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A Comparison of Gaofen-2 and Sentinel-2 Imagery
for Mapping Mangrove Forests Using

Object-Oriented Analysis and Random Forest
Rong Zhang , Mingming Jia , Zongming Wang, Yaming Zhou, Xin Wen, Yue Tan, and Lina Cheng

Abstract—Mangrove forest (MF) extents and distributions are
fundamental for conservation and restoration efforts. According
to previous studies, both the commercial Gaofen-2 (GF-2) imagery
(0.8 m spatial resolution and 4 spectral bands) and freely accessed
Sentinel-2 (S2) imagery (10 m spatial resolution and 13 spectral
bands) have been successfully used to map MFs. However, the
efficiency and accuracy of MF mapping based on these two data
is not clear, especially for large-scale applications. To address this
issue, first, we developed a robust classification approach by in-
tegrating object-based image analysis (OBIA) and random forest
(RF) algorithm; and then, applied this approach to GF-2 and S2
images to map the extents of MF along the entire coasts of Guangxi,
China, respectively; at last, compared the efficiency and accuracy
of GF-2 and S2 imagery in MF mapping. Results showed that:
first, based on OBIA and RF integrated classification approach
both MF maps derived from GF-2 and S2 obtained high mapping
accuracies (the overall accuracy was 96% and 94%, respectively);
second, areal extent of MFs in Guangxi extracted from GF-2 and S2
images was 8182 and 8040 ha, respectively; third, GF-2 imagery has
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extraordinary abilities in detecting fragmented MF patches located
along landward and seaward edges; and finally, S2 imagery per-
formed better in detecting seaward submerged MFs and separating
MF from terrestrial vegetation. Results and conclusions of this
study can provide basic considerations for selecting appropriate
data source in MF or wetland vegetation mapping tasks.

Index Terms—China, gaofen-2 (GF-2), mangrove forest (MF),
object-based image analysis (OBIA), random forest (RF), Sentinel-
2 (S2).

I. INTRODUCTION

MANGROVE forests (MFs), as an important intermediate
ecosystem, are extensively distributed in the intertidal

zone along tropical and subtropical coasts [1]–[3]. These forests
play a vital role in maintaining biodiversity, stabilizing shore-
line, keeping water quality, preventing the storm and providing
numerous societal services and goods [4], [5]. However, MFs
are rapidly disappearing due to the natural and anthropogenic
disturbance activities [6], [7]. Thus, an accurate and up-to-data
map of MFs is essential for conservation and management
efforts.

Traditionally, investigating MFs are extraordinarily difficult
and time consuming due to the muddy intertidal environment
[8]–[10]. Remote sensing provides opportunities for mapping
MFs with the unparalleled advantages of multiscale, long-
term, and cost-effective [11]–[14]. Among various satellite data,
Landsat series images with long-term storage and free acces-
sibility have been widely used for mapping MFs [12], [15],
[16]. However, the Landsat’s medium spatial resolution of 30
m does not allow small patches of MF to be mapped [17]. The
Gaofen-2 (GF-2) satellite, which was launched on 19 August
2014 and acquired images at a spatial resolution of 0.8 m
(panchromatic band) and four spectral bands (Blue, Green, Red,
and Near-infrared), provides new opportunities for mapping,
monitoring, and better-characterizing patchy ecosystems [18].
GF-2 imagery could provide finer spatial resolution, and more
detailed information of textural structures, which could improve
the ability of distinguish MFs from other adjacent vegetation
[19]. Liu et al. [20] demonstrated that GF-2 performed better
in detecting patchy vegetation than CBERS-04 (China–Brazil
Earth Resources Satellite 4) and GF-1 (Gaofen-1). Liu and Chen
[21] found that the textural, spectral, and multitemporal features
extracted from GF-2 images could provide plenty information
on intercropping regions. Nonetheless, some issues still exist in

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-6264-7905
https://orcid.org/0000-0002-4548-899X
www.geodata.cn
mailto:zhangrong@iga.ac.cn
mailto:jiamingming@iga.ac.cn
mailto:zongmingwang@iga.ac.cn
mailto:zhouym@0521@163.com
mailto:wenxin18@jlu.edu.cn
mailto:chengln20@mails.jlu.edu.cn
mailto:tanyue1224@gmail.com


4186 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 1. Location of the study area and the distribution of ground survey sample.

mapping MFs with GF-2 images, such as the limited spectral
bands, the complex preprocessing procedures, and costly price,
which are common problems in very high-resolution satellite
images.

Wang et al. [22] showed that spectral information played a
more significant role in classifying mangrove species than spatial
information. The recently launched Sentinel-2 (S2) satellite car-
rying with the multispectral instrument (MSI) sensor provides
opportunities in mapping MFs at a fine spatial resolution (10 m)
and 13 spectral bands. In addition, the MSI imagery contains
three red edge bands, which were highly helpful in mapping
submerged MFs [17]. However, several previous studies indi-
cated that spatial resolution was more important than spectral
information in identifying patchy and narrow MF [12], [23].
Kamal et al. [24] compared and contrasted the ability of different
image datasets (Landsat TM, ALOS AVNIR-2, WorldView-2,
and LiDAR) to map five levels of mangrove features, they found
that higher image spatial resolution, larger object size, and less
land-cover types contribute to higher mapping accuracies. Thus,
given the inconstant conclusions on the relative importance
of spatial and spectral resolutions in mapping MFs, and the
extensive application of MF maps with high accuracy, it is
necessary to investigate the performance of GF-2 and S2 images
for mapping MFs.

The main objective of this study is to compare the ability
of GF-2 and S2 imageries in mapping MFs on a large-scale.
To achieve this goal, we develop a robust MF classification
approach by integrating the object-based image analysis (OBIA)
with random forest (RF) algorithm; and applying the approach
to GF-2 and S2 images of Guangxi, China, respectively. The
differences of the resultant maps are analyzed and compared
for the advantages and limitations of GF-2 and S2 images in
large-scale MF mapping.

II. MATERIALS AND METHODS

A. Study Area

The coastal zones of Guangxi (21°24′20 ′′- 22°01′ 20′′N,
107°56′30′′- 109°40′ 00′′E), are close to the southwest boundary
of China and 1488 km long (see Fig. 1). This study area includes

TABLE I
CHARACTERISTICS OF SATELLITE DATA AND IMAGE ACQUISITION DATES

two national mangrove reserves, i.e., Shankou National Man-
grove Nature Reserve and Beilun Estuary National Nature Re-
serve. The dominant mangrove species in Guangxi are Avicennia
marina, Aegiceras corniculatum, Kandelia candel, Bruguiear
gymnorrhiza, and Rhizophora stylosa. Almost 98.8% of MFs in
Guangxi are shorter than 4m [25]. The MFs in Guangxi account
for approximately 37% of national total MFs and present large
integral patches, narrow patches, and fragmented patches [15].
In this study, we defined small mangrove patch as the patch of
MF with an area of less than 500 m2.

B. Remote Sensing Data

A complete coverage of the Guangxi coasts was achieved
by 15 tiles of GF-2 paths/rows or 5 tiles of S2 paths/rows. The
spatial locations and general information of GF-2 images and S2
spectral bands are shown in Table I and Fig. 2. GF-2 is an optical
remote sensing satellite developed by China. This satellite is
equipped with panchromatic and multispectral sensor, with a
0.8 m resolution panchromatic band and four 4 m resolution
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Fig. 2. Coverage regions of images for the entire coast of Guangxi. (A) Spatial
distributions of GF-2 images; (B) Spatial distributions of S2 images.

multispectral bands covering the spectral ranges between visible
(VIS) and the near-infrared (NIR) (see Table I). The GF-2 images
were provided by the National Satellite Oceanic Application
Center, China.1 The data need a series of preprocessing be-
fore applied for MF classification. First, orthorectification were
conducted based on the ENVI rational polynomial coefficients
(RPC) with 30 equally distributed ground control points ex-
tracted from a 1:100000 topographic maps. Then, atmospheric
corrections were carried out for both GF-2 images by apply-
ing the dark object subtraction algorithm. Finally, the spatial
resolution of multispectral images was enhanced to 0.8 m after
the nearest neighbor diffusion pan-sharpening algorithm was
applied to image fusion. Orthorectification, atmospheric correc-
tions, and image fusion were performed using ENVI (Exelis
Visual Information Solutions, Boulder, CO, version 5.3).

Low cloud-cover S2 images, acquired between December
17 and 19, 2017 (see Table I and Fig. 2) were downloaded
from “Copernicus Open Access Hub” webpage2 as Level-1C
product, i.e., top-of-atmosphere reflectance in cartographic ge-
ometry. Atmospheric correction was conducted using Sen2cor
module version 2.5.5 within the S2 Toolbox of SNAP (Sentinel
Application Platforms, version 6.4) [26].

C. Reference Data

Field surveys were carried out during the period of November
1–15, 2017. Intertidal MFs were surveyed along walkways with
the guidance of local guidepost. The location of each field point
was established by global positioning system with an accuracy
of less than 1 m, and recorded for the species names. Because
most of the mudflat areas of MFs were inaccessible, we also
collected ground survey samples by Google Earth and unmanned
aerial vehicles. As a result, 437 mangrove forest ground survey
samples and 650 non-MF ground survey samples were selected.
Then, the points were randomly divided into two groups for
the purpose of image validation (237 validation samples) and
classification (200 training samples).

D. Methodology

1) Basic Idea of OBIA and RF Classification: Extensive
research works showed that OBIA was superior to pixel-based

1http://dds.nsoas.org.cn/mainIndex.do
2https://scihub.copernicus.eu/dhus/#/home

Fig. 3. Workflow for mapping mangrove forests includes OBIA, RF, and
accuracy assessment. The coastline was provided by Hou et al. [33].

methods in MF mapping, particularly for high-resolution images
applications [27], [28]. Classification algorithms, such as maxi-
mum likelihood, support vector machines, neural networks, and
RF, are used to classify image objects. Among these algorithms,
the RF algorithm has been widely employed due to its accurate
and robust performances [29], [30]. To date, the RF algorithm
along with OBIA is still rarely used in mapping MFs, large-scale
applications need to be explored [31], [32].

In this study, the general workflow of MF classification in-
cludes three steps (see Fig. 3).

1) Segmenting images into objects using the fuzzy-based
segmentation parameter (FBSP) optimizer.

2) Classifying objects into MF and non-MF using RF classi-
fier.

3) Evaluating the classification accuracy. In this manuscript,
we used a 20-km coastline buffer zone to clip the images,
the coastline was provided by Hou et al. [33].

2) Image Segmentation Based on FBSP Optimizer: Image
segmentation directly influences the efficiency and accuracy of
classification results [34]. In this study, GF-2 and S2 images
were segmented into homogeneous objects using multiresolu-
tion segmentation, which is one of the most useful segmentation
algorithms, implemented in the eCognition Developer software
(version 9.0). Multiresolution segmentation is a bottom-up re-
gion merging algorithm, starts with the pixel level and itera-
tively merges pixels into objects based on the conditions of
homogeneity (similarity of spatial and spectral information) set
by users [35]. The conditions include three parameters: scale,
shape, and compactness. In general, multiresolution segmenta-
tion parameters are often dependent on subjective trial-and-error
methods [36]. In order to obtain segment parameters, we used
an automated tool for segmentation, namely FBSP optimizer
[37]. The algorithm of the FBSP optimizer is based on the idea
of discrepancy evaluation, which evaluates effectiveness for the
process of merging subobjects with fuzzy logic analysis [38].
Examples of original multiresolution segmentation and optimal

http://dds.nsoas.org.cn/mainIndex.do
https://scihub.copernicus.eu/dhus/&num;/home
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Fig. 4. Comparison of original multiresolution segmentation and optimal
multiresolution segmentation. (A) Original segmentation of GF-2, the parameter
of scale, shape and compactness is 25, 0.10, and 0.50, respectively. (B) Optimal
segmentation of GF-2, the parameter of scale, shape, and compactness is 21,
0.18, and 0.74, respectively. (C) Original segmentation of S2, the parameter of
scale, shape, and compactness is 25, 0.10, and 0.50, respectively. (D) Optimal
segmentation of S2, the parameter of scale, shape, and compactness is 20, 0.17,
and 0.75, respectively.

multiresolution segmentation are presented in Fig. 4. The op-
timal multiresolution segmentation retained useful information
and reduced redundant objects. Therefore, it could efficiently
improve classification accuracy and reduce the workloads.

3) RF Classification: RF is an ensemble learning algorithm,
which has been confirmed accurate and robust in image classi-
fication [29], [30], [32]. In this study, RF was run in eCognition
Developer software (version 9.0).

In order to generate a RF prediction model, two important
parameters need to be defined: first, the number of decision trees
(ntree), which will be established by randomly selecting samples
from the training samples; and second, the number of predictive
variables (mtry), which defines the best partition in each node
of decision trees. Research works such as that conducted by
Lawrence et al. (2006) have shown that the number of error
models tends to be stable beyond the creation of 1000 decision
trees from randomly selecting samples [41]. Data from several
studies suggest that the value of the parameter mtry was set as
the square root of the number of the input features [41], [42].

A plenty of features can be adopted as input variables in
RF classifier, including spectral, spatial, and temporal features.
Fortunately, the OBIA could provide a number of spatial features
over pixel-based methods. In this article, 33 spectral and spatial
features were selected as input variables in the RF classifier (see
Table II ).

4) Validation of the MF Maps: To validate mapping accu-
racies, we derived two confusion matrices based on ground
survey samples, and calculated overall accuracies and F1 scores
of different MF maps. Overall accuracy represents to the correct
proportion of mapped compared with ground points. F1 score is a
harmonic mean of user’s accuracy (UA) and producer’s accuracy
(PA), which represents the classification performance of a single
class [43].

TABLE II
FEATURES USED IN THE HIERARCHICAL RF CLASSIFICATION

Fig. 5. Area of Guangxi mangrove forests derived from GF-2 and S2 images.
The identical area represents the spatially consistent mangrove forest area among
the two imageries; MF represents MFs.

III. RESULTS

A. Accuracy Assessment

Table III presents the confusion matrices for MF maps derived
from GF-2 and S2. The overall accuracy of the GF-2 and S2
derived MF maps was 96% and 94%, respectively, the F1 score
was 0.93 and 0.90, respectively. The MF map derived from GF-2
images had a UA and PA of 95% and 92%, respectively. MF
map derived by S2 images had a UA and PA of 93% and 89%,
respectively. Accuracy assessments indicated that the MF maps
generated from GF-2 and S2 images both had high mapping
accuracies with the map from GF-2 being more accurate.

B. Areal Extents and Spatial Distributions of MFs Extracted
From GF-2 and S2

Areal extents of Guangxi’s MFs derived from GF-2 and S2
are illustrated in Fig. 5. Using GF-2 and S2 imagery we mapped
8182 and 8040 ha of mangrove forests along the entire coasts of
Guangxi, respectively. MFs that were identified by both GF-2
and S2 imagery were 7528 ha. In addition, 654 and 512 ha of MFs
could only be identified by GF-2 and S2 imagery, respectively.
We compared our mapping result with results from the State
Forestry Administration (SFA) [44] and Hu et al. [45]. Our
result was close to the SFA’s (8781 ha), which was obtained by
interpreting high-resolution satellite images and field surveys,
and much higher than the area of Hu et al. (7089 ha).

The spatial distributions of MF in Guangxi are shown in
Fig. 6(A). Generally, the MF mapped with GF-2 and S2 images
were highly consistent. Large patches of MF were concentrated
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TABLE III
CONFUSION MATRICES OF MF MAPS DERIVED BY GF-2 AND S2

Fig. 6. (a) Spatial distribution of MF derived from GF-2 and S2 images in Guangxi, and zoom views of Maowei Bay. (b) Dafeng River. (c) North Lianzhou Bay.
(d) Lianzhou Bay. (e) Tieshan Habor ). (f) Dandou Bay.

in Zhenzhu Habor, Fangcheng Bay, Maowei Sea, Dafeng River,
Lianzhou Bay, Tieshan Habor, and Dandou Bay. Maowei Sea
had the largest amount of MF (according to the GF-2 derived
map, there were 2079 ha of MF, accounting for 25% of the
total), followed by Tieshan Habor (according to the GF-2 derived
map, there were 1037 ha, accounting for 13% of the total) and
Lianzhou Bay (according to the GF-2 derived map, there were
1002 ha, accounting for 12% of the total). Fragmented patches
of MF were found in Beilun Estuary and Yingluo Bay along the
eastern coasts of Guangxi.

As shown in Fig. 6(a)–(c), GF-2 images performed better than
S2 images when detecting small patches along the landward and
seaward edges of MF. As shown in Fig. 6(d)–(f), S2 images
performed better in delineating seaward submerged MF and
landward MF adjacent to terrestrial vegetation (TV).

IV. DISCUSSION

A. Reliability of Integrating OBIA and RF Classification
Approach

The maps derived from GF-2 and S2 both achieved high
accuracies (96% and 94%, respectively). The successful imple-
mentation of this study could be attributed to two factors, i.e., the
FBSP optimizer applied in image segmentation, and the robust
approach which integrated OBIA and RF.

First, FBSP optimizer was used to select optimal segmentation
parameters in this study. Compared to previous approaches,
the FBSP optimizer enable process image with unlimited band
images and implements automated optimizing for all the seg-
mentation parameters (i.e., scale, compactness, and shape).
The FBSP optimizer, which is a supervised process, could
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Fig. 7. Compared the results of mangrove forests extracted from (A) GF-2 (R:
G: B = 4:3:2) and (B) S2 (R: G: B = 8:4:3) images in Guangxi.

Fig. 8. Visual comparison of (A) Gaofen-2 (R: G: B=4:3:2) and (B) Sentinel-2
(R: G: B=8:4:3) image with texture coarseness.

automatically identify suitable segmentation parameters based
on fuzzy logic analysis [37], [38]. This approach is accommo-
dated in eCognition by acquiring target object and subobject
features and iterative operation with fuzzy logic analyses in a
bottom-up approach. The automation of the parameter selec-
tion is a significant advantage that guarantees the classification
process time-efficient and accurate, and avoids subjective errors
caused by trial-and-error optimization.

Second, the integration of OBIA and RF captures abundant
information on the spectral and texture characteristics of MF.
OBIA effectively avoids the effect of “salt-and-pepper” in a
heterogeneous landscape and ensures the classification accuracy
in complicated environments. The RF classifier has been shown
to be the robust and stable and outperforms with other machine
learning algorithms [46]–[48].

B. Advantages and Limitations of GF-2 Imagery in
Mapping MFs

GF-2 images have an extraordinary ability in detecting frag-
mented patches of MF and delineating the boundary of MF com-
pared with S2 images, due to the much higher spatial resolution.
As shown in Fig. 7, MF located along the river can only be
accurately identified by GF-2 images. Moreover, the boundary
of MF was more integrally delineated by GF-2 images than S2
images. A previous study also indicated that a higher spatial
resolution can improve the mapping of small patchy MF [24].

Many research works have substantiated the benefit of texture
information in identifying MF [49], [50]. Concerning texture

information, GF-2 images could provide abundant details of MF
objects (e.g., patch structure and component). Table IV and Fig. 8
were provided to illustrate the differences of texture features
derived from the GF-2 and S2 images. A total of six of text fea-
tures were used: homogeneity, contrast, dissimilarity, standard
deviation, mean and entropy. The contrast of texture features is
one of the most representative features in texture image analysis.
The contrast feature is a measure of the contrast or the amount of
local variations present in an image [51]. As shown in Table IV,
the values of gray-level cooccurrence matrix (GLCM) contrast
and gray level difference vector (GLDV) contrast in GF-2 image
are much higher than S2 image, indicating that GF-2 images
provide abundant texture information. As shown in Fig. 8, for
MF objects the GF-2 images exhibited more textural roughness
than the S2 images.

Fig. 9 shows the spectral curves of MF, tidal flat (TF), water,
TV, and submerged MF (SMF) in GF-2 and S2 images. As shown
in Fig. 9(A), the spectral reflectance values of MF are slightly
different from that of TV and TF in the GF-2 near-infrared band
(770–890 nm). However, the reflectance in the near-infrared
band (770–890 nm) is largely reduced when MF are submerged
[17]. In the GF-2 images, the spectral reflectance of SMF is
confused with TV and water in the visual spectral band, and
is indistinguishable from TF in the near infrared band [see
Fig. 9(A)]. In consequence, it is difficult to identify SMF from
GF-2 images.

To sum up, GF-2 images have outstanding advantages of iden-
tifying small patches of MF and could adequately and detailed
depict the boundaries of MF patches. However, due to the limited
spectral bands, GF-2 images are not suitable for detecting SMF.

C. Advantages and Limitations of S2 Imagery in Mapping MF

As shown in Fig. 6(d)–(f), S2 images had an excellent perfor-
mance for identifying submerged mangrove patches and land-
ward MF adjacent to TV. As shown in Fig. 9(B), the shortwave
infrared reflectance of MF is lower than that of TV, and MF
show higher reflectance in the spectral region of 733–890 nm
than TV. Jia et al. [17] analyzed the typical spectral curves of
water, emerged MF, and SMF, and found that S2 could be used
to detect SMF.

Previous studies indicated that it is difficult to identify MF
adjacent to TV [52]. Fortunately, S2 imagery could be used
to separate MF from TV [17], [31]. However, S2 images have
limitations in identifying small patches of MF compared with
GF-2 images. Because small patches can form mixed pixels in
S2 images, which was also demonstrated by Wang et al. [53].
Their studies found that due to the mixed reflectance spectral
of MF, TF, and waters in one pixel in S2 images, the small
MF patches were dissolved within the major surrounding land
cover. As a result, a large number of small patches could not
been recognized in S2 images [see Fig. 6(a)–(c)].

In conclusion, S2 images have obvious advantages in iden-
tifying MF, which are submerged or adjacent to TV, but have
limited abilities in detecting small MF patches.



ZHANG et al.: COMPARISON OF GF-2 AND S2 IMAGERY FOR MAPPING MANGROVE FORESTS USING OBIA 4191

Fig. 9. Spectral curves of MF, TF, water, TV, and SMF. (a) GF-2 image. (b) S2 image.

TABLE IV
TEXTURE FEATURE OF MFS COMPARISON BETWEEN GF-2 AND S2

V. CONCLUSION

In this study, MFs have been mapped by applying an OBIA
and RF integrated classification approach to GF-2 and S2 im-
ages, respectively. The overall accuracy for the GF-2 and S2
images derived MF maps was 96% and 94%, respectively. The
results indicated that both GF-2 and S2 images can be used
to accurately map MF. Moreover, we found that: first, small
patchy MFs can be delineated with more details by GF-2 images,
whereas GF-2 images have limitations in detecting SMFs; and
second, S2 images have advantages in identifying MFs, which
are submerged or adjacent to TV, whereas S2 images are limited
in detecting small patchy MFs. Based on the results from this
study, low tide GF-2 images are recommended to use for map-
ping fragmented MF, if the budget is adequate. In contrast, S2
images are recommended based on their relatively high mapping
accuracy and free accessibility if the budget is limited or MFs
are not very patchy. The proposed approach and present results
are of great significance for mapping and monitoring MFs and
for the selection of remote sensing data in such mapping tasks.
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