
4476 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Exploiting Hierarchical Features for Crop Yield
Prediction Based on 3-D Convolutional Neural
Networks and Multikernel Gaussian Process

Mengjia Qiao , Xiaohui He , Xijie Cheng , Panle Li , Haotian Luo, Zhihui Tian, and Hengliang Guo

Abstract—Accurate and timely prediction of crop yield based
on remote sensing data is important for food security. However,
crop growth is a complex process, which makes it quite difficult to
achieve better performance. To address this problem, a novel 3-D
convolutional neural multikernel network is proposed to capture
hierarchical features for predicting crop yield. First, a full 3-D
convolutional neural network is constructed to maximally explore
deep spatial–spectral features from multispectral images. Then, a
multikernel learning (MKL) approach is proposed for fusion of
intraimage deep spatial–spectral features and intersample spatial
consistency features. Specifically, we assign a group of nonlinear
kernels for each feature in the MKL framework, which provides a
robust way to fit features extracted from different domains. Finally,
the probability distribution of prediction results is obtained by a
kernel-based method. We evaluate the performance of the proposed
method on China wheat yield prediction and offer detailed and
systematic analyses of the performance of the proposed method. In
addition, our method is compared with several competing methods.
Experimental results demonstrate that the proposed method has
certain advantages and can provide better prediction performance
than the competitive methods.

Index Terms—Crop yield, multikernel learning (MKL), spatial
consistency, 3-D convolutional neural network (CNN).

I. INTRODUCTION

CROP yield prediction is an essential and active part of
improving food security. A reliable and timely estimation

of crop yield before harvest is of great significance and has
been a topic of interest for decades. Traditionally, researchers
focused on predicting crop yields through crop simulation mod-
els (CSMs) [1], [2]. Two main dilemmas arise in adopting CSMs
in crop yield prediction. First, a substantial number of indicators
are needed for model calibration that restrict these models from
broad applications. Second, CSMs are commonly designed for
specific regions based on the situations of current interest, which
makes it difficult to accurately estimate yields in other regions.
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To overcome these drawbacks, later studies cast yield prediction
problems from the perspective of machine learning methods,
such as support vector machines (SVM) [3], [4], random forests
(RF) [5], [6], artificial neural networks (ANN) [7]–[9], etc. These
algorithms can build empirical predictive models using a fixed
pattern of features extracted from remote sensing images (RSIs)
without abundant parameters. However, the performance is still
limited because handcrafted features mainly leverage human
ingenuity and prior knowledge [10], which are not robust for
all cases. Furthermore, such algorithms are computationally
intensive and become intractable on large-scale datasets. All
such difficulties make crop yield prediction challenging and lead
to unsatisfactory performance.

With the development of deep learning methods, an impor-
tant trend in crop yield prediction is the use of deep models.
Compared with traditional approaches, these models can auto-
matically extract informative features from the raw image, which
enable generalization for coping with different situations [11],
[12]. Ma et al. [13] introduced a stacked autoencoder (SAE) to
extract the deep spectral features for crop yield prediction using
multispectral images (MSIs). However, this method flattens
images into 1-D spectral vectors that suffer from spatial informa-
tion loss. To address this issue, the authors of [14]–[17] proposed
the use of convolutional neural networks (CNNs) for crop yield
prediction. Compared with SAEs, CNNs allow using spatial
patches as input that provide a natural way to incorporate spatial
information and enhance the performance [18]. Moreover, Yang
et al. [19] developed a two-branch CNN to separately extract
spectral and spatial features. These methods have achieved better
results than traditional approaches and have proven that the deep
spatial and spectral features excavated by CNNs can create a
generalized representation for crop yield prediction.

However, in the real world, crop growth is a highly complex
trait determined by many factors such as soil properties, pre-
cipitation, etc., which are not fully captured by RSIs. In such
cases, merely excavating intraimage deep spatial and spectral
features based on CNNs may be insufficient. It has been observed
that these crop-related factors have a strong consistency trend
in the spatial dimension [20], [21]. In this scenario, the use of
this spatial consistency between different data points could be
of help to incorporate properties of other missing factors into
the task of prediction. As demonstrated by Anselin et al. [22],
spatial correlation was prevalent in corn yield response models
and should be critically considered in the analysis of yield
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monitor data. Peralta et al. [23] pointed that without accounting
for spatial consistency, prediction models may lead to inaccu-
rate estimations. Following these rationales, the spatial consis-
tency property has been intensively incorporated in rice [24],
grain [20], and soybean [21] prediction and achieved improved
performance. Hence, we assume that the integrated use of deep
spatial–spectral features and spatial consistency can help as an
ensemble of multiple crop-related characters for predicting crop
yield, which would effectively improve the results. Nevertheless,
since these two features are typically obtained from different
sources, determining how to simultaneously integrate these two
heterogeneous levels of information into the prediction model
is a substantial challenge. To overcome this problem, we pro-
pose a multikernel learning (MKL) approach associated with
a kernel-based Gaussian process (GP) for integrating heteroge-
neous features as well as a feature selection strategy for inferring
the contribution of each feature.

In this article, we aim at fully exploiting and utilizing the
discriminative power of hierarchical features for crop yield pre-
diction. Based on this intention, we propose a novel architecture
(3DMKGP) for crop yield prediction, which is a combination
of the 3-D CNN and the multikernel GP (MKGP). Although
the 3-D CNN has been used for crop yield prediction in earlier
works [25], [26], to the best of our knowledge, we are first to
apply it for excavating the joint spatial–spectral features from
MSIs. Note that the GP has been explored in [14], where a linear
GP is utilized for final prediction and the spatial consistency is
only taken as the residual of the prediction. In our work, a novel
MKL strategy is not only employed for seamlessly generalizing
deep features and spatial consistency within a kernel function,
but is also used for measuring the uncertainty of the predictions.
The main contributions of this article are listed as follows.

1) A 3-D CNN is first applied for excavating spatial–spectral
features in the crop yield prediction assessment. By apply-
ing 3-D convolutions, the robust spatial–spectral features
can be simultaneously extracted.

2) An MKGP with a new “spatial–spectral–spatio” com-
posite Gaussian kernel is concatenated on the top of the
3-D CNN. The new kernel is derived from deep features
and location data and can flexibly encode deep feature
characteristics and spatial consistency.

3) County-level wheat yield in China is predicted to show
the effectiveness of the proposed method. Experimental
results show that our method achieves a promising mod-
eling capability and is capable of predicting crop yield
with higher quality.

The rest of this article is organized as follows. Section II
presents an introduction of crop yield prediction and MKL. Sec-
tion III describes the proposed 3DMKGP in detail. Section IV
then provides the dataset information and experimental results.
Finally, Section V concludes this article.

II. RELATED WORKS

A. Traditional-Based Methods for Crop Yield Prediction

Crop yield prediction has been a vital problem for decades,
and many methods have been proposed to forecast crop yields.

The most commonly used approach for prediction yield is crop
yield models. Generally, we can classify all previous crop yield
models into two categories. The models in the first category
forecast crop yields by simulating multiple physiological char-
acteristics of crops, such as meteorological data, soil proper-
ties, biogeochemical fluxes, relevant socioeconomic indicators,
etc. The most widely used models include AquaCrop [27],
the CERES-Maize model [28], and the APSIM model [29].
However, these kinds of models require a massive number of
indicators as input, which are hard to obtain, especially in devel-
oping counties. Furthermore, these models exhibit weak spatial
generalization, which limits these models from wider applica-
tion. The second category is the machine-learning-based models.
These kinds of models are based on handcrafted features, such
as the normalized difference vegetation index (NDVI) and the
enhanced vegetation index (EVI). A considerable body of work
in the crop yield prediction community falls into this category.
For example, in [30], the NDVI and the EVI from MODIS were
used to establish an empirical approach to forecast maize yield
in the USA. Moreover, Vega et al. [31] also demonstrated good
correlation between sunflower yield and the calculated NDVI
from pixel-based MSIs based on an SVM. Similar studies eval-
uated different methods for various crop types, e.g., regression
trees for wheat [32] and corn [33], multilinear regression for
barely [34] and rice prediction [35], and so on. After that, in
order to incorporate more complex modeling problems, Bose
et al. [9] later introduced spiking neural networks for crop yield
estimation from NDVI image time series, which have been
shown to outperform traditional machine learning classifiers.
However, these traditional machine-learning-based methods are
still limited by handcrafted features, since they are mostly math-
ematical combinations of a few fixed bands and are not robust
for all cases [36].

B. Deep-Learning-Based Methods for Crop Yield Prediction

Recently, deep learning methods have shown great potential
in the field of urban planning [37], [38], land cover classifica-
tion [39], [40], and gradually developed in crop yield prediction.
Compared to traditional approaches, the deep learning methods
can automatically extract robust features from the original im-
age using a hierarchical representation architecture. Peerlinck
et al. [41] introduced an SAE to extract high-level features
for crop yield prediction based on MSIs. In this work, the
images were flattened into a 1-D spectral vector that could not
exploit the spatial information. To overcome this limitation, You
et al. [14] first introduced a CNN and a long short-term memory
(LSTM) network to automatically discover crop-related features
from raw images for crop yield prediction in America, and the
results showed that both the CNN and the LSTM achieve better
results than the traditional approach. Compared to the SAE, the
CNN can preserve local spatial information from spatial patches
through 2-D convolution filters. Based on this intention, many
research works have applied CNNs to the task of excavating
spatial and spectral features in crop yield prediction [15], [42].
Moreover, the authors of [16] and [17] provided an extension
to new regions with a transfer learning approach, which further
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exhibited the superiority of deep learning methods in extracting
spatial and spectral features. More recently, Yang et al. [19]
presented a two-branch CNN architecture for rich grain yield
estimation so that spectral and spatial features can be separately
extracted. The above studies provided evidence regarding the
advantages of deep spatial and spectral features over handcrafted
features. However, these methods do not take full advantage of
spatial–spectral features due to the limitation of 2-D networks.

C. 3-D Convolutional Neural Networks

The 3-D CNN was first proposed for extracting features
from spatial and temporal dimensions in human action recog-
nition [43]. Then, the development of the 3-D CNN provided a
more effective way to excavate spatial–spectral features. More
recently, the 3-D CNN was developed for hyperspectral image
(HSI) classification [44], [45]. Instead of extracting spatial and
spectral features separately in 2-D networks, the 3-D CNN
can capture the joint spatial–spectral features, which is more
suitable for 3-D cube data, and has achieved excellent results.
For instance, Chen et al. [46] proposed a 3-D-CNN-based feature
extraction model to extract effective spatial–spectral features of
HSI. In this way, the 3-D hypercube with joint spatial–spectral
information can be obtained simultaneously. Yang et al. [47] pro-
posed a recurrent 3-D CNN method, where the 3-D convolution
operator is utilized to exploit both spatial context and spectral
correlation through gradually shrinking the patch, and greatly
improved performance in HSI classification was achieved. To
increase the classification accuracy of HSIs, Mei et al. [48]
designed a spectral–spatial attention network through spectral
and spatial models with 3-D convolution to extract the joint
spectral–spatial features. Then, the spectral–spatial attention
model was embedded between the above two models to suppress
the effects of interfering pixels and capture attention areas in an
HSI cube. In [49], a multiscale recurrent neural network (RNN)
is presented with spectral–spatial features, where the 3-D CNN is
used to extract the local spectral–spatial features and the RNN is
used to capture the spatial dependence. The results have proven
that the model can capture the deep spectral–spatial features
simultaneously, and it outperforms the SAE and 2-D CNN
models. The above studies have proven that the 3-D CNN has
great superiority in exploiting spatial–spectral features. How-
ever, the datasets used in crop yield prediction are different from
HSIs, and the process of crop growth is also typical. Therefore,
determining how to construct a proper 3-D CNN for predicting
yield is a vital problem.

D. Multikernel Learning

Kernel-based methods, such as GPs or SVMs, can model non-
linear data distributions by an implicit mapping function input to
the kernel space through kernel embedding [50], [51]. However,
in the most general case, a single kernel is not able to fully model
the highly complex nonlinear relationship. Hence, a more flexi-
ble MKL approach is proposed to address multimodality features
by combining multiple kernels. In the multikernel framework,
each kernel stands for a certain kind of feature. The fusion of fea-
tures through multikernels can and has achieved state-of-the-art

performance in many fields. For example, Cao et al. [52] devel-
oped a multikernel-based feature fusion and selection method
with a kernel logistic regression model for modeling multiple
visual characteristics. To incorporate high-dimensional feature
space, Tuia et al. [53] proposed a kernel-alignment-based model
based on the automatic optimization of the linear combination
of kernels, where the weights of each kernel are automatically
merged after training the model. Yeh et al. [54] presented the
MKL framework for fusion of features from different domains.
Their method is able to select the class-specific weights for dif-
ferent types of features via the one-versus-rest learning strategy.
They then verify the feasibility of their method in feature fusion
under MKL. More recently, studies have developed MKL for
combining multisource features obtained from different sensors.
For example, a new MKL model was proposed to integrate
heterogeneous features from LiDAR, and MSI achieved great
performance in urban area classification [55]. Later, MKL was
also applied for fusion of features from different modalities and
yielded improved performance in damage detection. The results
revealed the integration of multiple features by MKL led to an
additional improvement of approximately 3% [56].

In this work, we aim to explore and integrate hierarchical
features for crop yield prediction. Therefore, we first apply a
3-D CNN for excavating deep spatial–spectral features from raw
images within a single region. We then incorporate an MKGP to
simultaneously capture multiple features through a composite
kernel. The experimental results indicate that our method is
superior to competing methods with a significant improvement
in the wheat yield prediction in China.

III. METHODS

A. Problem Setting

In this section, we start by formalizing the crop yield predic-
tion problem. The purpose of crop yield prediction is to predict
crop yield before harvest. More specifically, given a set of RSIs
(I0, I2, . . . , It) from time 0 to t, the model is required to make
a reliable prediction yield at time t+ 1. For this article, we are
interested in the average crop yield within several counties. Let
X εRB×HW denote the H ×W MSI with B bands within each
county as the training input, and Y is the crop yield label. Given
any new image X∗ from the testing set, we aim to predict the
probability distribution P (Y ∗|X∗, Y,X) of the corresponding
crop yield Y ∗.

B. Study Area

In this article, we focus on validation our method on winter
wheat prediction in China. The main planting areas at county
level of wheat are presented in Fig. 1. We further divided the
planting areas into three typical types, including the Northern
winter wheat part (Zone I), the Southwest winter wheat part
(Zone II), and the Xinjiang winter wheat part (Zone III).

C. Overview of the Proposed Approach

Crop yield prediction has been a vital problem, and many
studies have been proposed for seeking better performance. In
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Fig. 1. Winter wheat study area in China.

Fig. 2. Architecture of the proposed 3DMKGP.

this study, we focus on exploring and integrating hierarchical
features for crop yield prediction.

First, a 3-D CNN is introduced for learning spatial–spectral
features from RSIs. In the 3-D CNN, several 3-D convolution
kernels are applied for deep feature extraction from MSIs.
Second, the prediction process is carried out using an
MKGP based on the deep spatial–spectral features and spatial
location data. Since the MKGP is capable of systematically
aggregating different representations, it can simultaneously

capture the deep feature similarities as well as the spatial
consistency.

Then, we design a new 3-DMKGP framework by integrating
the 3-D CNN and MKGP, as shown in Fig. 2. Two parts are
included in our 3-DMKGP: the first part is the feature space,
including deep spatial–spectral feature extraction from the 3-
D CNN and location data (Loc data) capture. In addition, the
MKGP is connected on the top of the 3-D CNN as the kernel
space. Finally, the probability distributions of prediction results
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Fig. 3. Difference between (a) 3-D convolution and (b) 2-D convolution on crop yield prediction task.

are established after the kernel space. The proposed 3DMKGP
can fully excavate spatial–spectral features from RSIs and make
reliable prediction jointly from deep features and location data.

D. 3-D Convolutional Neural Networks

The RSIs used for crop yield prediction in this study are
represented by a 3-D cube, which contains a 2-D spatial context
and 1-D spectral information. The traditional 2-D CNN uses the
2-D convolution kernels during the process of feature learning
and moves in two directions (x, y) to calculate low-dimensional
features from the image data. The output shape is also a 2-D
matrix, which neglects the spectral information along the third
dimension. The 3-D CNN applies 3-D convolution kernels to
the dataset, and the convolution kernels move in three directions
(x, y, z) to calculate the spatial and spectral feature representa-
tions. Most importantly, the output shape after 3-D convolution
is a 3-D volume space such as a cube or cuboid, which can jointly
learn the spatial and spectral features via different kernels. The
difference between 2-D CNNs and 3-D CNNs can be seen from
Fig. 3. Hence, in order to fully explore both spatial and spectral
discrimination simultaneously, the 3-D CNN is adopted in the
proposed method, including 3-D convolution, 3-D pooling, and
3-D batch normalization (BN).

1) 3-D Convolution: As shown in Fig. 3, for an input IεR3,
the value at position (x, y, z) on the jth feature map in the ith
convolution layer is represented as

vxyzij = f

(
bij +

∑
m

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijmv

(x+p)(y+q)(z+r)
(i−1)m

)

(1)
where f is an activation function and m stands for the number
of feature maps in the (i− 1)th layer (previous layer), and wpqr

ijm

is the weight at the position (p, q, r) in the 3-D convolution
layer that connects to the feature maps of adjacent layers.

Pi, Qi, and Ri are the height, width, and depth of the kernel,
respectively, and bij denotes the bias.

2) 3-D Pooling: Max pooling is used to reduce the number
of training parameters of the 3-D CNN in this article. Different
from 2-D pooling, 3-D max pooling can perform downsampling
by dividing 3-D input into cuboidal pooling regions and com-
puting the maximum of each region. The feature after pooling
at position (x, y, z) is defined as

Ox,y,z = max
t

F x,y,z
t (2)

where F stands for the features extracted from 3-D convolution
kernels before the pooling layer.

3) 3-D Batch Normalization: Assume that X is a mini-batch
input; the output of a normalized 3-D batch can be represented
as

y =
γx√

Var(x) + ε
+

(
β − γE(x)√

Var(x) + ε

)
(3)

where E(x) and Var(x), respectively, represent the mean and
standard deviation that are calculated over the mini-batch, and
γ and β stand for the trainable parameters.

E. Multikernel GP

The kernel space employs a kernel-based method, the GP, by
integrating the deep features extracted from the 3-D CNN and
the location of the study regions. In this section, we first present a
brief introduction about the GP, and then, the MKGP is adopted
to integrate the deep features and spatial consistency.

1) Gaussian Process: A GP is a collection of random vari-
ables, any finite number of which have a joint Gaussian dis-
tribution [57]. Moreover, GP is a nonparametric probability
model that is completely specified by the mean and covariance
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functions, and the distribution can be denoted as

f(x) ∼ gp(m(x), k(x, x′)) (4)

where x and x′ stand for any random variables, the mean func-
tion m(x) represents the expectation E[f(x)], and the kernel
function k(x, x′) defines the covariance cov(f(x), f(x′)).

Usually, for notational simplicity, we will take the mean
function to be zero, and furthermore, we add noise ε ∼ gp(0, σ2)
so that the function distribution is closer to the real data.

For the regression problem, we consider

y = f(x) + ε. (5)

Moreover, we can infer the distribution of the observations y

y ∼ N(0,K(x, x′) + σ2
nIn) (6)

where In is an n-dimensional identity matrix.
Hence, given the input latent variable set X =

{x1, x2, . . . , xN}, we define the crop yield as Y =
{y1, y2, . . . , yN}, which is a multivariate GP indexed by
xi; then, we have

P (Y |X, θ) =

N∏
i=1

p(yi|xi, θ)

=
1

(2π)
DN
2 |KY |D2

exp

(
−1

2
tr
(
K−1

Y yY T
))

(7)

where KY is an (n× n)-order symmetric positive covariance
matrix, and the element in matrix (KY )ij = kY (xi, xj) is used
to measure the similarity between xi and xj . In is an n-
dimensional identity matrix.

2) Spatial–Spectral–Spatio Kernel: Based on (7), we can
infer that the performance of prediction is dependent on the
selection of the kernel function. Hence, in this section, a com-
pound kernel for the GP under the multikernel framework is
constructed for capturing hierarchical features. The kernel em-
ployed consists of two separate components: deep feature kernel
and spatial feature kernel. The weight of each kernel is learned
during an optimization phase.

a) Deep spatial–spectral feature kernel: In this part, we
intend to model the distance of the deep features extracted from
the 3-D CNN. For this purpose, a radial basis function (RBF)
kernel is used to build the deep feature kernel based on the
spatial–spectral features extracted near the top of the 3-D CNN.
Let X = x1, x2, . . . , xi be the features generated after the 3-D
CNN. Then, the feature kernel can be expressed as

Kdfeature = σ2
fexp

[
−‖x− x′‖22

2l2f

]
(8)

where x denotes the normalized deep feature of the training
dataset, and x′ is the feature of the test data. σ2

f , σ2
s , lf , ll, and

ly are the hyperparameters of this kernel, which are defined as
θ1 = {θl|l = 1, . . . ,M}.

b) Spatial consistency feature kernel: For the sake of cap-
turing spatial consistency, we also construct the spatial kernel

based on the RBF kernel. The kernel can be expressed as

Kspatial = σ2
sexp

[
−‖Δloc‖22

2l2s

]
. (9)

In the spatial kernel, the similarity is measured among the
instances of the spatial location of the data points, where Δloc =
|loc − loc′| represents the distance metric between training and
testing data. In this study, we used the central longitude and
latitude of each county as the measurement of spatial dis-
tance. The hyperparameters in this kernel can be defined as
θ2 = {θl|l = 1, . . . ,K}.

c) Spatial–spectral–spatio kernel: To simultaneously ag-
gregate the information within deep features and the spatial
consistency, we construct a new “spatial–spectral–spatio” kernel
by combining the deep feature kernel and spatial feature kernel
using an MKL approach. In this new kernel, we construct two
similarity matrices for each data source through the Euclidean
distance. The new kernel can be expressed by

K =
∑

wsks(xi, xj) (10)

where WS = {w1, w2} are the weights of the subkernels. We
define the weights positive and w1 + w2 = 1. The optimized
weights w1 and w2 are capable of reflecting the contributions
of each kind of feature. KS = {Kdfeature,Kspatial} stands for
the deep feature kernel and spatial kernel, respectively. As the
parameters may be different for different kernels, we define the
parameter vector as θm = {θ1, θ2, w1, w2} for the new kernel.
The detailed parameter settings will be discussed in Section IV.

3) Prediction: Finally, based on the new “spatial–spectral–
spatio” kernel, let Y denote the training yield dataset, and y′

is the yield that needs to be predicted. The joint distribution of
observations Y and predictions y′ can be expressed as[

Y

y′

]
∼
(
0,

[
K(X,X) + σ2

nIn K(X,x′)
K(x′, X) k(x′, x′)

])
(11)

K(X,x′) = K(x′, X)T represent the (n× 1)th-order covari-
ance matrix between prediction variables x′ and training set X .

Based on the joint distribution (11), we can calculate the
probability distributions of prediction yield y′:

P (y′|x′, X, Y ) ∼ N(E [y′] , cov (y′)) (12)

where

E[y′] = K(x′, X)[K(X,X) + σ2
nIn]

−1y (13)

and

cov(y′) = k(x′, x′)−K(x′, X)

× [K(X,X) + σ2
nIn]

−1K(X,x′).

(14)

Then, we adoptE[y′] as the final prediction result. The cov(y′)
is used as the measurement of uncertainty.
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TABLE I
NUMBER OF TRAINING AND TESTING SAMPLES OF CROP YIELD DATA

IV. EXPERIMENTS

In this section, we examine the superiority of the proposed
3DMKGP for crop yield prediction. Toward this end, several
experiments have been conducted.

A. Data Description and Processing

1) Remote Sensing Series: In this article, we focus on the
winter wheat yield prediction in China. The remote sensing
data used in this article are acquired from the MODIS satel-
lite, including two imagery products. The Surface Reflectance
(MOD09A1) dataset [58] contains seven bands that provide rich
spectral information. The Land Surface Temperature dataset
(MYD11A2) [59] contains two bands that provide the neces-
sary temperature information. Both of them provide eight-day
composites. Based on the wheat growth period, only the image
taken from the 280th day of the year to the 150th day of the
next year are selected. In addition, our study only focuses on the
crop area, so the MODIS Annual Land Cover data [60] are used
to remove the noncrop pixels. All datasets are acquired from
Google Earth Engine [61]. Finally, the remote sensing dataset
(I

(h×w×b)
1 · · · I(h×w×b)

t ) is used for crop yield prediction and
includes four dimensions. For such a high-dimensional training
labeled data, it will be easy to overfit by training an end-to-end
deep network directly based on the original data. To avoid this
problem, we employ the same dimension reduction method
proposed in [14]. After this, the original 4-D data are transformed
into a 3-D histogram (Ibins∗time∗bands).

2) Crop Yield Data: County-level wheat yields from 2001 to
2018 were taken from the Agricultural Statistic Yearbook [62]
and the Resource Discipline Innovation Platform [63]. All yields
are reported in the units of metric tons per kilometer. Further-
more, because the MODIS cropland mask does not distinguish
wheat from other crops, we ignored the regions that contributed
the bottom 5% of total production in China. Hence, our model
is only trained on regions with significant wheat crop cover,
and noisy crop yield values are filtered from regions. Finally, a
total of 14 287 counties are selected as the final study area.
Then, we select the crop data of 2001–2014 as the training
dataset. The crop data from 2015 to 2018 are used as the test
dataset. Additionally, for the MKGP and traditional algorithms,
we did not take the entire time-series data as our test and training
dataset because of the calculation limitations. Only the data
of 2006–2014 are used as the training data, and the data of
2015–2018 as the test data. The number of the training and
testing data samples displayed in Table I.

TABLE II
CONFIGURATIONS OF THE 3-D CNN STRUCTURE

B. Experiment Setup

1) Implementation Details: The proposed 3DMKGP and
other deep learning methods are designed, trained, and tested
based on the TensorFlow framework [64]. The parameter set-
tings of the proposed 3-D CNN are listed in Table II. We use
Adam as the optimizer and employ dropout after the dense layer
to avoid overfitting. The BN technique is also utilized at the end
of all convolutional layers to accelerate the convergence and
improve the prediction accuracy. Our 3-D CNN is trained with
an initial learning rate of 0.003, and weight decay is 1e−5. A
minibatch is set to 20. For hardware system configuration, all
the following experiments are completed on a 64-bit Intel Core
CPU i7-6900K @ 3.20 GHz with an NVIDIA GeForce 1080
GPU. The RAM memory is 62 GB. Only one GPU is used,
under CUDA version 9.0.176.

2) General Information: To validate the effectiveness of the
proposed 3DMKGP, it is compared with the most widely used
crop yield prediction methods. They are summarized as follows.

1) SVM [3], [65]: It is an effective approach for crop yield
prediction. Here, an SVM is constructed based on the RBF
kernel with the complexity parameter. The degree of the
kernel function and the penalty factor C in the SVM are
determined by cross validation with the degree varying in
the range from 1 to 7, and the C parameter is chosen from
the set 10−4, 100, ..., 106.

2) RF [6], [66]: It is a supervised ensemble learning algo-
rithm that acts based on decision trees (DTs). A grid search
for model performance optimization is carried out with
the fivefold cross-validation technique based on the R2

metric. In this article, we search the number of generated
trees from 50 to 500, and we allow a maximum tree depth
of 7.

3) DT [67]: It is another effective algorithm used for regres-
sion with a several leaf nodes. Here, we set the max depth
of the trees at 10.

4) 2-D CNN [15]: It is a widely used deep learning method
that has proven to achieve great success in crop yield
prediction. The iterations are set up to 50 000. The initial
learning rate is 0.003.

5) LSTM [6], [68]: It is another widely used deep learning
method that has shown promising performance in classi-
fication and regression tasks.
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TABLE III
ACCURACY COMPARISON OF CROP YIELD PREDICTION AT COUNTY LEVEL

Fig. 4. County-level error maps of Northern winter wheat region. (a) DT. (b) RF. (c) SVM. (d) LSTM. (e) 2-D CNN. (f) 3DMKGP.

Fig. 5. County-level error maps of Southwest winter wheat region. (a) DT. (b) RF. (c) SVM. (d) LSTM. (e) 2-D CNN. (f) 3DMKGP.
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Fig. 6. County-level error maps of Xinjiang winter wheat region. (a) DT. (b) RF. (c) SVM. (d) LSTM. (e) 2-D CNN. (f) 3DMKGP. The error bar represents the
difference between prediction and real yield.

TABLE IV
COMPARISON ANALYSIS OF CRUCIAL COMPONENT IN 3DMKGP

3) Evaluation Matrix: In this article, in order to evaluate
the performance of different crop yield prediction methods, we
consider the most common metrics for evaluating regression
results, namely, RMSE, R2, and MAPE, between the ground
truth yield and the estimated yield as the evaluation criteria,
which can defined as follows:

RMSE =

√
1

m

∑m

i=1
(pi − yi)2 (15)

R2 = 1−
m∑
i=1

(pi − yi)
2/

m∑
i=1

(pi − y)2 (16)

MAPE =
100%

m

m∑
i=1

∣∣∣∣pi − yi
pi

∣∣∣∣ (17)

where m is the number of predicting data points, yi and pi stand
for the label and predicting yield, respectively, and y denotes the
average value of the predicted results.

C. Comparisons With Competing Methods

In this section, we compare the proposed method with three
traditional models (SVM, RF, and RT) and two deep learning
models (2-D CNN and LSTM) to prove the necessity and ad-
vancement of the proposed 3DMKGP in crop yield prediction.
In this experiment, the input of deep learning methods is a 3-D
histogram with the size of 32 ×32× 9. The performance of tra-
ditional models is evaluated on two datasets, including the most
widely used handcrafted feature NDVI (DT-NDVI, RF-NDVI,
and SVM-NDVI) and the histogram utilized in deep learning
methods (DT-Hist, RF-Hist, and SVM-Hist). The NDVI features
are extracted from the original RSI of the region of interest dur-
ing the experimental time series, and the same data processing
and dimension reduction method is employed. Therefore, the
NDVI images are transformed into a 32×32 NDVI histogram
and then flatten into a 1024-D vector as the first input. And the
histogram is also transformed into a flatten vector with the size
of 32×32×9 = 9216 as the final input. All the hyperparameters
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Fig. 7. Uncertainty estimation of prediction results. The shades of gray rep-
resent 95% confidence.

Fig. 8. Experiments of different models with different growth period at county-
level prediction.

in traditional machine learning algorithms are determined by
fivefold cross validation, and for the hyperparameters θm of the
new “spatial–spectral–spatio” kernel described in Section III,
we first optimized θ1 and θ2 within each kernel individually. For
σf and σs, the algorithm searches from 1 to 19. lf and ls are
searching from 10−2 to 103. Finally, the weights of each kernel
are also optimized between 0 and 1 at 0.1 intervals. The RMSE
of all competitors and the proposed method on the crop yield
prediction task can be found in Table III.

We first compare the proposed method with traditional meth-
ods for a baseline comparison. For the traditional models, the
performance of DT-NDVI, RF-NDVI, and SVM-NDVI is in-
ferior to DT-Hist, RF- Hist, and SVM-Hist. This is because the
histogram can provide more spectral features compared with the
NDVI. However, the proposed 3DMKGP effectively surpasses
all traditional models and obtains the best results in all of the
testing years. Regarding the traditional methods, the SVM-hist
obtained a better performance among them. Compared to the
SVM-hist, the decreases in RMSE achieved by 3DMKGP are
0.25, 0.41, 0.29, and 0.24. The improvements in R2 are 0.13,
0.19, 0.15, and 0.15 for four testing years. These findings proved
that our methods have better advantages over traditional mod-
els in crop yield prediction. To further verify the superiority
of 3DMKGP, we complement various deep learning methods
for crop yield prediction. The deep learning methods perform
better than the traditional methods. However, our method still
surpasses these deep learning methods in all testing years, with
the highest R2 of 0.80 and lowest RMSE and MAPE values
of 0.73 and 14.35, respectively. Compared with the LSTM,

the 3DMKGP reduced the RMSE by 25.5% and MAPE by
25.7% on average. Compared with the 2-D CNN, the average
R2 of 3DMKGP increased by 19.4% and the RMSE and MAPE
decreased by 22.3% and 24.6%, respectively.

To further present the effectiveness of the proposed method,
we divided the testing data points into three main parts according
to Fig. 1 and visualized the prediction errors of these three wheat
producing areas. Corresponding to Table III, similar conclusions
can be drawn from the prediction error maps presented in
Figs. 4–6, from which it is obvious that the maps provided by
the proposed model achieve the lowest error in most counties.
Specifically, the regions that are seriously overestimated and
underestimated by competing methods are apparently corrected
in our 3DMKGP. These results reveal the fact that our 3DMKGP
model can construct a more powerful crop-related representa-
tion. The first reason is that the 3-D CNN in the 3DMKGP
can make full use of both spatial and spectral information from
MSIs. Second, the new “spatial–spectral–spatio” kernel makes
it possible for the 3DMKGP to simultaneously capture deep
features and spatial correlation and automatically adjust the
weight of each feature, which enables 3DMKGP with better
suitability for crop yield prediction.

D. Analysis of the Proposed Method: Effect of Different
Components

In this section, based on above explanation, extensive exper-
iments are conducted to verify the effectiveness of the crucial
components in 3DMKGP. Here, we analyze the superiority of
the 3-D CNN in extracting spatial–spectral features, and then,
we compare the effect of the MKGP strategy. These experiments
demonstrate different contributions of components and provide
more insights of our proposed method.

1) 3-D CNN Component: We first evaluated the effectiveness
of the 3-D CNN in our framework. For this purpose, we replace
the 3-D CNN component in the proposed framework with differ-
ent 2-D networks, including 2-D CNN and LSTM (CNN-MKGP
and LSTM-MKGP). The experimental results shown in Table IV
clearly demonstrate that 3DMKGP outperforms CNN-MKGP
and LSTM-MKGP in all testing years and achieves a lower
RMSE of 0.1 and 0.18, respectively. CNN-MKGP has slightly
improved compared with LSTM-MKGP; however, it also leads
to unsatisfactory performance because they do not fully exploit
the spatial–spectral features. Compared to the CNN-MKGP, the
3DMKGP obtains 8% gains inR2. Due to the clear improvement
of the 3DMKGP, it can be confirmed that the 3-D convolutions
make it possible to fully use spatial–spectral information.

2) MKGP Component: In this experiment, we investigate the
effectiveness of the designed MKGP. For this purpose, we first
constructed a single-kernel GP, where the kernel is structured
with the deep features extracted from LSTM, 2-D CNN, and
3-D CNN (LSTMGP, 2DGP, and 3DGP). Then, we compared
them with our MKGP that is also implemented on three different
deep learning networks (LSTMKGP, 2DMKGP, and 3DMKGP).
Moreover, since the GP is also utilized for incorporating the
spatial dependency in [14]. We further implement the experiment
to compare our multi-kernel GP with their single-GP strategy.
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Fig. 9. Evaluation performance of different kernel depth in terms of (a) RMSE, (b) R2, and (c) MAPE.

Fig. 10. Evaluation performance of different feature weights in terms of (a) RMSE, (b) R2, and (c) MAPE; w1 stands for the weight of spatial–spectral feature
kernel.

Especially, we have changed the deep network of [14] with our
proposed 3-D CNN (3DSGP) to avoid the influence of network
structure. The comparison results are shown in Table IV.

It is noticed that the results obtained by the MKGP by integrat-
ing all features are always superior in all testing years. In greater
detail, the RMSE provided by the MKGP with the 3-D CNN,
2-D CNN, and LSTM are 0.04, 0.10, and 0.03 lower than that
of the DGP in RMSE, respectively. The MKGP improves on the
performance of the DGP and obtains 0.02, 0.06, and 0.03 gains
inR2. Hence, it can be concluded that by modeling the long-term
dependencies in the spatial dimension, it can provide a higher
performance for crop yield prediction. These results demonstrate
that our MKGP better exploits the hierarchical features and is
more effective than a single feature for the crop yield prediction.
Besides, comparing with the 3DSGP, our method obtains a better
result in three of the four testing years. This further improve the
effectiveness of the proposed MKGP.

3) Uncertainty Estimation: In real-world applications, one
of the key points of the prediction problem is offering the
uncertainty of the results. The 3DMKGP can learn a probability
distribution of the predictions, which provides a natural way for
uncertainty estimation. In this part, the 95% prediction intervals
that are calculated from the 3DMKGP based on (14) have been
used to estimate the random error in the crop yield prediction.
Fig. 7 illustrates the predictions and corresponding uncertainty
obtained from 3DMKGP.

E. Crop Yield Prediction Before Harvest

The ultimate goal of crop yield prediction is predicting the
crop yield before harvest. To this end, we train and test our
model based on different time windows. The starting of windows
is triggered by the sowing period (October), and the ending point

is varying from February to June (harvest) of the following year.
Fig. 8 shows the averaged RMSE in different time windows. It
can be observed that with the ending point closer to the sowing
month, the performance of all models gradually improved. All
the other models except 3DMKGP did not perform well in the
early months since the information in the early months is not ob-
vious. Moreover, our proposed method 3DMKGP outperforms
other methods consistently at all time windows, demonstrating
the robustness of the proposed method. Besides, it is noticed that
the RMSE remains steady after May in the proposed method,
suggesting that our method can predict the crop yield two months
before harvest.

F. Parameter and Feature Analysis

1) Experiments With Different Kernel Depths: One of the
contributions in this study is that the 3-D CNN is applied to
explicitly spatial–spectral features. Different from the 2-D CNN,
the third dimension of 3-D convolution layers can explore the
spectral correlation through the 3-D kernel. To explore the influ-
ence of the kernel size, we vary the kernel depth while keeping all
other common settings fixed. Here, we experiment with different
kernel depths that are set from 1 to 5. Note that depth = 1 has
the same architecture as the 2-D CNN. The experimental results
of the 3-D CNN with different kernel spectral depths are shown
in Fig. 9. It is observed that depth = 3 achieves the best results
among all the kernels. As expected, depth = 1 has the worst
results since it is equal to a 2-D CNN that cannot fully excavate
spatial–spectral features.

2) Experiments With Different Weights of Hierarchical Fea-
tures: The new “spatial–spectral–spatio” kernel is the combina-
tion of two kernels, and the optimized weights of each kernel
will directly give a ranked importance to each kind of feature.
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To show that each feature has contributed to the overall result,
we highlight the contribution of the deep spatial–spectral feature
and the spatial consistency feature by adjusting the weight of the
deep feature kernel w1 in (10). From Fig. 10, we can see that the
optimized weights withw1 = 0.7 andw2 = 0.3 achieve the best
performance, which indicates that deep features play a dominant
role in predicting crop yield. With the value ofw1 decreasing, the
RMSE tends to continuously increase. Additionally, the spatial
consistency feature also plays an important role in predicting
crop yield with a weight of 0.3. The analysis of wi can help
illustrate each feature’s contribution and provide more insight
for feature selection in crop yield prediction.

V. CONCLUSION

In this article, an effective model is proposed that involves
hierarchical features for crop yield prediction. We first utilize
the superiority of the 3-D CNN that enables extracting spatial–
spectral features from raw RSIs. To further account for the fea-
tures beyond the RSIs, we employ an MKL framework that fuses
these deep features with spatial consistency features between
data points. Moreover, the prediction process is implemented in
the kernel-based GP method.

County-level winter wheat in China is predicted in this article.
Extensive experimental results demonstrate that our method not
only outperforms other traditional and deep learning methods
but also extracts more discriminative feature representations,
which demonstrates its potential application in different predic-
tion problems. In terms of further research, we can fuse more
crop-related features with the multikernel approach. Further-
more, our method can be generalized for yield prediction of
other crop types.
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