of LSTM and
GRU in an encoder–decoder fashion [10]. Consequently, RNNs
(LSTM and GRU) could also be applied to the problem of
epidemiological forecasting.

Accordingly, the research question in this work is whether
an accurate geographically distributed time series prediction
for Ae. aegypti numbers at the neighborhood level is possible
using EO data as inputs to RNNs. This study looks to tackle
the question of obtaining a qualitative time series prediction
of the population of female Ae. aegypti at neighborhood-level
based on EO data inputs to RNNs. To address this question, we
refer to the study presented in [19], which shows that in a group
of concurrent mosquito population time series data covering a
specific area, and over a sufficient amount of time, there exist
multiple subgroups (or clusters) of temporally homogeneous
time series in different spatial points. From the results of that
study, we deduce that the temporal distribution of mosquito
population data within the same cluster can be approximated as
a single signal: the centroid (or mean) of this cluster. Leveraging
this technique, the problem of neighborhood-level Ae. aegypti
vector population modeling has been split into two steps: (i) find-
ing vector population time series cluster along the spatial axis
(similar time series signals) and obtaining their mean signals
(centroids); and (ii) deriving a model of the obtained means using
environmental information at the neighborhood-level from free
EO products. Point (i) is achieved using k-means clustering,
and point (ii) using RNNs. The innovation of this study is
that it introduces a neighborhood-level one-week-ahead vector
population forecasting technique, while other studies in this
domain only either perform regional-level [3] or urban-level [1],
[2], [5] nowcasting. Additionally, the use of RNNs along with
EO data features has not been considered in this domain, as far
as we know.

The structure of this article is as follows: the next section
is devoted to providing some background on the use of EO
data for dengue risk modeling, while Section III provides some
background on RNNs. The methodology proposed in this work
is presented in Section IV, and the datasets (both spaceborne
and in situ) used in this work are introduced. The experimental
results are shown in Section VI, while Section VII is devoted
to discussing the models abilities and limitations. Finally, Sec-
tion VIII concludes this article.

II. BACKGROUND ON THE USE OF SATELLITE IMAGE

PRODUCTS FOR AE. AEGYPTI MONITORING

There is significant evidence of the effects of temperature,
humidity, precipitation and surface vegetation on the life-cycle,
development and density of female Ae. aegypti mosquito species
in urban environments [3]. The air temperature affects the
species survival as well as the duration of the extrinsic incubation
period of the virus and the length of the gonotrophic cycle [20].

Since the Ae. aegypti larvae and pupae breed mostly in
artificial containers in urban areas, precipitation serves as a
source of water for such containers. Many studies [21]–[23]
have shown that there is positive correlation between Dengue
risk infection and precipitation levels. Furthermore, since the
Aedes mosquitoes lay eggs in areas of high moisture [24], higher
relative humidity has been shown to affect propagation of female
adult Ae. aegypti vectors locally [6].

Vegetation condition is another important variable in spatio-
temporal behavior of the vector population cycle. For example,
vegetation canopy cover has been associated with larger larvae
density because it reduces evaporation from breeding containers,
it decreases subcanopy wind speed, and it protects outdoor habi-
tats from direct sunlight [3]. Also, the form of organic content
(plants and insects they host) that fall in breeding containers
affect the development of mosquito larvae [25].

To account for the all these environmental effects, the stud-
ies in [1], [2], and[5] used the normalized difference water
index (NDWI) [26]—as proxy for humidity. NDWI compares
the reflectance in near-infrared and mid-infrared channels of
optical satellite images. These same studies used the normalized
difference vegetation index (NDVI) [27], which is a measure of
surface chlorophyll level, to represent vegetation effect. NDVI
compares the satellite data reflectance values in red and near-
infrared channels. Other studies [3] have used the enhanced
vegetation index [28], which gives more information about the
vegetation canopy structural variation than NDVI.

Additionally, some optical EO satellite data products come
with thermal infrared bands. These bands can be used to obtain
the LST through a range of techniques, which take atmospheric
effects and surface emissivity into account. LST layers have
been used in [1], [2], and [5] to account for temperature effects
in vector development.

In technical literature, most studies exploit NASA’s moderate
resolution imaging spectroradiometer (MODIS) data products
to obtain indices and layers representing NDVI, NDWI, and
LST information. Precipitation, on the other hand, is accounted
for by using data obtained from the integrated multisatellite
retrievals for global precipitation measurement (IMERG) tech-
nique [29]. IMERG is an algorithm used to intercalibrate, merge,
and interpolate spaceborne microwave precipitation estimates,
together with microwave-calibrated infrared satellite estimates,
precipitation gauge data, and potentially other precipitation
estimators at fine time and space scales over the entire globe.
IMERG derived satellite data products include the tropical rain-
fall measuring mission data, and global precipitation measure-
ment data [30].

III. BACKGROUND ON RNNS

Unlike feed forward neural networks, RNNs are a kind of
neural networks with loops, which allow them to learn sequential
dependency in data. GivenX = (x1,x2, . . . ,xT )with xt ∈ Ru

as input independent covariate features, a simple RNN can be
expressed as follows:

ht = f(ht−1,xt) (1)
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Fig. 1. Schematic of the study methodology.

where ht ∈ Rv is the hidden state at time t, and v is the number
of hidden units, which is an hyperparameter to set.

Due to the problem of vanishing gradients RNNs, the function
f is estimated using LSTMs [15]. An LSTM maintains a hidden
state, ht, and a memory cell state, st, that are updated at every
time step, and used to determine the output at that same time. At
each time step, the access to st is controlled by three sigmoid
gates: forget gate ft, input gate it, and output gate ot. The
mathematical formulations of these gates and the resulting ht

and st are summarized as follows:

ft = σ(Wf [ht−1;xt] + bf )

it = σ(Wi[ht−1;xt] + bi)

ot = σ(Wo[ht−1;xt] + bo)

st = ft � st−1 + it � tanh(Ws[ht−1;xt] + bs)

ht = ot � tanh(st) (2)

where [ht−1;xt] ∈ Rv+u is a concatenation of the previous
hidden state ht−1 and the current input xt; Wf , Wi, Wo, Ws

∈ Rv×(v+u), and bf , bi, bo, bs ∈ Rm are learnable weight and
bias parameters, respectively; σ, tanh, and � are the logistic
sigmoid activation function, the hyperbolic tangent function, and
the Hadamard product, respectively.

IV. METHODOLOGY

Fig. 1 shows a high-level schematic of the study methodology.
As shown by this figure, the mosquito time series data are first
partitioned into clusters using a k-means clustering technique.
The resulting cluster centers are then modeled using RNN with
EO data as input features.

In the following sections, details about the RNN architecture
and K-means clustering are provided.

A. Notation and Problem Statement

Let’s consider a database of concurrent time series of Ae.
aegypti mosquito population collected using M mosquito traps:
Y = {y(1),y(2), . . . ,y(M)}, with y(m) ∈ RP , where P is the
observation period (e.g., the total number of weeks in case
of weekly monitoring), y(m) is the vector of data collected
at the mth mosquito trap, i.e., y(m) = (y

(m)
1 , y

(m)
2 , . . . , y

(m)
P ).

Instead, let us denote yt = (y
(1)
t , y

(2)
t , . . . , y

(M)
t ) the vector of

mosquito numbers collected at all M traps in a particular tth
week.

Now, let us partition Y into K clusters of time series
C = {C(1), C(2), . . . , C(K)}with means (i.e., cluster centroids)
{c(1), c(2), . . . , c(K)}, c(k) ∈ RP . The clusters form a partition
of Y , i.e., C(k) ⊆ Y, (k = 1, 2, 3, . . . ,K),∩K

k=1C
(k) = ∅ and

∪K
k=1C

(k) = Y . We present details of the clustering algorithm
in Section IV-C.

Finally, let us consider N environmental variables (or prox-
ies to them extracted from EO data), whose measures are
available for the same P time instants in the M locations of
the mosquito traps. Let us denote the whole set of values of
these variables as V ∈ RN×M×P . By clustering V according
to the partition of Y , V is reduced to X ∈ RN ·K×P , where
X = {x(1),x(2), . . . ,x(N ·K)}, and x(i) ∈ RP . Eventually, let
xt ∈ RN ·K be the set of mean values of the environmen-
tal variables for each cluster at the time instant t, i.e., xt =
{x(1)(t), x(2)(t), . . . , x(N ·K)(t)}.

Using a temporal window of size T � P , we formulate our
forecast model as a nonlinear autoregressive exogenous model
(NARX) as follows:

ĉt = F ([ct−T , . . . , ct−1]; [xt−T , . . . ,xt−1]) (3)

where “;” denotes the time point concatenation, and, as before,
k = 1, 2, . . . ,K. F (.) is selected to be an LSTM model (see
Section IV-B. The model output ĉt ∈ Rk is a vector of the fore-
cast values of mean mosquito population for the k clusters in the
tth week based on T trailing autoregressive (vector population)
and exogenous (environmental conditions) components.

B. Adaptation of RNNs for This Work

For this study, we used an encoder–decoder LSTM [31]
architecture due to its recorded success in many applications, in-
cluding time series forecasting. The encoder is an LSTM, which
encodes the input sequence, ct−T , . . . , ct−1 and xt−T , . . . ,xt−1

within a time window of length T , into a learned representation
ht ∈ Rv and memory cell state st ∈ Rv, where v is the encoder
output size. For time series prediction tasks, the decoder is
usually a stack of LSTM and a fully connected (dense) neural
network layer with nonlinear activation. The decoder LSTM
takes ht as input, copies it over the length of T , and generates
the decoder hidden statedt. The fully connected layer takesdt as
input and produces ĉt. For this study, we added a fully connected
layer with a rectified linear activation function (ReLU) [32] on
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Fig. 2. Architecture of our adapted encoder–decoder LSTM. The encoder
output ht is replicated into T copies to feed each time point of the decoder.
The dense layer maps the decoder output to the desired prediction output. “;”
signifies concatenation; T is the size of a temporal window; ct is the predicted
output vector at time t; xt−1 is a vector of the EO covariate features at time
t− 1.

top of the decoder LSTM to map the output of the LSTM to a
vector of predicted mosquito populations. Fig. 2 illustrates this
adapted encoder–decoder LSTM.

Considering a window of size T and subwindows of size P
such that T � P and T mod P = 0, the model is

ht = f1([ct−T , . . . , ct−1]; [xt−T , . . . ,xt−1]) (4)

dt = f2(ht) (5)

ĉt = ϑ(Wddt + bd) (6)

where Wd and bd are learnable parameters of the decoder fully
connected layer, and dt and ĉt are the decoder hidden state and
model output for time t prediction, respectively; f1(.) and f2(.)
are the encoder and decoder LSTMs, respectively;ϑ is the ReLU
activation function, which is defined for an arbitrary inputx ∈ R
as ϑ(x) = max{0, x}.

The choice of the ReLU activation on our modeling output
is justified by the need to produce positive real number output
predictions i.e., ĉ(i)t ∈ R+ ∀ ĉ

(i)
t ⊆ ĉt, since it is impossible to

have negative mosquito vector population values.

C. Time Series Clustering

The clustering applied to the set of mosquito trap records Y is
implemented by means of the standard K-means algorithm with
Euclidean distance. This algorithm is simple to implement and
converges fast [33], [34]. Still, due to the unsupervised nature
of clustering, there is the need to determine the optimal number
of clusters K. The goal is selecting K to minimize the total
intracluster variation, also known as total within-cluster sum of
square variation or distortion. To this aim, we used the elbow
method [35]. The resulting set of distortions is then plotted, the
“optimal” K is selected as the “sweet spot,” where there is a
bend (“elbow”) in the curve indicating a significant reduction in
the gradient of the distortion with respect to K. The distortion

Fig. 3. Geographical location of the considered study areas: Vila Velha and
Serra.

is computed as follows:

J =

K∑
k=1

M∑
m=1

∥∥y(m) − c(k)
∥∥2. (7)

V. MATERIALS

A. Study Area and Field Data

This research is based on adult Ae. aegypti mosquito counts
collected in the cities of Vila Velha and Serra in Espírito Santo
State (region), Brazil. Vila Velha is between latitudes 20◦19′ and
20◦32′ South, and longitudes 40◦16′ and 40◦28′ West. It covers
a total area of 209.965 km2, and has an estimated population
of 486 208 people. Serra is between latitudes 20◦7′ and 20◦12′

South, and longitudes 40◦18′ and 40◦30′ West. It covers a total
area of 553 km2, and has an estimated population of 507 598
people. Both cities are about 40 km apart. Fig. 3 presents their
geographical locations.

These chosen locations are very relevant to dengue risk
mapping. Specifically, in 2019, the Espírito Santo state verified
63 847 dengue cases with an incidence of 1588.8 per 100 000
inhabitants [36]. Vila Velha had 6611 of those cases (1359.7.6
per 100 000 inhabitants), which is far greater than the epidemic
threshold.

Mosquito counts were collected weekly from MosquiTRAP
devices, which are sticky mosquito traps designed to directly
measure adult Ae. aegypti abundance and generate data for tar-
geting vector control activities. Mosquito abundance and counts
are sent in near real-time to an online surveillance system, called
MI-Aedes [37], which was implemented in Vila Velha and Serra
from 2017.

In Vila Velha, the record spans from Apr. 10, 2017 to Oct.
5, 2018 coming from 791 MosquiTRAPs, whereas in Serra, the
record spans from Apr. 27, 2017 to Dec. 06, 2018 and come from
1127 devices. All devices in both locations are placed at least
at 250 m apart. Data were acquired on site weekly by a team
of trained and supervised field workers by inspecting the sticky
cards set inside each trap. Ae. aegypti specimens were identified,
counted, and their presence and number registered thanks to a
mobile app.
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TABLE I
DETAILS OF EO DATA PRODUCTS USED AND THE PROXY ENVIRONMENTAL VARIABLE THEY REPRESENT

aLST: Land surface temperature [38]. bNDVI: Normalized Difference Vegetation Index (NDVI) [27]. cNDWI: Normalized Difference Water Index
(NDWI) [26].

As a result of the control activities optimization performed at
the start of year 2018, the data collected are divided into two
temporal regimes: 2017 and 2018. In Vila Velha, the data for
2017 spans from Apr. 10, 2017 to Dec. 31, 2017 (epidemio-
logical weeks 15–52, 36 weeks), while the data for 2018 spans
from Jan. 02, 2018 to Oct. 05, 2018 (epidemiological weeks
1–40, 40 weeks). In Serra, the data for 2017 spans from Apr.
27, 2017 to Dec. 30, 2017 (epidemiological weeks 17–52, 36
weeks), while the data for 2018 spans Jan. 05, 2018 to Oct.
05, 2018 (epidemiological weeks 1–49, 49 weeks). Note that
weeks 7 and 8 for year 2018 are not available because Serra’s
field workers temporarily deactivated traps in week 7 due to the
Carnival holiday in week 8. For the purposes of completeness,
epidemiological weeks are simply a standardized method of
counting weeks to allow for the comparison of data year after
year, especially in cases, where the data are not seasonally
aligned.

To preprocess the data, traps missing data even for just one
of the weeks or with zero mosquito reported in all weeks were
filtered out. This was done to avoid the creation of synthetic in
situ data through interpolation. This filtering resulted in a final
set of 193 and 325 trap records in 2017 and 2018, respectively,
out of the initial 791 points in Vila Velha. Similarly, in Serra,
the final set includes 567 trap records in 2017 and 95 in 2018.
Just to reduce random “data noise” in the obtained series from
each retained trap, an exponential moving average filter with a
span of five weeks was applied to the records.

B. Environmental Variables From EO Data

Table I describes the EO products used in this study together
with the specific bands and resolutions (spatial and temporal),
as well as the environmental variable to which they act as proxy.

All the utilized satellite data products were accessed using
the Javascript application programming interface (API) of
Google Earth Engine. Specifically, the data were downloaded
using the export method of this API. This method has resam-
pling and reprojection functions wrapped into it for easy coregis-
tration of multisource data with different properties. All datasets
were obtained at 250 m spatial resolution by nearest-neighbor
resampling because this is the minimum distance separating
neighboring mosquito traps [2]. All the necessary extraction and

processing steps applied to these data are presented in details in
the next section.

C. Data Extraction and Transformation

Since the approach is supervised, there is the need to select
training and validation samples. In this research, this step was
performed after the clustering, because the forecast model is
applied [(3)] to the cluster representative values.

Therefore, for each cluster, the average values of the envi-
ronmental covariate features at each point in time (xt) were
computed by averaging the EO proxy values in the locations of
the traps assigned to that cluster. Variables representing different
time intervals were temporally interpolated with a third-order
spline to obtain weekly values.

In parallel, the mosquito count records for each cluster were
randomly subdivided into two sets: one for training, and the other
one for model testing. Accordingly, the ct−T , . . . , ct−1 vectors
in (3), were estimated using only the training set in the training
phase, and the test set in the model testing phase.

Finally, the resulting training data (target and predictor vari-
ables combined) is then randomly subdivided along time to
extract 20% of the time-points to be used for validation of the
model during training.

VI. EXPERIMENTAL RESULTS

A. Training Procedure

The model was trained for one-week-ahead female Ae. aegypti
population prediction starting from T training populations (au-
toregressive component) and environmental condition features
(exogenous component). As a result, we obtained predictions
starting at t = T + 1.

The adaptive learning rate optimization algorithm
(Adam) [39] was selected to train the neural network with
a learning rate of 0.001. The objective function for parameters
learning through backpropagation was set to the mean absolute
error (MAE) loss [10]. A dropout rate of 0.2 was used in the
decoder to avoid overfitting, and a batch size of 1 because the
dataset is not too large. All the models were trained in 100
epochs, and the model with the best validation accuracy was
selected and saved.
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Fig. 4. Numerical first derivatives of the elbow plots for selecting the optimal
number of k-means clusters in 2017 and 2018. The plots show that k = 6 is the
elbow point in both years in Vila Velha, while k = 5 is the elbow point in both
years in Serra. (a) vila velha, 2017. (b) vila velha, 2018. (c) Serra, 2017. (d)
Serra, 2018.

B. Parameter Settings

The three key parameters required in an encoder–decoder
LSTM are: 1) the temporal window size T , 2) the encoder h
output vector size, and 3) the decoder d output vector size.
For simplicity, as in [10], both the encoder and the decoder
(h ∈ Rv � d) use a single layer each, i.e., their output size is v.
We considered the window size T as one of the three possible
values {3, 6, 9 }, while the value of v is selected from the set
{16, 32, 64, 128 }.

C. Baseline Models for Comparison

To prove their significance, the results obtained by LSTM will
be compared to those obtained from other regression models.
The models are as follows:

1) RF: an ensemble learning method consisting of a collec-
tion of several randomized regression trees. For this study,
a multioutput RF model is fitted with the number of trees
set to the commonly selected value of 500 (e.g., as in [2]).

2) k-nearest neighbor regression (KNN): a multioutput re-
gression based on the 5-nearest neighbors using the Eu-
clidean distance metric. The method has been chosen
because it produced the best result in [1].

These models are fitted according to the NARX introduced
in (3). However, due to the nonrecurrent nature of both RF and
KNN, it is not possible to consider the sequential ordering of
lagged environmental effects within the considered time window
T . Hence, they are concatenated into a single vector, ignoring
their temporal ordering.

D. Clustering Results

To address the stability problem of the K-means clustering
method, the elbow plot is obtained as the average of 20 repeti-
tions over the sequence 1 ≤ K ≤ 14. Fig. 4 shows the piecewise

approximated first derivatives of the resulting K-means elbow
plots in Vila Velha [Fig. 4(a) and (b)] and Serra [Fig. 4(c)
and (d)] in both years. In Vila Velha, beyond K = 6, there is
no significant jump in the derivative, hence we chose K = 6 as
optimal elbow point in that location in both years. For Serra,
on the other hand, K = 5 is the optimal elbow point, which is
chosen for both years. The clusters are derived and labeled such
that the six clusters in Vila Velha are labeled Cluster 1A–6A in
2017 and Cluster 1B–6B in 2018. The A and B suffixes of the
cluster labels are codes for years 2017 and 2018, respectively.
Following the same convention, Cluster 1A–5 A and 1B–5B
representing the five clusters for both years in Serra are also
derived.

The line plots of Fig. 5 show the mosquito population temporal
patterns for each resulting cluster for each year and location. Dif-
ferent clusters are differentiated by their temporal distribution
and range (see the y-axes of plots). In an epidemiological sense,
periods of maximum spikes are indicative of highest possible
disease outbreak risks. In each case presented in Fig. 5, the
K-means clustering has helped to identify underlying common
patterns that describe the vector development activity at the
different sites, where trap observations have been carried out.

Furthermore, it is seen from Fig. 5 that in spite of the inter-
cluster temporal pattern differences, there are similar patterns
in subsequences across multiple clusters and locations. Such
similarities correspond to weeks of typical macroclimatic effects
at municipal and regional levels. By the hypothesis of vector
population dependency on abiotic and biotic environmental
effects, differences in temporal patterns of the cluster centers
correspond to differences in microclimatic effects, which differ
across clusters, and are shared within the same cluster. A micro-
climate is defined by a set of atmospheric conditions that differ
from those in the surrounding areas.

In Vila Velha, in 2017, local peaks can be observed in the
neighborhood of epidemiological weeks 25, 35, 43, and 52,
respectively. For each cluster, however, the range and duration
of the peaks differ. In 2018, the population of the mosquitoes
is always decreasing between observation (and epidemiological
weeks) 1–9 for all clusters. There are spikes with local peaks in
the neighborhood of week 25 in clusters 3 and 6. For Serra, in
2017, we have local peaks in the neighborhood of epidemiolog-
ical weeks 34, 44, and 48, respectively, for all clusters.

Common patterns are also observed among some subsets of
clusters. For example, all clusters except 2A exhibit increasing
vector population between observation weeks 6–16. Still in
Serra, in 2018, Clusters 4B and 5B exhibit different patterns
all through the year with respect to the other clusters that are
always close to zero. Intercluster similarities per location can be
attributed to municipality-level macroclimatic effects.

We also see patterns that are common to both Vila Velha
and Serra. For example, in 2017 there are local peaks in the
neighborhood of epidemiological weeks 34–36 and 43–44 in
both test locations. These similarities can be attributed to re-
gional macroclimatic effects. Similarities—at municipality and
regional levels—only exist in pockets of time duration, as shown
in Fig. 5. This result reveals the strengths and weaknesses of
municipality-level modeling like the one obtained in [1], [2],
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Fig. 5. Mean temporal distribution for clusters obtained in both years. The y-axis represents the cluster mean mosquito population (c) while the x-axis represents
the epidemiological week. (a) Vila Velha, 2017. (b) Vila velha, 2018. (c) Serra, 2017. (d) Serra, 2018.

and [5], especially for [2], which uses the same data in Vila
Velha as in this study. While such municipality-level models can
capture general trends that are common to most clusters, they
do not provide detailed information across different clusters. In
areas, where the trends in all clusters are similar, then, perhaps,
a municipality-level model can be sufficient. Otherwise, there is
the need for a disaggregated approach like the one presented in
this study for better inference at neighborhood-level.

Fig. 6 presents boxplots of the vector population series for
the derived clusters in both test locations. In the epidemiological
sense, minima, maxima, and interquartile ranges (IQR) provide a
risk profile summary of the component points of each the cluster.
Higher maxima mean higher risk exposure at peak periods, while
the minima are the lower bounds of the risk exposure in the
locations considered. The IQRs describe the pattern variability
of the risk exposure in the considered time. In Vila Velha, Cluster
6A has the highest maximum and variability in 2017, which
Clusters 1A and 2A come from low risk locations. In 2018,
cluster 5B has the highest maximum and variability. In Serra,
Cluster 3A has the highest maximum in 2017, while cluster
5B has the largest IQR maximum in 2018. Also, Cluster 2A
has the highest minimum in this same location in 2017. These
intercluster differences in the vector population suggest that
the clustering process has achieved the useful aim of finding
homogeneous trap locations: separating the trap points into
clusters of different temporal patterns and disease risk profiles.

Fig. 7 presents the location of the trap points along with color
indicators showing the clusters they belong to. It can be seen

Fig. 6. Boxplots of the resulting female Ae. aegypti traps data cluster means.
(a) Vila velha, 2017. (b) Vila velha, 2018. (c) Serra, 2017. (d) Serra, 2018.

that points in the same cluster are not necessarily geographically
collocated, as is also the case in the results presented in [19].

We examined cluster membership of points common to both
years to understand the spatial relationship between clusters
obtained in different years in the same location. For this, we used
the overlap coefficient (OC) [40] to measure spatio-temporal
similarities, i.e., the number of common traps contained between
every possible cluster pair across both years in the same location.
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Fig. 7. Mosquito trap points color-labeled according to their clusters. In the background is OpenStreetMap
TM

view of the study areas: Vila velha and Serra. (a)
Vila velha, 2017. (b) Vila velha, 2018. (c) Serra, 2017. (d) Serra, 2018.

The OC is defined as follows:

OC(Ci
A, C

j
B) =

|Ci
A ∩ Cj

B |
min(|Ci

A|, |Cj
B |)

(8)

where Ci
A and Cj

B are the sets of mosquito trap points in the
ith and jth clusters in 2017 and 2018, respectively, in the same
location, after filtering all clusters to retain only traps that exist
in both years. In Vila Velha, among the 193 and 325 trap points
analyzed in 2017 and 2018, respectively, there are 128 traps
which are common to both years. In Serra, among the 567 and
95 trap points analyzed in 2017 and 2018, respectively, there are
59 traps, which are common to both years.

The spatio-temporal similarities are presented in form of
similarity matrices in Fig. 8. The results for Vila Velha [c.f.
Fig. 8(a)] are discussed in the rest of this paragraph. The high-
est risk clusters in both years in this location—Clusters 6A
and 5B—have an OC of 0.64, which is the highest similarity
value obtained in the matrix. This is evidence that there is high
correlation between the set of traps with high risk in both years.
Also, as shown by their zero OC values with four out of the
remaining five clusters, these annual highest risk clusters are
decoupled from the lower risk clusters. From an epidemiological
standpoint, this is evidence of continuity in risk levels across
different control regimes, also showing that the microclimatic
effects that drive the local vector population at these high risk

Fig. 8. Matrix of similarity in set of trap points contained in cluster pairs (each
from different years). The similarity is measured by OC. (a) Vila velha. (b) Serra.
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TABLE II
COMPARISON BETWEEN MAE LOSS FOR ALL MODELS WITH RESPECT TO THE

TEMPORAL WINDOW SIZE WITH A CONSTANT LEARNED REPRESENTATION

VECTOR SIZE; v = 16 IS THE LEARNED REPRESENTATION SIZE, WHILE T IS

THE TEMPORAL WINDOW SIZE CONSIDERED FOR EACH PREDICTION

points exhibit some robustness to the control measures that have
been applied.

In addition, still in Vila Velha, Cluster 2A—the one with
lowest risk—has its highest OC of 0.57 with both Clusters 2B
and 6B, and its lowest OC of 0.17 with Cluster 3B. As shown
in Fig. 6(b), these clusters (Clusters 2B and 6B) are always
low risk throughout the observation period, indicating that that
they contain significant amount of the low risk points from
Cluster 2A. Also, since Cluster 3B in Vila Velha is the second
highest risk cluster considering the IQR, its low intersection with
Cluster 2A (Vila Velha’s lowest risk cluster in 2017) is in line.
Clusters 1A and 2B, both of relatively low risk in both years,
have an OC of 0.44.

In Serra, there are only 59 common traps points in both years.
The similarity matrix is subsequently sparse [see Fig. 8(b)].
A significant amount of the sparse relationships in the matrix
involve Clusters 5B and 6B, which contain only one trap each
and are, thus, unreliable for the kind of analysis conducted
here. In spite of the sparseness of the matrix, we still see that
Clusters 1A and 3B—the lowest risk clusters in both years—
have an OC of 0.77. Also, Clusters 3A and 2B have an OC
of 0.67. Since Cluster 2B is a high risk cluster in 2018, if
we ignore 4B and 5B, which contain single trap points each,
there is again a coupling between high risk points across years
and control regimes. These results further point to evidences of
continuity in the risk level of the trap points even across different
control regimes. Key actors in vector surveillance and control
can use the information provided by this similarity matrix for
neighborhood-level understanding of control activities effects.

E. Model Results

Table II presents the quality of the models resulting from the
grid search for the optimal temporal window size T . Based on
these data, we chose T = 3 as the optimal temporal window
in both locations. This result is supported by [24] and [41],
which shows that the development cycle of Ae. aegypti from
egg to adult ranges between one-and-a-half to three weeks.
The environmental conditions during this development period
determine the transition rate of the eggs to adult. The annual best
models in both locations are used in all further experiments.

Table III presents the quality of models resulting from the grid
search for optimal learned representation size with T set to 3.
This table shows that in Vila Velha, the learned representation

TABLE III
COMPARISON OF MAE FOR MODELS WITH RESPECT TO VARYING LEARNED

REPRESENTATION VECTOR SIZE FOR T = 3

The learned representation is the encoder output; v: Learned repre-
sentation size.

size v = 128 produces the best quality on the test data in 2017,
while v = 16 produces the best quality in 2018. In Serra, v = 64
produces the best quality on the test data in 2017, while v = 32
produces the best quality in 2018.

The search for learned representation size is a standard prac-
tice with fitting encoder–decoder neural network, and its result
does not have a direct epidemiological bearing. However, it can
be seen that the best models obtained in 2017 in both locations
require higher values of v compared to their 2018 counterparts.
This is because the 2017 field mosquito data contain patterns
with more variability than 2018 due to an improvement of control
activities (see Figs. 5 and 6).

Fig. 9 presents the line plots comparing the best LSTM models
with the benchmark RF and KNN models on training (validation
inclusive) and test data in both years. Fig. 10 present scatterplots
comparing the models with respect to their fitness to test data.
Spikes in the line plots are indicative of increasing rate of
vector population. From an epidemiological standpoint, these
spikes are proxies to increasing risk of diseases occurrence in
neighborhoods around the cluster component trap points. Hence,
forecasting such spikes will serve well as disease outbreak early
warning signals. Dips in the line plots, contrarily, are indicative
of low rates of vector population. The ability to forecast dips
correctly in all clusters is also important, since it may lead to
better resource allocation through the redeployment of control
resources from areas with predicted dips to areas with predicted
spikes.

The resulting best LSTM models from Table III were com-
pared with their corresponding baseline RF and KNN models;
Table IV shows the results. In Vila Velha, LSTM performs
approximately 9% and 11% better than RF in 2017 and 2018,
respectively. Also, it performs approximately 9% and 6% better
than KNN in 2017 and 2018, respectively. It can also be seen that
LSTM always perform much better than both baseline models
on validation data in this location and in both years. In Serra,
LSTM produces an improvements of approximately 12% and
21% with respect to RF in 2017 and 2018, respectively. In
addition, it performs around 19% and 20% better than KNN in
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Fig. 9. Line plots comparing observed and predicted values for LSTM, KNN, and RF models in 2017 and 2018. Validation data points are inserted into their
time positions among the training data. The weeks for each plot are indexed starting from 1 to enhance plots visualization. These weeks can be mapped to their
corresponding epidemiological weeks defined using figures for the corresponding location and year in Fig. 5. (a) Vila velha, training, 2017. (b) Vila velha, training,
2018. (c) Vila velha, testing, 2017. (c) Vila velha, testing, 2017. (d) Vila velha, testing, 2018. (e) Serra, training, 2017. (f) Serra, training, 2018. (g) Serra, testing,
2017. (h) Serra, testing, 2018.
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Fig. 10. Scatterplots comparing observed and predicted values for LSTM, KNN and RF models on test data. (a) Vila velha, 2017. (b) Vila velha, 2018. (c) Serra,
2017. (d) Serra, 2018.

TABLE IV
COMPARISON OF MAE FOR BEST LSTM, RF, AND KNN IN BOTH

CONSIDERED YEARS

observation years 2017 and 2018, respectively. The validation
error for LSTM is lower than what is obtained with RF and KNN
in both observation years. It is worth recalling at this point that
LSTMs leverage the sequential ordering of the input data in the
learning process. This is especially useful for learning lagged
contributions of predictor features across time. Our results here
show significant quantitative evidence of the need for this prop-
erty of LSTMs for the specific use case addressed in this study.

Fig. 9(a) and (b) presents the line plots of LSTM and the
baseline models (RF and KNN) on training data in Vila Velha
across the two observed years. LSTM mostly overestimates the
observed training data in observation weeks 9–34 in Cluster 1A
[see Fig. 9(a)], but still follows the observed trend. RF and KNN
do not follow the observed data trend in this period. RF and
KNN underestimate the observed values in the neighborhood of
observation weeks 4–9 in Cluster 1A, and overestimate around
these same weeks in the remaining clusters. LSTM, on the other
hand, fits the data well in that period. All the fitted models fail to
reach the observed data value in week 36 in Clusters 1A–5A, but
LSTM significantly performs better in that week in Cluster 1A.
In 2018 [see Fig. 5(b)], RF and KNN both underestimate the
observed data around observation weeks 4–6 in all clusters,
except in Cluster 4B. LSTM, on the other hand, fits the data
well in these weeks in all the clusters, except in Cluster 5B. Also,
RF and KNN underestimate the observed training data around
weeks 9–14 in Cluster 4B, and overestimate their predictions in
this same period in Cluster 3B.

Still on Vila Velha, with regards to test data performance, in
2017, as presented in Fig. 9(c), LSTM, KNN, and RF do not fit
the observed test data well in Cluster 1A compared to the other
clusters. This can be attributed to the lower purity of this cluster,
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as can be inferred from the differences between the training and
test data temporal distribution (compare Cluster 1A training and
test patterns in Fig. 9(a) and (c), respectively). Nevertheless,
for this same cluster, LSTM still follows the trend (spikes and
dips) of the vector population in weeks 9–14, 19–24, and 31–36,
which is a total of 18 out of 36 weeks. RF and KNN, on the other
hand, remain quasi-invariant in temporal pattern all through the
observation weeks.

These results show the robustness of the LSTM to clustering
quality variations, which is a major component of the framework
proposed in this study. It is worth mentioning, however, that
our test results can be improved by improving the clustering
procedure. In the other clusters, around weeks 4–9, RF and
KNN wrongly predict a spike in Clusters 2A–5A, while LSTM
performs better in that period in the mentioned clusters. In epi-
demiological terms, overestimation (e.g., wrongly forecasting a
spike) of vector population, as exhibited here by RF, can result
in false outbreak alarms.

Considering the test data performance in Vila Velha for year
2018 as presented in Fig. 9(d), RF underestimates the observed
data around weeks 4–9 in most clusters. LSTM, however, fits
the observed data in all but Cluster 6B during these weeks.
Another significant discrepancy between LSTM and the baseline
models is around weeks 9–14 in Cluster 4B, in which KNN and
RF significantly underestimate the observed data, while LSTM
produces better fit. In all, LSTM shows the ability to compensate
for common weaknesses shown by the two baseline models.

Fig. 10(a) and (b) compares the prediction by all fitted models
to the observed test data with a scatterplot visualization. Here,
it is seen that LSTM follows the highest observed values better
for all clusters in both years. Again, this is indicative for better
capability to forecast possible disease outbreaks. LSTM also
follows the lowest observed values better in Clusters 2A–5 A in
2017. In 2018, LSTM follows the lowest observed values better
in Clusters 3B and 4B.

In Serra, first we discuss how the models perform on the
training data in both years as presented in Fig. 9(e) and (f).
In 2017, on the training data [see Fig. 9(e)], both RF and
KNN overestimate the observed data in weeks 4–9 for all
clusters except Cluster 2A, where KNN underestimates the
observed data. Also, both baseline models underestimate the
peak reached around observation week 19 in Cluster 5A. On the
contrary, LSTM performs relatively well in all these periods.
In 2018 [see Fig. 9(f)], again, both RF and KNN underesti-
mate the observed data around the observation weeks 4–9 in
clusters 2B and 3B.

With regards to the test data performance of the models
in Serra, the same disparities from the observed training data
shown by the baseline models in 2017 are also reproduced
on the test data [see weeks 4–9 in Fig. 10(g)]. In 2018 [see
Fig. 10(h)], notable disparities between observed and fitted data
by all models are seen in Cluster 1B starting from observation
week 39. This is another case of high intracluster variance, which
has led to different patterns in training and test data of the same
cluster. Regardless, for this cluster and in this period, LSTM still
attempts to capture some of the temporal variations, while RF
and KNN remain relatively invariant.

Fig. 11. Cluster-level comparison of MAE for LSTM, KNN and RF models.
Lower MAE is desirable. (a) Vila velha, 2017. (b) Vila velha, 2018. (c) Serra,
2017. (d) Serra, 2018.

From the visualization offered by the scatterplots presented
in Fig. 10(a) and (b), we observe that, just like in Vila Velha,
LSTM follows the lowers observed values better in Serra for all
clusters in both years. Also, LSTM follows the highest observed
values better in Clusters 2A, 4A, 5A, 1B, 2B, 3B, and 5B.

Overall, LSTM qualitatively outperforms both baseline mod-
els in generalizing to the test data in both test locations. By
following the highest and lower observed data better, LSTM
provides the most reliable model for an outbreak early warning
system.

Finally, the errors produced by the LSTM models in each
location are examined at cluster level in comparison to their RF
and KNN counterparts. This analysis is presented in Fig. 11.
Here, it is shown that, in Vila Velha, LSTM produced the lowest
MAE in five and four cluster out of the total six in 2017 and
2018, respectively. In Serra, LSTM produced better results in
four out of the five clusters in both years.

VII. DISCUSSION

According to Fig. 5, the clustering approach applied in this
study succeeds in finding common patterns in the trap points se-
ries. In this way, the problem of forecasting the many underlying
series obtained from the traps is simplified to that of forecasting
fewer series. The pattern similarity among traps series in the
same cluster is captured by the similarity in the observed training
and test data, which have been obtained as averages of randomly
selected series as shown in Fig. 9. By this method, we have
reduced the forecasting task significantly.

In Vila Velha, starting from 195 and 325 trap points series
in 2017 and 2018, respectively, we obtain six clusters for each
year that describe the underlying mosquito vector activity of
interest during the time observed. In Serra, starting from 567 and
95 traps in 2017 and 2018, respectively, we are able to summarize
them into five clusters in each year. It is noteworthy that the
optimal number of underlying clusters obtained is the same for
each location in the two observation years. This shows that, in
spite of different control conditions and nonmatching climate
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seasons in both years, the underlying pattern mechanisms of the
female Ae. aegypti in these locations are continuous.

The results show that freely accessible satellite image prod-
ucts, which have formed the basis of recent studies [1], [2] in Ae.
aegypti population dynamics modeling are available at spatial
resolutions that make them informative for neighborhood-level
temporal modeling. This is useful for municipality, regional, or
national monitoring, where a larval survey approach is used to
plan preventive and recovery actions. This approach requires
that designated field inspectors visit all traps weekly at specified
times to inspect and collect the data, resulting sometimes in
missing data due to insufficient manpower. This issue is observ-
able in the data of this research because, as mentioned above,
among 791 traps in Vila Velha, only 193 traps had significant
records for the whole year 2017. Since the cost of collecting in
situ data is very high, the financial inefficiency resulting from
of large amounts of missing data is also very high. As a result,
the framework proposed in this work can serve not only for
forecasting purposes, but also for spatio-temporal gap filling,
especially when a trap location with missing data had previously
been classified into a cluster.

Another point worth discussing is the importance of the
lagging effects on some variables. Indeed, many studies have
reported varying lagged effects associations between environ-
mental conditions and dengue virus spread dynamics. In [2],
two weeks of lag was chosen to represent nonsynchronous
environmental effects. Scavuzzo et al.[1] and German et al. [5],
on the other hand, chose three weeks for same take but in
a different study location from [2]. These studies base their
choice of lag window on a priori entomological knowledge of
mosquito development life cycle. However, as reported in [42],
this prior based lagged effects knowledge does not generalize
globally, and is not necessarily the same for every considered
environmental condition. For example, increase in dengue risk
has been associated with increasing minimum and maximum
temperature by 1–2 two month lags in Mexico, French, West
Indies, and Brazil. Countries closer to the equator, e.g., Singa-
pore and Indonesia, report shorter lag effects (2–4 weeks) of
temperature on the dengue cases. The study in [43] presents
the temporal analysis of the relationship between dengue virus
(not vector) and climatic variables in Rio de Janeiro, Brazil
between the years 2001 and 2009. The best result in that study
was obtained by considering four weeks (T = 4) lag effects of
both precipitation and temperature variables. In line with all
these works, our results show that T = 3 is the most significant
choice, in accordance with empirical evidence.

In our study, we have considered an experimental approach
toward choosing the right temporal window not only in terms of
size, but maintaining the sequential ordering of the considered
lagged series. Indeed, a major advantage of RNNs is that they
can, within a specified time window, automatically learn the right
lag dependencies differently for each considered environmental
variable feature. As shown by the results in Section VI-D,
learning the sequential dependency in lagged temporal windows
improves the quality of our model. This improvement in quality
generalizes across multiple vector control regimes and in two
different locations.

As already mentioned in Section VI-E, one way to improve the
presented results is by improving the quality of the clusters ob-
tained. In this work, we have chosen to cluster the mosquito data
based solely on their time series characteristics. This approach
can be improved by also considering geospatial proximity of
trap locations.

VIII. CONCLUSION

While in [2], an RF approach was exploited for municipality-
level “nowcasting” of Ae. aegypti vector population, in this
work, the same satellite image features were used to design
a neighborhood-level forecasting framework. To this aim, au-
toregressive (past vector dynamics) and exogeneous (environ-
mental effects) components were both included in the pro-
posed model, and RNN were used to learn the model param-
eters and sequential dependency, especially considering lagged
effects.

Eventually, this study results in the following contributions.
1) A general RNN-based algorithm for neighborhood-level

time series female Ae. aegypti population one-week-ahead
forecasting using EO products has been proposed and
validated.

2) Forecasting accuracy values better than those by multi-
output variants of RF (as applied in [2]) and k-Nearest
Neighbor (KNN) (as applied in [1]) have been obtained.

3) By applying our modeling pipeline to data from different
time periods and locations, the proposed approach has
been proved as robust and with generalization capabilities
for different conditions.

4) Finally, we have discussed how the results obtained from
the proposed method can be applied to improve existing
vector surveillance systems in terms of cost, time, and
man-power efficiency.

Using the one-week-ahead NARX forecast model proposed
in this work, public health managers have more time to plan
and respond. Future studies will consider an extension into
multisteps-ahead forecasting, since RNNs have already been
successfully applied to such cases in other domains [17], [44].
Additionally, other deep learning network architectures will be
considered, such as the transformer model applied in [9] for
multistep-ahead forecasting of influenza epidemics prevalence.
Another equally promising future direction is toward using the
resulting RNN models to understand the relative importance of
the observed environmental factors on the population of female
Ae. aegypti. This is particularly challenging using deep learning
techniques, as testified by the growing number of researches on
the topics of “explicable AI” and “whitening AI.”
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