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Abstract—As the hyperspectral images (HSIs) usually have a
low spatial resolution, HSI super-resolution has recently attracted
more and more attention to enhance the spatial resolution of HSIs.
A common method is to fuse the low-resolution (LR) HSI with
a multispectral image (MSI) whose spatial resolution is higher
than the HSI. In this article, we proposed a novel adaptive non-
negative sparse representation-based model to fuse an HSI and
its corresponding MSI. First, basing the linear spectral unmixing,
the nonnegative structured sparse representation model estimates
the sparse codes of the desired high-resolution HSI from both the
LR-HSI and the MSI. Then, the adaptive sparse representation can
balance the relationship between the sparsity and collaboration
by generating a suitable coefficient. Finally, in order to obtain
more accurate results, we alternately optimize the spectral basis
and coefficients rather than keeping the spectral basis fixed. The
alternating direction method of multipliers is applied to solve the
proposed optimization problem. The experimental results on both
ground-based HSIs and real remote sensing HSIs show the superi-
ority of our proposed approach to some other state-of-the-art HSI
super-resolution methods.

Index Terms—Adaptive sparse representation (ASR),
hyperspectral image (HSI), spectral basis updating, super-
resolution reconstruction.

I. INTRODUCTION

H yperspectral (HS) imaging has attracted wide attention
in recent years since it can simultaneously obtain im-

ages of the same scenario across plenty of different successive
wavelengths at the same time [1]–[3]. Because hyperspectral
image (HSI) has rich spectral information, it has been widely
used in many fields, such as target detection [4], environmental
monitoring [5], military [6], and remote sensing [7]. However,
since there is a limited amount of incident energy in optical re-
mote sensing systems, the imaging systems have to compromise
between the spectral resolution and spatial resolution [8]. For
example, HSIs captured by HYPXIM usually have more than

Manuscript received November 17, 2020; revised January 7, 2021 and March
17, 2021; accepted April 3, 2021. Date of publication April 9, 2021; date of
current version May 3, 2021. This work was supported in part by the Start
Foundation of Nanjing University of Posts and Telecommunications (NUPTSF)
under Grant NY220157. (Corresponding author: Guo Cao.)

Xuesong Li, Zixian Ge, Guo Cao, Hao Shi, and Peng Fu are with the
School of Computer Science and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China (e-mail: cedar_xuesong@163.com;
zxge727@foxmail.com; caoguo@njust.edu.cn; hao1227@njust.edu.cn; ).

Youqiang Zhang is with the Jiangsu Key Laboratory of Broadband Wire-
less Communication and Internet of Things, Nanjing University of Posts and
Telecommunications, Nanjing 210003, China, and also with the School of In-
ternet of Things, Nanjing University of Posts and Telecommunications, Nanjing
210003, China (e-mail: zhangyouqiang@foxmail.com).

Digital Object Identifier 10.1109/JSTARS.2021.3072044

Fig. 1. HSI super-resolution problem.

one hundred spectral bands but only a decametric spatial res-
olution. Compared with HS imaging sensors, the multispectral
(MS) imaging sensors can provide multispectral images (MSIs)
with much higher spatial resolution but with a limited number of
spectral bands. For example, the PLEIADES can provide MSIs
with a spatial resolution of 70 cm but with only three or four
spectral bands. In order to enhance the spatial resolution of
HSIs, researchers have made much effort. A popular approach
to reconstruct the high spatial resolution HSI (HR-HSI) is to
fuse the high spatial resolution MSI (HR-MSI) with the low
spatial resolution HSI (LR-HSI) [9], [10]. This approach is
called HSI–MSI fusion or HSI super-resolution.

HSI super-resolution problem aims to reconstruct an HR-HSI
by fusing the spectral information of an LR-HSI and the spatial
information of an HR-MSI, as illustrated in Fig. 1. Note that the
LR-HSI and the HR-MSI should be the same scene. The target
HSI should not only have a good visual effect but also ensure
the authenticity of each pixel.

A large number of studies have been done on HSI super-
resolution. A special situation of HSI super-resolution is pan-
sharpening, which fuses an LR-HSI with its corresponding
panchromatic (PAN) image [9], [11]. A variety of pansharp-
ening methods have been proposed over the past two decades.
Generally, these methods can be categorized into two classes,
i.e., transform-based methods [12]–[14] and variational methods
[15]–[17]. However, because the PAN images have little spectral
resolution, there are usually considerable spectral distortions in
the HR-HSIs reconstructed by these pansharpening methods.

As the MSIs contain more spectral information than the PAN
images, in recent work, HSI–MSI fusion, which can be seen
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as the extension of pansharpening, has drawn more attention.
Yokoya et al. [10] present a comparative review of several HSI–
MSI fusion techniques. Typically, the HSI–MSI fusion methods
can be divided into four categories: component substitution
(CS), Bayesian, deep learning, and sparse representation.

In the CS-based approaches, a basic idea is to substitute one
component of the HSI with the high-resolution (HR) image. For
example, the intensity-hue-saturation (IHS) [18], [19] method
replaces the intensity component in the IHS domain of the LR
image with the PAN image. The principal component analysis
[20] method uses the HR image to replace the first principal
component of the LR-HSI. However, the CS-based approaches
usually result in spectral distortions in the obtained HR-HSI.

The Bayesian-based approaches introduce the appropriate
prior distribution of the HR-MSI, such as naive Gaussian [21],
[22] and sparsity promoting prior [23], [24] to achieve the ac-
curate estimation. The variational methods can be regarded as a
special case of the Bayesian one. The target images are estimated
by minimizing the objective function, which is structured by
the posterior probability density of the fused image. Among
these methods, HS super-resolution [25] uses the vector-total-
variation-based regularization in the objective function. Zhang
et al. [26], [27] introduced a method that works in the wavelet
domain and later published an expectation–maximization algo-
rithm to maximize the posterior distribution.

Since the deep learning has been demonstrated to be very
effective in object detection [28]–[30], classification [31]–[33],
and natural image super-resolution [34]–[36], many researchers
have introduced deep learning into HSI super-resolution. Li
et al. [37] proposed to learn an end-to-end spectral difference
mapping between the LR-HSI and HR-HSI through a deep
spectral difference convolution neural network. Yuan et al. [38]
proposed a multiscale and multidepth convolution neural net-
work to achieve the HR-HSI. In order to take the advantage of
the spectral correlation and exploit the HR-MSI, Yang et al. [39]
presented a convolution neural network with two branches. With
the two branches convolution neural network, the spectrum fea-
tures of each pixel and its corresponding spatial neighborhood
are extracted from the LR-HSI and the HR-MSI, respectively.
Dian et al. [40] proposed to learn the spectral prior of HSI
via deep residual convolutional neural networks. In addition
to the convolution neural network, a stacking sparse denoising
autoencoder-based deep neural network is proposed by Huang
et al. [41] for pansharpening. Although the deep learning based
methods obtained great reconstruction results, these kinds of
methods need large amounts of training samples to estimate the
parameters.

In the past years, the sparse representation has been
widely used in remote sensing applications [42]. The sparse
representation-based HSI super-resolution methods usually rep-
resent the targeted HR-HSI image by the product of a spec-
tral basis matrix and a coefficient matrix, where the spectral
basis and coefficient matrices can be extracted from the LR-
HSI and the HR-MSI. Besides, some matrix factorization and
unmixing-based methods can also be regarded as the sparse
representation-based method because the source images are
decomposed into spectral bases and coefficients. Actually, the

sparse representation-based methods are usually combined with
matrix factorization and spectral unmixing. Based on the un-
supervised spectral unmixing, Yokoya et al. [43] proposed a
coupled nonnegative matrix factorization (CNMF) approach to
estimate the HSI endmember matrix and the HR abundance ma-
trix. However, the nonnegative matrix factorization is usually not
unique. So, Yokoya et al. [43] cannot always obtain satisfactory
results. Huang et al. [44] used the k-singular value decompo-
sition (K-SVD) algorithm [45] to learn the spectral basis and
proposed a sparse prior-based matrix factorization method to
fuse the remote sensing MSI at different spatial and spectral
resolution. Zhang et al. [46] used the group spectral embedding
and low-rank factorization to fuse the LR-HSI and HR-MSI. La-
naras et al. [47] proposed to jointly solve the spectral unmixing
problems for both input images. However, only using a spectral
dictionary is insufficient for preserving spatial information, and
vice-versa. To address this problem, an HSI–MSI fusion method
termed optimized twin dictionaries (OTD) using optimized twin
dictionaries was proposed by Han et al. [48]. Since the pixelwise
sparse representation neglects the similarity among neighbor
pixels, Akhtar et al. [49] proposed to utilize the similarities
among the spectral pixels in the same local patch and obtain the
coefficients with a generalization of simultaneous orthogonal
matching pursuit (G-SOMP+) algorithm for each local patch.
Later, Akhtar et al. [50] proposed a Bayesian dictionary learning
and Bayesian sparse coding approach for HSI super-resolution
and achieved improved performance. Note that, the structures of
MSI are usually very complex, and thus, a fixed local window
may still contain different variations. Combined with superpixel
segmentation methods, Fang et al. [51] proposed a superpixel-
based sparse representation (SSR) model, which ensured that
the shape and size of each superpixel can adaptively adjust
according to the spatial structures of MSI, and therefore, the
spatial structures of spectral pixels in each superpixel are similar
for HSI super-resolution. Furthermore, Dong et al. [52] proposed
a nonnegative structured sparse representation (NSSR) method,
which exploited a clustering-based structured sparse coding
approach to ensure the spatial correlation among the obtained
sparse coefficients.

Sparse representation-based approaches are indeed effective
for HSI super-resolution and achieve great reconstruction re-
sults. However, the existing methods usually use an l1-norm
to constrain the representation coefficients, and thus, only the
sparsity is taken into consideration. Sometimes the constraint of
l1-norm is not reasonable because there is not only the sparsity
but also some correlation among the representation coefficients.
Another extreme case, which only uses an l2-norm to constrain
the representation coefficients, is to consider only the correlated
information. Therefore, a more reasonable choice is to take
the sparsity and correlation simultaneously into consideration.
Inspired by the trace least absolute shrinkage and selection op-
erator (LASSO) [53], [54], we propose a novel spatial–spectral
adaptive nonnegative sparse representation (ANSR) method for
HSI super-resolution by fusing the LR-HSI and the correspond-
ing HR-MSI. The proposed method integrates sparsity and cor-
relation effectively as a regularization term in the model and can
produce more suitable coefficients adaptively with the constraint
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between l1-norm and l2-norm. Specifically, the estimation of
HR-HSI is formulated as a joint estimation of spectral basis and
sparse coefficients from the LR-HSI and HR-MSI with the prior
knowledge of spatial–spectral sparsity and spectral unmixing.
According to the spectral mixture model [55], the spectral basis
and sparse coefficients need to be nonnegative, and the sparse
coefficients often meet the sum-to-one constraint. Besides, based
on trace LASSO, we utilize the adaptive sparse representation
(ASR) to balance the sparsity and correlation and can obtain
more precise sparse coefficients. Furthermore, we also design an
alternative optimization algorithm to update the spectral basis
and sparse coefficients, which is more flexible and accurate
than keeping the spectral basis fixed. Meanwhile, the alternating
direction method of multipliers (ADMM) is adopted to solve
both the updating of the spectral basis and coefficients.

The main contributions of this article can be summarized as
follows.

1) We introduce the ASR, which can obtain more precise
sparse coefficients by balancing the sparsity and corre-
lation of the coefficients, into the HSI super-resolution
model.

2) Instead of keeping the spectral basis fixed, we alternately
optimize the spectral basis and sparse coefficients.

3) We design two specific ADMM methods to update the
spectral basis and sparse coefficients, respectively.

4) Experimental results on both ground-based HSIs and real
remote sensing HSIs show that our ANSR method per-
forms better than some other state-of-the-art HSI super-
resolution methods.

The remainder of this article is organized as follows. We
briefly introduce the spectral dictionary learning method in [52]
and the ASR in Section II. In Section III, we first formulate the
problem of HSI super-resolution and then describe the details of
the proposed ANSR method for HSI super-resolution. Extensive
experiments and comparisons are shown in Section IV. Finally,
Section V concludes this article.

II. RELATED WORK

In this section, we introduce the spectral dictionary learning
method in [52] and the ASR, which are used in our method.

A. Spectral Dictionary Learning

We denote the LR-HSI as X ∈ RB×n, where B represents
the spectral dimension and n represents the number of pixels.
As each pixel in the LR-HSI X can be written as the linear
combination of a small number of spectral pixels, we can express
X as the product of a spectral dictionary D and a coefficient
matrix B. The formulation is as follows:

X = DB + V (1)

where V denotes the approximation error matrix, which is
assumed to be additive Gaussian.

In (1), both D and B are unknown. Generally, there are infi-
nite possible decompositions of (1) and a unique decomposition
cannot be determined. Fortunately, with the help of the sparsity
assumption, we can solveD andB using the sparse nonnegative

matrix decomposition. Therefore, the spectral dictionary D can
be estimated by solving the following sparse nonnegative matrix
decomposition problem:

(D, B) = arg min
D,B

1

2
‖X −DB‖2F + λ‖B‖1

s.t. B ≥ 0, D ≥ 0 (2)

Because that the sparse coefficient matrix B and the spectral
dictionary D are constrained to be nonnegative, existing dictio-
nary algorithms (e.g., K-SVD algorithm and online dictionary
learning algorithm) are all invalid. In order to solve the above
sparse nonnegative matrix decomposition problem, a compu-
tationally efficient nonnegative dictionary learning algorithm,
which solves (2) by updating D and B alternately, is proposed
in [52].

With D fixed, the subproblem with respect to B becomes

B = argmin
B

1

2
‖X −DB‖2F + λ‖B‖1, s.t. B ≥ 0 (3)

which can be efficiently solved by the ADMM technique. To ap-
ply ADMM, we introduce S = B, and (3) can be reformulated
as the following augmented Lagrangian function:

L(B, S, U) =
1

2
‖X−DB‖2F +λ‖B‖1+μ‖S−B+

U

2μ
‖2F

s.t. B ≥ 0 (4)

where U is the Lagrangian multiplier (μ ≥ 0). Then, we solve
B, S, and U alternately until convergence.

With B fixed, the subproblem with respect to D becomes

D = argmin
D

‖X −DB‖2F , s.t. D ≥ 0. (5)

Similar to the online dictionary learning method, (5) is solved
by using block coordinate descent. During each iteration, one
column of D is updated while keeping the others fixed under
the nonnegative constraint.

More information about the spectral dictionary learning
method can be found in [52].

B. Adaptive Sparse Representation

As we all know, the goal of sparse representation is to encode
a signal vector as a linear combination of a few dictionary
atoms. Suppose that x ∈ Rm is an input signal vector and
Ds ∈ Rm×K (m � K) is a dictionary, with l0-norm as the
regularization term, the sparse representation model of x takes
the form

min
α

‖x−Dsα‖22 + λ‖α‖0 (6)

where α is the sparse coefficient of x and λ is a regularization
parameter.

However, the l0-minimization problem is NP-hard. Usually,
the l1-norm, a reasonably convex surrogate of l0-norm, is chosen
to replace the l0-norm. Then, the sparse optimization model
takes the form

min
α

‖x−Dsα‖22 + λ‖α‖1. (7)
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The result of (7) can be solved by quadratic programming
techniques, including basis pursuit [56], LASSO [57], etc.

Although the l1-regularization can make full use of the sparse
information of signals, it completely ignores the correlated infor-
mation of signals. Timofte et al. [58] proposed the collaborative
representation that replaces the l1-norm of sparse representation
model by l2-norm. The collaborative representation model takes
the form as

min
α

‖x−Dsα‖22 + λ‖α‖22. (8)

In contrast, the collaborative representation model only takes
the correlation into consideration and completely ignores the
sparsity. Actually, the best choice is to balance the sparsity
and correlation and make a compromise between l1-norm and
l2-norm. In order to overcome this problem, Zhao et al. [59]
proposed a natural image super-resolution method with the
property of trace LASSO [60], [61]

‖α‖2 ≤ ‖DsDiag (α) ‖∗ ≤ ‖α‖1 (9)

where ‖ · ‖∗ represents the kernel norm, which computes the
sum of the singular values of a matrix, and Diag(α) obtains a
diagonal matrix whose diagonal elements are the corresponding
values in vector α. When the columns of basis Ds are almost
uncorrelated,‖DsDiag(α)‖∗ will be close to‖α‖1. Conversely,
‖DsDiag(α)‖∗ will be close to ‖α‖2. In practice, the column
vectors of a basis are neither too correlated nor too independent.
So, the trace LASSO can make a compromise between l1-norm
and l2-norm adaptively. We call it ASR. Then, the ASR model
that can find a more suitable sparse coefficient takes the form

min
α

‖x−Dsα‖22 + λ‖DsDiag (α) ‖∗. (10)

Based on the convexity of the model, this problem can be
solved by some efficient methods. Among them, the alternation
direction method of multipliers (ADMM) [62], [63] is a widely
used method to find an approximate optimal solution.

III. PROPOSED ANSR METHOD

In this section, we first provide a general introduction of
the HSI super-resolution problem, including the linear spectral
mixture model. Then, we introduce our super-resolution model
in detail. Finally, we brief readers on the alternating optimization
method thoroughly, including the optimization of coefficients
and spectral basis.

In this article, the bold lowercase letters stand for the vectors
and the bold uppercase letters stand for the matrices. The plain
lowercase letters stand for the scalars.

A. Problem Formulation

The HSI super-resolution aims to recover an HR-HSI Z ∈
RB×N from an LR-HSIX ∈ RB×n and an HR-MSIY ∈ Rb×N

of the same scene, where N = W ×H and n = w × h (w �
W , h � H) denote the number of pixels in the HR-HSI Z and
LR-HSI X , respectively. B and b (b � B) indicate the spectral
dimensions of X and Y , respectively.

In the linear spectral mixture model, each spectral vector
zi ∈ RB of the target image Z can be represented by a linear

Fig. 2. Linear spectral mixture model.

combination of several spectral signatures [43], as shown in
Fig. 2. Mathematically, we have

zi = Dαi (11)

where D ∈ RB×K
+ is the spectral basis with K atoms, and αi ∈

RK represents the corresponding coefficient. Each column ofD
denotes a spectral vector of the underlying material in the scene.
Considering pixels of the whole HSI, (11) can be rewritten as

Z = DA (12)

where Z = [z1, z2, . . . ,zN ] and A = [α1,α2, . . . ,αN ] ∈
RK×N .

Furthermore, both X and Y can be regarded as linear combi-
nations of the target HSI Z. The LR-HSI X can be formulated
as the linear spatial degradation of Z

X = ZH (13)

where H ∈ RN×n represents the spatial dimensionality degra-
dation operator, including blurring and downsampling.

The HR-MSI Y can be formulated as the linear spectral
degradation of Z

Y = PZ (14)

where P ∈ Rb×B represents the spectral dimensionality down-
sampling matrix, which is the spectral response of the MS sensor.

By combining the linear mixture model (12) and the forward
models (13) and (14), we have

X = ZH = DAH = DB (15)

Y = PZ = PDA (16)

where B = AH ∈ RK×n is a coefficient matrix with each
column of B being a sparse vector.

According to the linear spectral mixture model (12), the HSI
super-resolution problem can be transformed into the estimation
of spectral basis D and representation coefficients A. And, D
and A can be well estimated from the LR-HSI X and HR-MSI
Y with (15) and (16), which will be elaborated in Section III-B.

B. Establishment of Our Model

As mentioned above, the HSI super-resolution problem can be
transformed into the estimation of spectral basisD and represen-
tation coefficients A. According to (15) and (16), we can jointly
estimate the spectral basis D and coefficients A from both the
LR-HSI and HR-MSI. In this way, the HSI super-resolution
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problem can be written as

min
D, A

‖Y − PDA‖2F + ‖X −DAH‖2F . (17)

Obviously, the above optimization problem is ill-posed, and
the solutions of D and A are not unique. Therefore, we need
some prior knowledge to constrain the solution space. Some
common and effective priors include sparsity prior, nonlocal
spatial similarities, and nonnegative prior.

The sparsity prior is known to be a very effective method to
deal with the HSI super-resolution problem. With the sparsity
constraint, we assume that each spectral pixel in the target HSI
can be represented as a linear combination of a few distinct atoms
of spectral basis. Then, the HSI super-resolution problem can be
written as

min
D, A

‖Y − PDA‖2F + ‖X −DAH‖2F + η‖A‖1 (18)

where ‖ · ‖1 stands for the sum of the absolute values of all
elements in a vector and η is a regularization parameter.

However, in (18), the sparse coefficients of each spectral pixel
are estimated independently. It is generally known that a pixel
of a typical HSI usually has a strong spatial correlation with
its similar neighbors. In order to take advantage of the local
and nonlocal similarities, we assume that a spectral pixel zi

in the target HSI can be approximately represented as a linear
combination of the pixels, which are similar to it. Combined
with this nonlocal spatial similarity prior, (18) can be improved
to

min
D, A

‖Y − PDA‖2F + ‖X −DAH‖2F + η2‖A‖1

+ η1

Q∑
q = 1

∑
i∈Sq

‖Dαi − μq‖22 (19)

where μq represents the qth cluster center, which can be seen
as the linear combinations of pixels that are similar to the
reconstructed spectral pixel zi. The centre μq of the qth cluster
can be computed as

μq =
∑
i∈Sq

ωi (Dαi) (20)

where ωi denotes the weighting coefficients based on the sim-
ilarity of the target HSI pixels. Since the HSI is unknown, we
use the HR-MSI that has the same spatial information as the
target HSI to computed ωi. And the weighting coefficient ωi is
computed as

ωi =
1

c
exp

(−‖yi − yq‖22
h

)
(21)

where c represents the normalization constant, and yi and yq

represent two pixels of HR-MSI, respectively. In practice, the
vector αi is not known. We cannot achieve μq directly using
the (20). To overcome this difficulty, we iteratively estimating
μq from the current update of αi. With the estimated μq and
taking the whole image into consideration, we can rewrite (19)

as

min
D, A

‖Y − PDA‖2F + ‖X −DAH‖2F + η2‖A‖1

+ η1‖DA−U‖2F (22)

where U = [μ1,μ2, . . . ,μN ] .
Besides, considering the physical characteristics of HSIs, the

pixels of an HSI should be nonnegative. With this nonnegative
prior, we can improve (22) to

min
D, A

‖Y − PDA‖2F + ‖X −DAH‖2F + η2‖A‖1

+ η1‖DA−U‖2F , s.t. A ≥ 0, 0 ≤ D ≤ 1. (23)

Furthermore, in order to balance the sparsity and correlation,
we propose to use trace LASSO instead of the l1-norm to
constrain the coefficients in this article. The trace LASSO can
make a compromise between l1-norm and l2-norm adaptively,
and we call it an ASR. Finally, the HSI super-resolution problem
can be written as

min
D, A

‖Y − PDA‖2F + ‖X −DAH‖2F + η1‖DA−U‖2F

+ η2

N∑
i = 1

‖PDDiag (αi) ‖∗

s.t. A ≥ 0, 0 ≤ D ≤ 1 (24)

where αi represents the ith column of the coefficient matrix A.
Once we have solved D and A, the target HR-HSI can be

obtained by multiplying D by A.

C. Alternating Optimization of the Fusion Problem

It is obvious that (24) is highly nonconvex. However, the
problem (24) is convex with respect to D and A, respectively.
Therefore, we propose to alternately optimize the D and A,
respectively, with the other one fixed. First, we initialize the
spectral basis D using the spectral dictionary learning method
in [52]. Then, the D and A are updated alternatively via (24).
Specifically, we update A with D fixed, and then we update D
with A fixed. These two steps are iterated until they converge.
Finally, the target HR-HSI can be obtained through (12). The
overall algorithm for the HSI super-resolution problem is sum-
marized in Algorithm 1. In order to show the operation process
of our method more intuitively, the flowchart of the proposed
HSI super-resolution method is illustrated in Fig. 3.

D. Optimization of the Coefficients With the Spectral
Basis Fixed

In this procedure, we fix the spectral basis D. Then, the
updating of coefficient matrix A can be written as

min
A

‖Y − PDA‖2F + ‖X −DAH‖2F + η1‖DA−U‖2F

+ η2

N∑
i = 1

‖PDDiag (αi) ‖∗, s.t. A ≥ 0 (25)
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Fig. 3. Flowchart of the proposed HSI super-resolution method.

Algorithm 1 : ANSR-Based HSI Super-Resolution.
1: Input: LR-HSI X; HR-MSI Y ; spatial degradation

operator
H; spectral transform matrix P ; and regularization

parameters η1 and η2.
2: Initialize the spectral basis D.
3: While not converge do
4: Update coefficient matrix A with D fixed.
5: Update spectral basis D with A fixed.
6: End while
7: Compute the desired HR-HSI Z via (12).
8: Output: HR-HSI Z.

Obviously, the optimization problem (25) is convex and can
be efficiently solved by ADMM, which can decompose the com-
plex optimization problem into several easily solved subprob-
lems. In specific, we introduce S = A, Qi = PDDiag(αi),
and Z = DA and can obtain the following augmented La-
grangian function:

L (A, S, Q,Z, V 1, V 2, V 3)

= ‖Y − PDS‖2F + ‖X −ZH‖2F

+ η1‖DS−U‖2F +η2

N∑
i = 1

‖Qi‖∗+μ‖DS −Z +
V 1

2μ
‖2F

+μ‖S−A+
V 2

2μ
‖2F+μ

N∑
i = 1

‖Qi−PDDiag (αi)+
V

(i)
3

2μ
‖2F

s.t. A ≥ 0 (26)

whereV 1,V 2, andV 3 are the Lagrangian multipliers (μ > 0).
Minimizing the augmented Lagrangian function (26) leads to the
following iterations:

S(t+1) = argmin
S

L
(
A(t),S,Q(t),Z(t),V

(t)
1 ,V

(t)
2 ,V

(t)
3

)
Z(t+1) = argmin

S
L
(
A(t),S(t),Q(t), Z, V

(t)
1 ,V

(t)
2 ,V

(t)
3

)
Q(t+1) = argmin

S
L
(
A(t),S(t), Q,Z(t), V

(t)
1 ,V

(t)
2 ,V

(t)
3

)
A(t+1) = argmin

S
L
(
A,S(t),Q(t),Z(t), V

(t)
1 ,V

(t)
2 ,V

(t)
3

)
.

(27)

Meanwhile, the Lagrangian multipliers are updated by

V
(t+1)
1 = V

(t)
1 + μ

(
DS(t+1) −Z(t+1)

)
V

(t+1)
2 = V

(t)
2 + μ

(
S(t+1) −A(t+1)

)
V

(i)(t+1)
3 = V

(i)(t)
3 + μ

(
Q

(t+1)
i − PDDiag

(
α

(t+1)
i

))
.

(28)

All the subproblems in (27) can be solved analytically, i.e.,

S =
[
(PD)T (PD) + (η1 + μ)DTD + μI

]−1

[
(PD)TY + η1D

TU + μDT

(
Z − V 1

2μ

)

+ μ

(
A− V 2

2μ

)]

Z =

[
XHT + μ

(
DS +

V 1

2μ

)] (
HHT + μI

)−1

as to the solutions of Q and A, we need to solve them pixel by
pixel

Qi = J η2
2μ

[
PDDiag (αi)− V

(i)
3

2μ

]

αi =

{[
2μI + 2μDiag

(
Diag

(
(PD)T (PD)

))]−1

[
2μsi + V i

2 +Diag
(
(PD)TV

(i)
3

)
+2μDiag

(
(PD)TQi

)]}
+

(29)

where J·(·) represents the singular value soft-thresholding op-
erator [64].

The update of variables and multipliers is alternately iterated
until convergence. The overall algorithm for updating coefficient
matrix A is summarized in Algorithm 2.
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Algorithm 2 : Update A With D Fixed.
1: Input: LR-HSI X; HR-MSI Y ; spectral basis D;

spatial degradation operator H; spectral transform
matrix P ; and regularization parameters η1 and η2.

2: Initialization: A = 0; Q = 0; Z = 0; V 1 = 0;
V 2 = 0; V 3 = 0; U = 0.

3: While not converge do
4: Update variables S, Z, Q, and A by using (29).
5: Update Lagrangian multipliers V 1, V 2, and V 3 by

using (28).
6: Update μ: μ = ρμ (ρ > 1).
7: Update U by using (20).
8: End while
9: Output: coefficient matrix A.

E. Optimization of the Spectral Basis With the Coefficients
Fixed

In this procedure, we fix the coefficient matrix A. Then, the
updating of spectral basis D can be written as

min
D

‖Y − PDA‖2F + ‖X −DAH‖2F , s.t. 0 ≤ D ≤ 1.

(30)
As the nonlocal spatial similarity prior is mainly reflected by

the coefficient matrix A, the constraint term η1‖DA−U‖2F
can be excluded. Similarly, the ADMM can also be used to solve
problem (30). More specifically, we introduce W = D, and
obtain the following augmented Lagrangian function:

L (D,W,V 4) = ‖Y − PDA‖2F + ‖X −DAH‖2F

+ μ

∥∥∥∥W −D +
V 4

2μ

∥∥∥∥
2

F

s.t. 0 ≤ W ≤ 1 (31)

where V 4 is the Lagrangian multiplier. Minimizing the aug-
mented Lagrangian function (31) leads to the following itera-
tions:

D(t+1) = argmin
D

L
(
D,W (t),V

(t)
4

)
W (t+1) = argmin

W
L
(
D(t),W ,V

(t)
4

)
. (32)

Meanwhile, the Lagrangian multiplier is updated by

V
(t+1)
4 = V

(t)
4 + μ

(
W (t+1) −D(t+1)

)
. (33)

The two subproblems in (32) can be easily solved analytically.
For the updating of D, with the auxiliary variable W and the
Lagrangian multiplier V 4 fixed, we can acquire the following
equation:

D(t+1)H1 +H2 D
(t+1) = H3 (34)

where

H1 =
[
(AH) (AH)T + μI

] (
AAT

)−1

H2 = P T P

H3 =

[
X(AH)T + P TY AT + μ

(
W (t) +

V
(t)
4

2µ

)] (
AAT

)−1
.

(35)
Then, vectorizing D(t+1) and H3 of (34), we can acquire the

following equation:(
HT

1 ⊗ I + I ⊗H2

)
vec

(
D(t+1)

)
= vec (H3) (36)

where ⊗ represents the Kronecker product, and vec(·) is the
vectorization operation. Therefore, D(t+1) can be computed as

vec
(
D(t+1)

)
=
(
HT

1 ⊗ I + I ⊗H2

)−1
vec (H3) . (37)

For the updating of W , the solution of W (t+1) can be
analytically obtained by

W (t+1) = min

(
max

(
D(t+1) − V

(t)
4

2μ
, 0

)
, 1

)
. (38)

The update of variables and multiplier is alternately iterated
until convergence. The overall algorithm for updating spectral
basis D is summarized in Algorithm 3.

Algorithm 3: Update D With A Fixed.
1: Input: LR-HSI X; HR-MSI Y ; coefficient matrix A;

spatial degradation operator H; and spectral transform
matrix P .

2: Initialization: D = 0; W = 0; and V 4 = 0;
3: While not converge do
4: Update variables D and W by using (37) and (38),

respectively.
5: Update Lagrangian multipliers V 4 by using (33).
6: Update μ: μ = ρμ (ρ > 1).
7: End while
8: Output: spectral basis D.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, to evaluate the performance of our proposed
HSI super-resolution method, we conduct ample experiments on
both ground-based HSIs datasets and real remote sensing HSI.
To objectively evaluate the quality of the reconstructed HSIs, we
adopt four objective evaluation indices, which are peak signal
to noise ratio (PSNR), root-mean-square error (RMSE), relative
dimensionless global error in synthesis (ERGAS), and spectral
angle mapper (SAM), in our experiments.

A. Experimental Datasets

In our experiments, we use two categories of images to show
the effectiveness of our method. For the ground-based HSIs, we
use a public HSI dataset, which is named Columbia Computer
Vision Laboratory (CAVE) [65]. The CAVE dataset includes 32
HSIs of everyday objects, which are captured by generalized
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Fig. 4. Total of 20 representative testing images from the CAVE datasets. (a) Oil_painting. (b) Cloth. (c) Fake_and_real_peppers. (d) Balloons. (e)
Fake_and_real_food. (f) Beads. (g) CD. (h) Chart_and_stuffed_toy. (i) Egyptain_statue. (j) Face. (k) Fake_and_real_lemon_slices. (l) Fake_and_real_sushi. (m)
Feathers. (n) Flowers. (o) Glass_tiles. (p) Paints. (q) Real_and_fake_apples. (r) Sponges. (s) Stuffed_toys. (t) Thread_spools.

Fig. 5. Three popular remote sensing HSIs. (a) Cuprite Mine Nevada. (b)
Indian Pines. (c) Pavia Center.

TABLE I
AVERAGE RESULTS OF THE TEST METHODS FOR DIFFERENT SCALING FACTORS

ON THE GROUND-BASED HSIS

assorted pixel camera with high quality. The spatial size of each
HSI in CAVE is 512 × 512. And each HSI has 31 spectral bands
ranging from 400 to 700 nm at an interval of 10 nm. Because
some images in the CAVE dataset are similar, we select 20
representative HSIs of CAVE as our experimental data, which
are shown in Fig. 4. The selected HSIs are served as ground truth
images and used to generate the LR-HSIs and HR-MSIs.

For the real remote sensing HSI, we use three popular remote
sensing HSIs: Cuprite Mine Nevada, Indian Pines, and Pavia
Center, which are adopted in [51]. The three HSIs are shown in
Fig. 5. The wavelength of the Cuprite Mine Nevada image ranges
from 400 to 2500 nm at an interval of 10 nm and the spatial
resolution of the Cuprite mine Nevada image is 20 m. We crop
the top left region of size 512 × 512 as the ground truth after
abandoning the bands with water absorptions and low SNR. The
final size of the ground truth image in our experiment is 512 ×
512 × 200. The Indian Pines image is captured by the airborne
visible and infrared imaging spectrometer over the northwestern

TABLE II
PSNR, RMSE, SAM, AND ERGAS RESULTS OF THE TEST METHODS FOR

DIFFERENT SCALING FACTORS ON CUPRITE MINE NEVADA

TABLE III
PSNR, RMSE, SAM, AND ERGAS RESULTS OF THE TEST METHODS FOR

DIFFERENT SCALING FACTORS ON INDIAN PINES

Indiana. The wavelength of Indian Pines ranges from 400 to
2500 nm with an interval of 10 nm. We crop the bottom right part
of size 512 × 512 and remove the water absorption bands (104–
108, 150–163, and 220). The final size of the ground truth image
in our experiment is 512 × 512 × 200. Pavia Center image is
taken by the reflective optics system imaging spectrometer over
the Center of Pavia area. The spectrum of Pavia Center ranges
from 430 to 860 nm at an interval of 4 nm. After abandoning
the nosiest bands, we crop the bottom right region with the size
of 512 × 512 × 102, which is used as the ground truth image in
our experiment.
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Fig. 6. PSNR curves of all the wavelengths of spectral bands over the testing image “fake_and_real_food.” (a) PNSR curves with scaling factor s = 8. (b)
PNSR curves with scaling factor s = 16. (c) PNSR curves with scaling factor s = 32.

TABLE IV
PSNR, RMSE, SAM, AND ERGAS RESULTS OF THE TEST METHODS FOR

DIFFERENT SCALING FACTORS ON PAVIA CENTER

B. Evaluation Indices

In this article, we use four indices to evaluate the reconstruc-
tion quality. The first index is PSNR, which is defined as the
average PSNR value of all spectral bands. The formulation is as
follows:

PSNR
(
Ẑ,Z

)
=

1

S

S∑
i = 1

PSNR
(
Ẑi,Zi

)
(39)

where Zi and Ẑi denote the ith band of the ground truth
HSI Z and the estimated HSI Ẑ, respectively. S represents the
number of spectral bands. PSNR index measures the similarities
between the two images. The larger the PSNR, the better the
reconstruction result.

The second index is RMSE, which is defined as the average
RMSE of all spectral bands, i.e.,

RMSE
(
Ẑ, Z

)
=

1

S

S∑
i = 1

RMSE
(
Ẑi,Zi

)
. (40)

The smaller the RMSE, the better the reconstruction result.
The third index is ERGAS, whose formulation is

ERGAS
(
Ẑ, Z

)
=

100

c

√√√√√ 1

S

∑S

i = 1

MSE
(
Ẑi,Zi

)
μ2
Ẑi

(41)

where c represents the spatial downsampling factor, and μẐi
is

the mean value of Ẑi. The smaller the ERGAS, the better the
reconstruction result.

The fourth index is SAM, which is defined as

SAM
(
Ẑ, Z

)
=

1

N

N∑
j = 1

cos−1
ẑT
j zj∥∥ẑj

∥∥
2
‖zj‖2

(42)

where zj and ẑj denote the jth pixel of the ground truth HSI Z
and the estimated HSI Ẑ, respectively. N represents the number
of pixels. SAM measures the spectral quality of reconstructed
HSI. The smaller the SAM, the better the reconstruction result.

C. Experimental Settings for the Comparison Methods

For the sake of fairness, we describe the experimental settings
in this section. The LR-HSI X and the HR-MSI Y are obtained
according to the same settings for all the comparison methods.

For the ground-based HSIs, as in [52], the ground truth HR-
HSI Z is downsampled by averaging the disjoint s× s blocks
to simulate the LR-HSI X , where s denotes the scaling factor
(s = 8, 16, and 32). The HR-MSI Y is generated directly
downsampling the spectral dimension of Z using the spectral
transform matrix P , which is derived from the response of a
Nikon D700 camera. 1

For the real remote sensing HSIs, as the operations in [51],
the ground truth HR-HSI Z is downsampled s times (s =
8, 16, and 32) to obtain the LR-HSI X . Specifically, each pixel
xi ∈ X is generated by averaging pixels in a s× s window
of HR-HSI Z centering on location i. For the HR-MSI Y , we
directly select several bands from the ground truth HR-HSI Z.
The Landsat7-like reflectance spectral response filter is used as
the spectral transform matrix P . That is, for Cuprite Mine and
Indian Pine images, the bands whose center wavelengths are
480, 560, 660, 830, 1650, and 2220 nm will be selected. For
the Pavia Center image, we choose 480, 560, 660, and 830 nm
(corresponding to the blue, green, red, and near-infrared channel,
respectively) of the HR-HSI Z to simulate the HR-MSI Y .

D. Experimental Results of Our Method

In this section, we will show the experimental results of
our HSI super-resolution method compared with some typical

1Online. [Available]: https://www.maxmax.com/spectral_respinse.htm

https://www.maxmax.com/spectral_respinse.htm
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Fig. 7. Reconstructed results of image “fake_and_real_peppers” at 480, 550, and 640 nm with scaling factor s = 16. From top to bottom, the first three rows
show the reconstructed images of different methods at 480, 550, and 640 nm, respectively; the last three rows show the errors of different methods at 480, 550, and
640 nm, respectively. (a) Original images. (b) Results of G-SOMP+. (c) Results of CNMF. (d) Results of SNNMF. (e) Results of NSSR. (f) Results of our ANSR.
(g) Errors of the original images. (h) Errors of G-SOMP+ results. (i) Errors of CNMF results. (j) Errors of SNNMF results. (k) Errors of NSSR results. (l) Errors
of ANSR results.

existing HSI super-resolution methods, including G-SOMP+

[49], SNNMF [66], CNMF [43], NSSR [52], SSR [51], and
OTD [48]. Note that we do not compare our method with SSR
in the experiments of the ground-based HSIs. We will explain
it in the experimental analysis of real remote sensing HSI.

Similarly, we do not compare our method with OTD in the
experiments of the ground-based HSIs. It is because that Han
et al. [48] only conducts experiments with real remote sensing
HSIs. For the sake of fairness, we only compared our method
with OTD on the real remote sensing HSIs. In recent years,
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Fig. 8. Reconstructed results of image “Egyptian_statue” at 480, 550, and 640 nm with scaling factor s = 16. From top to bottom, the first three rows show the
reconstructed images of different methods at 480, 550, and 640 nm, respectively; the last three rows show the errors of different methods at 480 nm, 550 nm, and
640 nm, respectively. (a) Original images. (b) Results of G-SOMP+. (c) Results of CNMF. (d) Results of SNNMF. (e) Results of NSSR. (f) Results of our ANSR.
(g) Errors of the original images. (h) Errors of G-SOMP+ results. (i) Errors of CNMF results. (j) Errors of SNNMF results. (k) Errors of NSSR results. (l) Errors
of ANSR results.

deep learning based HSI super-resolution methods have shown
good results, but this kind of method needs a large number of
training samples. Considering that our method do not need any
training sample, we do not compare our approach with the deep
learning based methods. In our experiments, we assume that
the spatial degradation operator H and the spectral transform
matrix P are known. In the real-world situation, both the spatial
degradation operatorH and the spectral transform matrixP can
be estimated from the LR-HSI and the HR-MSI. Some major

parameters include regularization parameters η1 and η2, and the
number of atoms of spectral basis K. The selection of these
parameters will be discussed in Section IV-E.

For the ground-based HSIs, the comparison of results is given
in Table I. The best results are bolded for clarity. As presented
in Table I, our ANSR method achieves the best results among
all the compared methods, and the NSSR is the second-best
method, although it was proposed in 2016. According to Ta-
ble I, the large average PSNR gains of our method over the
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Fig. 9. Reconstructed results of image “real_and_fake_apples” at 480, 550, and 640 nm with scaling factor s = 16. From top to bottom, the first three rows
show the reconstructed images of different methods at 480, 550, and 640 nm, respectively; the last three rows show the errors of different methods at 480, 550, and
640 nm, respectively. (a) Original images. (b) Results of G-SOMP+. (c) Results of CNMF. (d) Results of SNNMF. (e) Results of NSSR. (f) Results of our ANSR.
(g) Errors of the original images. (h) Errors of G-SOMP+ results. (i) Errors of CNMF results. (j) Errors of SNNMF results. (k) Errors of NSSR results. (l) Errors
of ANSR results.

second-best method with s = 8, s = 16, and s = 32 are
0.4698, 0.3887, and 0.7768 dB, respectively. The effects of
G-SOMP+ are much worse than the other compared methods.
The reason is that the G-SOMP+ method does not make use
of the prior knowledge of the spatial degradation operator H ,

which is usually unknown and needs to be estimated in practical
applications. Fig. 6 shows the PSNR curves of the wave-
lengths of the spectral bands over the testing image
“fake_and_real_food” in the CAVE dataset for the compared
methods. It can be seen from Fig. 6 that the proposed ANSR
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Fig. 10. Reconstructed results of image “Pavia Center” at the 25th, 55th, and 85th bands with scaling factor s = 8. From top to bottom, the first three rows
show the reconstructed images of different methods at 25th, 55th, and 85th bands, respectively; the last three rows show the errors of different methods at 25th,
55th, and 85th bands, respectively. (a) Original images. (b) Results of G-SOMP+. (c) Results of CNMF. (d) Results of SSR. (e) Results of NSSR. (f) Results of
OTD. (g) Results of our ANSR. (h) Errors of the original images. (i) Errors of G-SOMP+ results. (j) Errors of CNMF results. (k) Errors of SSR results. (l) Errors
of NSSR results. (m) Errors of OTD. (n) Errors of ANSR results.

method outperforms other compared methods at each wave-
length for all the scaling factors. Meanwhile, in order to fur-
ther demonstrate the effect of our method, some comparisons
of the vision effects can be seen in Figs. 7–9. Figs. 7–9
show the reconstructed HR-HSI at different wavelengths of
test images “fake_and_real_peppers,” “egyptian_statue,” and
“real_and_fake_apples,” respectively. It can be seen from

Figs. 7–9 that our ANSR method has the best visual results and
achieves the minimum reconstruction errors.

For the real remote sensing HSI, the comparison of results is
given in Tables II–IV. The best results are bolded for clarity. In
this part, we compare our ANSR method with SSR and OTD,
which are not compared in the experiments of the ground-based
HSIs. It is because that the SSR method needs to cluster the
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Fig. 11. PSNR curves of the ground-based HSIs, Cuprite Mine Nevada, Indian Pines, and Pavia Center as functions of the number of atoms K.

Fig. 12. PSNRs of the ground-based HSIs, Cuprite Mine Nevada, Indian Pines, and Pavia Center as functions of log η1 with different scaling factors. (a) PNSR
curves with scaling factor s = 8. (b) PNSR curves with scaling factor s = 16. (c) PNSR curves with scaling factor s = 32.

Fig. 13. PSNRs of the ground-based HSIs, Cuprite Mine Nevada, Indian Pines, and Pavia Center as functions of log η2 with different scaling factors. (a) PNSR
curves with scaling factor s = 8. (b) PNSR curves with scaling factor s = 16. (c) PNSR curves with scaling factor s = 32.

HR-MSI into superpixels, whose size and shape are adaptively
adjusted according to the local structures. However, the images
in the CAVE dataset are always very simple, and there is not
much information in them. Therefore, the SSR method will
fall into an endless loop because some superpixels only contain
invalid information, when the number of superpixels is too large
(e.g., 6000, which is used in real remote sensing HSI). But if we

reduce the number of superpixels, the results of the SSR method
become very poor because it loses its advantage. As presented
in Tables II–IV, our ANSR method performs best among all
the compared methods and the OTD is the second-best method.
According to Table II, the large PSNR gains of our method over
the second-best method on the “Cuprite Mine Nevada” with
s = 8, s = 16, and s = 32 are 0.4393 dB, 0.9297 dB, and



LI et al.: ADAPTIVE NONNEGATIVE SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION 4281

1.0392 dB, respectively. According to Table III, the large PSNR
gains of our method over the second-best method on the “Indian
Pines” with s = 8, s = 16, and s = 32 are 0.5321 dB,
0.3751 dB, and 2.7559 dB, respectively. According to Table IV,
the large PSNR gains of our method over the second-best method
on the “Pavia Center” with s = 8, s = 16, and s = 32 are
1.1518 dB, 0.2425 dB, and 1.4288 dB, respectively. Also, we can
find that the SSR method performs better than the NSSR method
on “Cuprite Mine Nevada” and “Pavia Center,” but the opposite
is true on the “Indian Pines.” It is because that the “Indian Pines”
image is relatively simple and contains less surface features
information. In Fig. 10, we show the reconstructed HR-HSI at
different wavelengths of test images “Pavia Center.” It can be
seen from Fig. 10 that the proposed ANSR method has the best
visual results and achieves the minimum reconstruction errors.

According to the above experimental discussion, we can find
that the larger the scaling factor, the more obvious the advantage
of our method. In our experiments, the PSNR values of our
method have the most obvious advantage over the second-best
method when scaling factor s = 32.

E. Parameters Selection in Our Method

In our HSI super-resolution method, there are three crucial
parameters, i.e., regularization parameters η1 and η2, and the
number of atoms of spectral basis K. To evaluate the sensitivity
of the three parameters, we conduct plenty of experiments for
different values of them.

First, we all know that the number of atoms of the basis is very
important in a sparse coding-based method. We perform some
experiments with different values of K. Fig. 11 plots the PSNR
curves of the ground-based HSIs, Cuprite Mine Nevada, Indian
Pines, and Pavia Center as functions of the number of atoms K.
It can be seen from Fig. 11 that the four PSNR curves increase
with slight fluctuation when the number of atoms K becomes
larger from 10 to 120. But the change curves of the ground-based
HSIs, Cuprite Mine Nevada, and Indian Pines tend to be flat
when K is larger than 50. The change curve of Pavia Center
tends to be flat when K is larger than 80. As the computational
burden increases sharply with the increase of K, we decide to
set K = 80.

Second, we test and verify the effect of η1 on the reconstructed
results. We make log η1 (log is base 10) range from −4 to −1.
Fig. 12 plots the PSNRs of the ground-based HSIs, Cuprite Mine
Nevada, Indian Pines, and Pavia Center as functions of log η1.
We can see from Fig. 12 that all the PSNR curves increase as
log η1 increases from−4 to−2, and then they decrease as log η1
increases. Therefore, we choose 1 × 10−2 as the optimal value
of η1.

Third, we test and verify the effect of η2 on the reconstructed
results. We make log η2 (log is base 10) range from −5 to −2.
Fig. 13 plots the PSNRs of the ground-based HSIs, Cuprite Mine
Nevada, Indian Pines, and Pavia Center as functions of log η2.
As can be seen from Fig. 13 that as the log η2 increases from
−5 to −4, all the PSNR values (except for the PSNR curve
of Cuprite Mine Nevada with scaling factor s = 32, which
always decreases as log η2 increases from −5 to −2) increase.

Then, the PSNRs decrease as log η2 increases. Thus, we set
η2 = 1× 10−4 in our experiment.

V. CONCLUSION

In this article, we presented a novel sparse representation-
based HSI super-resolution method, termed ANSR, to fuse an
LR-HSI and its corresponding HR-MSI. In the base of the NSSR
model, we introduce the ASR, which can balance the relation-
ship between the sparsity and collaboration by generating a
suitable coefficient, into our ASNR method. Also, we design
an alternative optimization algorithm to optimize the spectral
basis rather than keeping it fixed. ADMM method is applied
to solve the proposed optimization problem. In order to show
the performance of the proposed method, we conduct plenty
of experiments. The experimental results on both ground-based
HSI dataset and real remote sensing HSIs show the superiority
of our proposed approach to some other state-of-the-art HSI
super-resolution methods.

In further work, we aim to improve the method in several
directions. We will focus on the estimation of the spatial degra-
dation operator H and the spectral transform matrix P , and
conduct experiments of blind fusion, which is more common
in the real-world situation. Then, we will optimize our solution
process to improve the computational efficiency.
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