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Abstract—Cloud and cloud shadow segmentation are fundamen-
tal processes in optical remote sensing image analysis. Current
methods for cloud/shadow identification in geospatial imagery are
not as accurate as they should, especially in the presence of snow
and haze. This article presents a deep learning-based framework
for the detection of cloud/shadow in Landsat 8 images. Our method
benefits from a convolutional neural network, Cloud-Net+ (a mod-
ification of our previously proposed Cloud-Net [1]) that is trained
with a novel loss function [filtered Jaccard loss (FJL)]. The pro-
posed loss function is more sensitive to the absence of foreground
objects in an image and penalizes/rewards the predicted mask
more accurately than other common loss functions. In addition, a
sunlight direction-aware data augmentation technique is developed
for the task of cloud shadow detection to extend the generalization
ability of the proposed model by expanding existing training sets.
The combination of Cloud-Net+, FJL function, and the proposed
augmentation algorithm delivers superior results on four public
cloud/shadow detection datasets. Our experiments on Pascal VOC
dataset exemplifies the applicability and quality of our proposed
network and loss function in other computer vision applications.

Index Terms—38-Cloud, convolutional neural network (CNN),
cloud detection, deep learning, image segmentation, landsat 8, loss
function, remote sensing.

I. INTRODUCTION

C LOUD and cloud shadow detection, along with cloud
coverage estimation, are among the most critical processes

in the analysis of remote sensing imagery. On the one hand,
transferring remotely sensed data from air/space-borne sensors
to ground stations is an expensive process from time, bandwidth,
storage, and computational points of view. On the other hand,
no useful information about the earth’s surface can be extracted
from optical images that are heavily covered by clouds and their
shadows. Since, on average, 67% of the earth surface is covered
by clouds at any given time [2], it seems that a considerable
amount of resources can be saved by transferring only images
with no/minimum amount of cloud and shadow coverage.
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Cloud coverage by itself could provide useful information
about climate and atmospheric parameters [3], as well as natural
disasters such as hurricanes and volcanic eruptions [4], [5].
As a result, the identification of clouds and cloud shadows in
images is an essential preprocessing task for many applications.
Cloud and cloud shadow detection is even more challenging
when only a limited number of spectral bands are available.
Many air/spaceborne systems such as ZY-3, HJ-1, and GF-2
are equipped only with visible and near-infrared bands [6].
Therefore, algorithms that can identify clouds and their shadows
from those few spectral bands become more essential.

In recent years, many cloud/shadow detection algorithms have
been developed. These methods can be divided into three main
categories: threshold-based [7]–[10], handcrafted [11]–[14], and
deep learning-based methods [15]–[20].

Function of mask (FMask) [21]–[23] and automated cloud-
cover assessment (ACCA) [24] algorithms are among the most
well-known threshold-based algorithms for cloud identification.
They construct a decision tree to label each pixel as cloud or
other non-cloud classes. In each branch of the tree, a decision is
made based on a thresholding function that utilizes one or more
spectral bands of the data.

A group of handcrafted methods isolated haze and thick
clouds from other pixels using the relationship between spec-
tral responses of the red and blue bands. Some examples of
these algorithms include [25], [26], which are derivatives of the
haze optimized transformation [11]. Xu et al. [27] proposed a
handcrafted approach, which involved a Bayesian probabilistic
model incorporated with multiple spectral, temporal, and spatial
features to separate cloud from noncloud regions.

With recent advances in deep-learning algorithms for im-
age segmentation, several methods have been developed to
detect cloud/shadow using deep learning. Xie et al. [19] trained
a convolutional neural network (CNN) from multiple small
patches. Their network classified each patch into one of the
three classes of thin cloud, thick cloud, and clear. A major issue
in cloud/shadow detection approaches using deep learning is
the lack of accurately annotated training images since creating
ground truths (GTs) for remote sensing imagery is time consum-
ing and tedious [28]. In addition, default cloud masks provided
in remote sensing products are mostly obtained through au-
tomatic/semiautomatic thresholding-based approaches, which
often make them less accurate. Mohajerani et al. [29] removed
wrongly labeled icy/snowy regions in default cloud masks in
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their dataset. They showed that the performance of a well-known
semantic segmentation model (U-Net [30]) is considerably im-
proved by training on those corrected GTs. Although existing
methods deliver promising results, many of them do not pro-
vide robust and accurate cloud/shadow masks in scenes where
bright/cold noncloud regions exist alongside clouds [15], [22].

Here, inspired by advances made in deep learning techniques,
we propose a new algorithm to identify cloud/shadow regions
in Landsat 8 images. Our proposed algorithm consists of a fully
convolutional neural network (FCN), which detects cloud and
cloud shadow pixels in an end-to-end manner. Our network,
Cloud-Net+, is a modified version of our previously open-
sourced model, Cloud-Net [1]. In the process of optimizing
Cloud-Net+ model, a novel loss function named filtered Jaccard
loss (FJL) is developed and used to calculate the error. As a
result, Cloud-Net+ is trained more accurately. FJL makes a con-
siderable difference in the performance of systems, especially
for images with no cloud/shadow regions.

Many of the threshold based and handcrafted algorithms
for cloud shadow detection utilize geometrical relationships
between the illumination source, clouds, and shadows [21],
[31], [32]. However, such relationships are not taken advan-
tage of in deep learning-based approaches, where shadows are
considered independent foreground objects. We incorporate this
information through a meaningful parametric data augmentation
approach to have a greater variety of shadows in each scene.
As a result, newly generated images resemble original images
as if they were captured at different times of the day with
different sunlight directions. Our experiments show that such
systematic augmentation works very well for shadow detection
and simultaneous multiclass segmentation of clouds, shadows,
and clear areas.

Unlike FMask and ACCA, the proposed approach is not blind
to the existing global and local cloud/shadow features of an im-
age. Also, since only four spectral bands—red, green, blue, and
near-infrared (RGBNir)—are required for the system’s training
and prediction, the proposed method can be easily utilized for
images obtained by most of the existing satellites as well as
airborne systems. Unlike multitemporal-based methods such
as [33], the proposed method does not require prior knowledge
of the scene, e.g., cloud-free images. The only data required for
the parametric augmentation are solar angles, which exist in the
metadata accompanying each image. Moreover, such informa-
tion is used for training purposes only and not for prediction.
In addition, to being simple and straightforward, the proposed
network can be used in other image segmentation applications.

In summary, the contributions of this article are as follows.
1) Proposing a novel loss function (FJL), which not only

penalizes a model for poor prediction of clouds and shad-
ows but also fairly rewards the correct prediction of clear
regions. Our experiments show that FJL outperforms other
commonly used loss functions. In addition, when Cloud-
Net+ is trained with it, its results outperform state-of-
the-art cloud/shadow detection methods over four public
datasets of 38-Cloud, 95-Cloud, Biome 8, and SPARCS.

2) Proposing a sunlight direction-aware augmentation
(SDAA) technique to boost the shadow detection per-
formance. Unlike commonly used transformation-based

augmentation techniques such as rotation and flipping,
which are blind to the scene’s geometry, SDAA generates
synthetic shadows with various lengths, directions, and
levels of shade.

3) Extending our public dataset, 38-Cloud [1], for cloud de-
tection in Landsat 8 imagery to a new dataset (95-Cloud).
This new dataset—which is made public—includes 57
more Landsat 8 scenes (than 38-Cloud) along with their
manually annotated GTs. It will help researchers improve
their cloud detection algorithms using more training and
evaluation data.

The remainder of this article is organized as follows. In
Section II, a summary of related works in the cloud detec-
tion field is reviewed. In Section III, our proposed method is
explained. In Section IV, experimental results are discussed.
Finally, Section V concludes this article.

II. RELATED WORKS

Cloud and shadow detection in remotely sensed images have
been an active area of research for many years. One of the first
attempts to distinguish between clouds and cloud-free areas was
through a probabilistic classifier model [34]. However, it was
limited to scenes with clouds over open sea surfaces. One of
the first successful and more general automatic cloud detection
methods was FMask (first version) [21]. FMask used seven
bands of Landsat images to classify each pixel of an image
into one of the five classes of land, water, cloud, shadow, and
snow. Another version of it (FMask V3) [22] utilized cirrus
band to distinguish cirrus clouds along with low altitude clouds.
In the last version of it (FMask V4) [23], auxiliary data such
as digital elevation maps (DEM), DEM derivatives, and global
surface water occurrences (GSWO) were used in addition to the
other usual bands for better performance on water, high altitude
regions, and Sentinel-2 images.

Several multitemporal methods were developed for
cloud/shadow detection [27], [35]–[37]. Mateo-García et al. [33]
used cloud-free images of Landsat 8 scenes to identify potential
clouds. A clustering and some threshold-based postprocessing
steps then helped to generate final cloud masks. Zi et al. [38]
combined a threshold-based method with a classical machine
learning approach to segment superpixels and classify them into
one of three classes of cloud, potential cloud, and noncloud.

Recently, several FCNs have been developed for cloud and
cloud shadow detection tasks [28], [39]–[43]. Yang et al. [44]
proposed an FCN, which detects clouds in ZY-3 thumbnail
satellite images. A built-in boundary refinement approach was
incorporated into their network (CDnetV1) to avoid further post-
processing. The second version of that network, CDnetV2 [45],
was equipped with two new feature fusion and information
guidance modules to extract cloud features more accurately.
Chai et al. [46] proposed Segnet Adaption (a modified version
of a well-known FCN for semantic segmentation) to match with
remotely sensed images. Segnet Adaption has shown promis-
ing results on Biome 8 and Landsat 7 cloud/shadow detection
datasets. Recently, Jeppesen et al. [47] introduced RS-Net to
identify clouds in Landsat 8 images. RS-Net was an FCN
inspired by U-Net and was trained with both automatically
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(via FMask) and manually generated GT images of two public
datasets. The authors showed that results obtained by a model
trained with FMask’s outputs outperform the FMask directly
obtained results.

The authors of SPARCS CNN [48] also proposed a model
to distinguish cloud, shadow, water, snow, and clear regions
in Landsat 8 images. They used a pretrained VGG16 as the
backbone of their fully convolutional network. They succeeded
in reaching human interpreter accuracy with their model. Re-
fUnet v1 [49] was another method, which focuses on retrieving
fuzzy boundaries of clouds and shadows. The authors used a
UNet for extracting course/rough cloud and cloud shadow in
small patches of images. Then, boundaries of clouds/shadows
in complete Landsat 8 masks were refined/sharpened using a
dense conditional random field (CRF). In this method, the CRF
refinement was applied as a postprocessing step. In the second
version of RefUNet (RefUNet v2) [50], a simultaneous joint
pipeline for detecting and refining edges was utilized. There-
fore, the UNet network, which identified course masks, was
concatenated with the proposed guided Gaussian filter-based
CRF to refine boundaries in an end-to-end manner. In addition,
refinements were done on small patch masks rather than large
masks of the entire Landsat 8 scenes. In another work, the authors
of Cloud-AttU [51] employed a UNet model that is enriched
with a specific attention module in its skip connections. Multiple
attention modules enabled the model to learn proper features by
paying attention to the most relevant locations in input training
images or feature maps. CloudFCN [28] was based on a UNet
model with the addition of inception modules between convolu-
tion blocks in the contracting and expanding arms. In addition
to pixel-level segmentation, the authors incorporated a feature
into their algorithm for estimating cloud coverage in an image
using a regression-friendly loss function. They demonstrated
that CloudFCN could achieve high accuracy in the task of cloud
screening under various conditions, such as the presence of white
noise and using different quantization methods.

Image augmentation has been proven to be effective in in-
creasing the accuracy of deep learning models. There are only a
few offline augmentation algorithms reported for remote sens-
ing imagery. Ma et al. [53] proposed a generative adversarial
network (GAN) to synthesize images for scene labeling. Howe
et al. [54] introduced another GAN-based approach for earth’s
surface object detection in airborne images. Zheng et al. [55]
proposed a method for generating synthetic vehicles in aerial
images. For the specific task of cloud/shadow segmentation, only
basic geometric and color space transformations in the training
phase are used for data augmentation [16], [56]. Mohajerani
et al. [57], however, developed a GAN (CloudMaskGAN) to
convert snowy scenes to nonsnowy and vice versa for aug-
mentation of Landsat 8 images. To the best of our knowledge,
CloudMaskGAN is the only reported nontransformation-based
augmentation approach for cloud detection purposes.

III. PROPOSED METHOD

In this section, the proposed methodology for cloud/shadow
detection is described. We focus on using Landsat 8 images.
Landsat 8 is equipped with two optical sensors, which together

Fig. 1. Cloud-Net+’s architecture.

collect eight spectral and two thermal bands. Only four spectral
bands—Bands 2 to 5 (RGBNir)—are used (all with 30 m spatial
resolution). To keep the proposed method more general, no
thermal band is utilized.

A. Architecture of the Segmentation Model

Similar to other FCNs, the proposed network is made of two
main arms: a contracting arm, and an expanding arm. In the
training phase, the contracting arm extracts important high-level
cloud/shadow attributes. It also downsamples the input while
increasing its depth. On the other hand, the expanding arm
utilizes those extracted features to build an image mask—with
the same size as the input. The network’s input is a multispectral
image, and its output is a grayscale cloud/shadow probability
map for the input. In the case of multiclass segmentation, the
output has multiple channels, one corresponding to each class.

We modified the network’s architecture in our previous
work [1] to develop a more efficient model that is more sensitive
to clouds/shadows. Cloud-Net+, consists of six contracting and
five expanding blocks (see Fig. 1). Successive convolutional
layers are the heart of the blocks in both arms. The kernel
size and the order of these layers play crucial roles in the
quality of activated features, and therefore, they affect the final
segmentation outcome directly. On the one hand, it seems that
as the number of convolutional layers in each block increases,
the distinction of the captured context improves. On the other
hand, utilizing more of such layers explodes the complexity of
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the model. To address such tradeoff, we remove the middle 3× 3
convolution layer in the last two contracting blocks and the first
expanding block of Cloud-Net. Since those layers are dense
and contain thousands of parameters, such removal decreases
the number of network’s parameters significantly. Then, in all
contracting arm blocks, a 1× 1 convolution layer is added
between each two adjacent 3× 3 convolution layers. Since each
1× 1 convolution layer contains a small number of parameters,
the total number of parameters of Cloud-Net+ (32.9 M) is 10%
less than that of Cloud-Net (36.4 M). Utilizing the 1× 1 kernel
size in convolutional layers was suggested initially in [58], and
its effectiveness is proven in works such as [59]. Employing such
a kernel in expanding blocks does not yield a better recovery of
the low-resolution feature maps. Therefore, we do not add it
to the expanding blocks. Instead, an aggregation branch (AB)
is added to combine all feature maps of the expanding blocks.
AB consists of six up-sampling layers (bilinear interpolation)
followed by a 1× 1 convolution. It helps our model to retrieve
cloud/shadow boundaries in the generated masks.

B. Loss Function

Soft Jaccard/Dice loss function has been widely used to
optimize many image segmentation models [60]–[62]. The for-
mulation of soft Jaccard loss for two classes of “0” and “1” is
as follows:

JL(t, y) = 1−
∑N

i=1 tiyi + ε∑N
i=1 ti +

∑N
i=1 yi −

∑N
i=1 tiyi + ε

.

(1)

Here, t represents the GT, and y is the output of the network. N
denotes the total number of pixels in t. yi ∈ [0, 1] and ti ∈ {0, 1}
are the ith pixel value of y and t, respectively, and ε is 10−7 to
avoid division by zero. Soft Jaccard loss function, however, has
a defect: overpenalization of images with no class “1” in their
GTs.

Let us consider a small 2× 2 input image with t0 = [0, 0; 0, 0]
and two possible predictions of y1 = [0.01, 0.01; 0.01, 0.01] and
y2 = [0.99, 0.99; 0.99, 0.99]. It is clear that y1 would be a better
prediction than y2 since it can be interpreted as having no class
“1” in the input image. However, soft Jaccard losses obtained
by y1 and y2 are the same: JL(t0, y1) = JL(t0, y2) ≈ 1. Conse-
quently, the network penalizes y1 as much as y2, even though y1
represents a better prediction. Indeed, the major problem with
soft Jaccard loss function is that whenever there is no class “1”
in the GT, the numerator of (1) equals to ε (which is a small
number) and, as a result, the value of the loss approximates 1.

Observing this behavior, we propose a modified soft Jaccard
loss function, FJL, with two different versions. The main idea
behind FJL is to compensate for unfair values of soft Jaccard
loss and replace them with proper values whenever there is no
class “1” in the GT. We can summarize the goal of the FJL as
follows:

FJL(t, y) =

{
GL(t, y), ti = 0, ∀i ∈ {1, 2, 3, . . ., N}
JL(t, y), Otherwise

(2)

where GL represents a compensatory function. The condition
in the first line of (2) indicates that when all pixels of GT are
equal to zero, FJL is similar GL. Clearly, this condition can be
rephrased as follows:

FJL(t, y) =

{
GL(t, y), S = 0

JL(t, y), S > 0
(3)

where S =
∑N

i=1 ti. This formulation can be rewritten—in a
more general form—as the combination of two functions of JL
and GL, in which each function is multiplied by, respectively,
ideal highpass and lowpass filters

FJL(t, y) = kGGL(t, y)LPpc
(S) + kJJL(t, y)HPp′

c
(S). (4)

Here, LPpc
denotes a lowpass filter with the cutoff point of pc

and HPp′
c

denotes a highpass filter with the cutoff point of p′c.
kG and kJ represent coefficients of compensatory and Jaccard
losses, respectively. The magnitude of both filters is limited in
the [0,1] range. In (4), the value of LPpc

is 0 when S > pc,
so the value of GL(t, y)LPpc

becomes zero, and as a result,
FJL only has contributions from JL. On the other hand, when
S < p′c,HPp′

c
becomes 0, and FJL is only from theGL part. This

behavior can be simply described as a toggle switch between JL
and GL.

To satisfy (3), the cutoff point of the two ideal filters should
be equal, so they become complementary. Note that, in signal
processing context, the cutoff usually refers to the “frequency”
at which the magnitude of a filter changes. However, in this
article, cutoff is the “value” of S at which the magnitude of a
filter alters. Since this transition should occur when S = 0, the
cutoff points are set to 0.

To have lowpass and highpass filters with smooth gradient
characteristics, inspiring by [63], we have used the sigmoid
function as follows:

LPpc
(S) =

1

1 + exp (m(S − pc))
, HPp′

c
(S)

=
1

1 + exp (m(−S + p′c))
(5)

wherem denotes the steepness of the sigmoid transition. Choos-
ing sigmoid solves the problem of overpenalizing without adding
any nondifferentiable elements or piecewise conditions to the
loss function. This leads to a smooth switch between soft Jaccard
and compensatory loss in FJL. Since HP and LP filters are not
functions of y, the gradient of FJL is still continuous (without
any jumps). By substituting (5) in (4), FJL is described as

FJL(t, y) =
kGGL(t, y)

1 + exp (m(S − pc))
+

kJJL(t, y)

1 + exp (m(−S + p′c))
.

(6)

To keep these filters close to ideal, m is required to be a
large number. We have set m to 1000 in our experiments to
have fast transitions from 0 to 1 and vice versa. In addition,
pc and p′c are set to 0.5 to leave a safety margin and ensure
thatLP0.5(S = 0) = 1 andHP0.5(S = 0) = 0. Also, by setting
kG = kJ = 1, the magnitude of the loss remains in [0,1] range.
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We can have different versions of FJL, by selecting different
functions as GL. Here, we investigate two different candidates
GL1 and GL2, to form two corresponding FJL versions FJL1

and FJL2. Our first candidate is the inverted Jaccard function,
which is calculated by the complements of GT and prediction
arrays. The second one is the normalized version of a common
loss function in segmentation tasks, cross entropy (CE). The
formulation of these candidates are as follows:

GL1(t, y) ≡ InvJL(t, y) = JL(t, y) (7)

GL2(t, y) ≡ CEnorm(t, y) =
CE(t, y)

Max

=

−1

N

N∑
i=1

(tilog(yi + ε))

Max

where t and y denote the complements of t and y, respectively.
CEnorm denotes normalized CE. To make sure that the range
of FJL2(t, y) is bounded to [0,1], CE values are normalized by
division by their maximum possible value, Max = −N

N log(ε) =
16.1180. Max is obtained when all pixels in the predicted array
are complements of GT.

C. Parametric Augmentation (SDAA)

When an image is captured by Landsat 8, the solar azimuth
(θA) and the zenith (θZ) angles at the time of acquisition are
recorded in a metadata file. We use these angles to generate
different synthetic images by hypothetically changing the sun’s
location in the sky and, therefore, creating shadows under
different illumination directions. This could be interpreted as
capturing the same scene at different times of the day. Each
image can be augmented unless it is free of shadow.

The main steps of the proposed SDAA are as follows: 1)
removing original shadows; 2) changing the direction of illu-
mination; 3) generating the locations of synthetic shadows by
projecting clouds using the synthetic illumination direction of
step 2; 4) recoloring synthetic shadow locations to generate
different levels of shades via gamma transformation. Details of
these steps are explained next.

First, a Landsat 8 image (from the training set), its shadow
GT, and its cloud GT are selected. To generate realistic images,
original shadows should be removed from the image, otherwise,
the synthetic image will have two cast shadows. For the shadow
removal step, a histogram matching between shadow regions
and their shadow-free neighborhood is performed. The result of
this step is a shadow-free image.

To create new shadows in the shadow-free image, we generate
synthetic solar angles by adding offsets to the original solar
angles of θA and θZ . Using these new angles, the direction of
synthetic sunlight (in form of a two-dimensional vector pro-
jected on the scene’s image plane) is calculated. By moving
cloud pixels on the image plane and in the direction of the
new sunlight, synthetic shadows of those clouds are generated.
We made the following assumptions to simplify this process:
all clouds have the same height, and the scene is located on a
flat plane. The following equations are used to obtain the new

Fig. 2. Examples of SDAA obtained from one of the SPARCS images. The
yellow arrow shows the sunlight direction in each image.

locations of the cast shadows:

ysh = ycl + r sin(θZ + θZO
) cos(θA + θAO

)

xsh = xcl + r sin(θZ + θZO
) sin(θA + θAO

) (8)

where ycl, ysh, xcl, and xsh denote the location of a cloud pixel
and its corresponding cast shadow along the y− and x-axes. θZO

and θAO
represent solar angle offsets. r (in pixels) is the shifting

factor, which defines the length of a cast shadow. The greater
the r is set, the more a piece of cloud is shifted, and therefore,
the longer its shadow becomes. Since both r and θZ could
affect the length of the cast shadow, instead of altering both,
we keep θZ intact and only alter r. Therefore, θZO

is set to 0.
The resultant synthetic shadow mask (SSM) will be used

as the shadow GT of the augmented image in the training
phase. In the next step, SSM is used to adjust the brightness
of the synthetic shadow regions in the augmented image using
gamma (γ) transformation (i′ = iγ). Pixel values of shadow-free
regions in the image—including cloudy and clear areas—are not
modified.

Multiple candidates have been considered for hyperparam-
eters of SDAA: θAO

, r, and γ. These candidates consist
of: θAO

= {90, 180, 270}◦, r = {20, 40, 60, 80, 100}, and γ =
{0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95, 0.975}. Note that θAO

is selected to cover all possible ranges of the solar azimuth
angle—[0360]. Values of r greater than 100 generate too long
and unrealistic shadows. In addition, choosing γ values smaller
than 0.8 and greater than 0.975 leads to too dark and unnatural-
looking bright shadows. The entire process is repeated for all
spectral bands (R, G, B, and Nir). Fig. 2 displays some of the
augmented images generated by SDAA.

IV. EXPERIMENTAL SETTINGS AND RESULTS

A. Training Details

The size of the input data for Cloud-Net+ is 192× 192× 4.
Four spectral bands of each patch are stacked up in the following
order: R, G, B, Nir, to create such input. Before training, input
patches are normalized through division by 65 535. 20% of
training data are used for validation during the training.

Input patches are randomly augmented using simple online
geometric translations such as horizontal flipping, rotation, and
zooming. Note that to make the proposed loss functions compat-
ible with multiclass segmentation experiments, in each iteration
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of the training, loss values obtained for each class are averaged
(with weights proportional to the inverse number of pixels in
each class). The activation function in the last convolution
layer of the network is a sigmoid. In the case of multiclass
segmentation, softmax function is used in the last layer. Adam
method [64] is utilized as the optimizer.

The initial weights of the network are obtained by a Xavier
uniform random initializer [65]. The initial learning rate for the
model’s training is set to 10−4. If the validation loss does not
drop for more than 15 successive epochs, the learning rate is
reduced by 70%. This policy is continued until the learning rate
reaches 10−8. The batch size is set to 12. The proposed network
is developed using Keras deep learning framework with a single
GPU.

B. Datasets

1) 38-Cloud Dataset: 38-Cloud dataset, which has been in-
troduced in [1], consists of 8400 nonoverlapping (NOL) patches
of 384× 384 pixels extracted from 18 Landsat 8 Collection 1
Level-1 scenes as the training set. 9201 patches of the same
spatial size obtained from 20 Landsat 8 scenes represent the
test set. Scenes are mainly from North America and their GTs
are manually extracted. This dataset includes only four spectral
bands of R, G, B, and Nir.

All Landsat 8 scenes have black (empty) regions around
them. These regions are created when the acquired images are
aligned to have the geodetic north at their top. We eliminated
training patches with more than 80% empty pixels. The number
of nonempty training patches decreases to 5155, resulting in a
significant decrease in training time.

2) 95-Cloud Dataset: To improve the generalization abil-
ity of deep neural networks trained on 38-Cloud dataset, we
have extended it by adding 57 new Landsat 8 scenes to the
training scenes of 38-Cloud dataset. Therefore, in total, the
new training set consists of 75 scenes. 38-Cloud test set has
been kept intact in 95-Cloud dataset for evaluation consis-
tency. The GTs for the new scenes are manually extracted.
Different images in 95-Cloud are selected to include vari-
ous land cover types such as soil, vegetation, urban areas,
snow, ice, water, haze, and different cloud patterns. The av-
erage cloud coverage percentage in 95-Cloud dataset images
is kept around 50%. Following the same pattern as in 38-
Cloud dataset, the total number of patches for training is
34 701 and for the test is 9201. Removing empty patches
from 95-Cloud training set reduces the number of patches to
21 502. We made this dataset publicly available to the commu-
nity at https://github.com/SorourMo/95-Cloud-An-Extension-
to-38-Cloud-Dataset https://github.com/SorourMo/95-Cloud-
An-Extension-to-38-Cloud-Dataset.

3) Biome 8 Dataset: Biome 8 dataset [66] is a publicly
available dataset consisting of 96 Landsat 8 scenes with their
manually generated GTs with five classes of cloud, thin cloud,
clear, cloud shadow, and empty. We generated a binary cloud
GT out of Biome 8 GTs by merging both thin cloud and cloud
classes into one cloud class. We marked the rest of the classes
as clear. For the shadow segmentation task, all classes, except
shadow, are combined under a clear class. Following the same

pattern from 38-Cloud and 95-Cloud datasets, the total number
of cropped patches extracted from the entire Biome 8 dataset is
44 327. Removing empty patches reduces this number to 27 358.

4) SPARCS Dataset: SPARCS dataset [48], [67] consists of
80 patches of 1000× 1000 extracted from complete Landsat
8 scenes. The GTs of these patches are manually generated.
Each pixel is classified into one of the cloud, shadow, snow/ice,
water, land, and flooded classes. For the binary segmentation of
clouds/shadows, we have combined all noncloud and nonshadow
classes under the clear class. In multiclass segmentation, three
classes of cloud, shadow, and clear have been kept. Following
the same pattern as previous datasets, the number of extracted
NOL patches for this dataset is 720.

C. Model Evaluation

To evaluate the performance of the proposed algorithm, var-
ious experiments are performed. For 38-Cloud and 95-Cloud
datasets, our model is trained and tested on each of those
datasets’ explicitly defined training set and testing set, respec-
tively. For SPARCS dataset, as suggested in [47], we randomly
extract five folds of images (each fold consists of 16 complete
images or 144 NOL patches). Folds 2 to 5 are considered for
training and fold 1 for testing in our experiments. We have also
conducted 5-fold cross-validation (5CV) over the extracted folds
to compare obtained results with those from RS-Net [47].

For Biome 8 dataset, we follow the instructions described
in [47] and extract two folds from Biome 8 dataset. We randomly
select two cloudy, two mid-cloud, and two clear scenes for each
biome category. Therefore, 48 scenes are extracted for fold 1
and 48 scenes for fold 2. In our experiments, fold 2 is used for
training and fold 1 for testing. To compare against RS-Net, 2-fold
cross validation (2CV) is conducted, and the obtained numerical
results are averaged.

Evaluation of the SDAA method requires different arrange-
ments. For SPARCS, multiple sets of augmented training images
are generated using various combinations of hyperparameters
described in Section III-C. NOL patches of 384× 384 pixels
are extracted from those images and are added to the original
training patches of SPARCS dataset one set at a time. Then, to
find the best combination of hyperparameters, shadow detection
training and testing are performed for each of those expanded
training sets. The numerical results of these experiments are
calculated and compared against those obtained from training
with original patches only. Those combinations of hyperparam-
eters that resulted in a higher Jaccard index than the training with
original patches are identified (11 combinations). SDAA patches
are generated by those combinations and added all together to
the original training patches of a dataset for a final evaluation.

Considering SPARCS’s folds 2 to 5 as the training set, we
use the best hyperparameters confirmed in the previous steps
to generate SDAA patches, leading to 6812 training patches in
total. For Biome 8 dataset, we consider 70% of the patches (ex-
tracted from 32 scenes with shadow) for training and the rest for
testing to have a fair comparison against Segnet Adaption [46].
Generating SDAA patches for this training set and then adding
them to the original training patches results in 17 155 patches in
total.

https://github.com/SorourMo/95-Cloud-An-Extension-to-38-Cloud-Dataset
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TABLE I
QUANTITATIVE RESULTS FOR THE PROPOSED LOSS FUNCTIONS OBTAINED BY

CLOUD-NET+ MODEL FOR CLOUD DETECTION (IN %)

After training the proposed model with training patches of
the abovementioned datasets, the obtained weights are saved
and used for the evaluation of the model by prediction over
unseen test scenes. Test patches of each scene are resized to
384× 384× 4 and fed to the model. Then, the cloud/shadow
probability map corresponding to each patch is generated. Next,
probability maps (grayscale images) are stitched together to
build a prediction map for a complete scene. A 50% threshold
is used to get a final binary mask. In multiclass segmentation,
an argmax operation is applied on the output probability map to
produce a mask for each class. Cloud prediction by Cloud-Net+
takes about 30 s for all patches of a typical Landsat 8 scene
with a P100-PCIE-12 GB GPU, half of which is for reading and
preparing, and the other half is for inference.

D. Evaluation Metrics

Once cloud masks of complete Landsat 8 scenes (including
empty patches) are obtained by our algorithm, they are com-
pared against their corresponding GTs. Then, the performance is
quantitatively measured by Jaccard index (or mean intersection
over union), precision, recall, and accuracy. These metrics are
commonly used in state-of-the-art segmentation algorithms and
are defined as follows:

Jaccard Index =

∑M
i=1 tpi∑M

i=1(tpi + fpi + fni)
,

Precision =

∑M
i=1 tpi∑M

i=1(tpi + fpi)

Recall =

∑M
i=1 tpi∑M

i=1(tpi + fni)
,

Accuracy =

∑M
i=1(tpi + tni)∑M

i=1(tpi + tni + fpi + fni)

where tp, tn, fp, and fn are the numbers of true positive, true
negative, false positive, and false negative pixels for each class
in each test set scene, respectively. M is the total number of
scenes in the test data.

E. Quantitative and Qualitative Results

1) Evaluation of the Proposed Loss Functions: Table I
demonstrates experimental results for evaluating the proposed
loss functions. From Table I, we conclude that for both 38-Cloud

Fig. 3. Visual examples of the cloud detection results over patches of 38-Cloud
test set obtained by different loss functions.

TABLE II
QUANTITATIVE RESULTS OF SHADOW DETECTION USING SDAA OBTAINED

WITH CLOUD-NET+ AND DIFFERENT LOSS FUNCTIONS (IN %)

and SPARCS datasets, Cloud-Net+ trained with both versions
of FJL performs better than the original loss functions that
they are derived from. A comparison of different loss functions
over 38-Cloud dataset is displayed in Fig. 3. Note the better
performance of both FJL loss functions on detecting thick and
thin clouds (haze) over snow (two middle columns).

2) Evaluation of the Proposed SDAA Method: Numerical
results for cloud shadow detection with and without SDAA
using different loss functions are reported in Table II. From
this table, the addition of the augmented patches obtained by
SDAA improves all evaluation metrics over SPARCS dataset
compared to using original training patches only. Using SDAA
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TABLE III
COMPARISON OF THE PROPOSED CLOUD DETECTION METHOD WITH

OTHER METHODS (IN %)

to train over Biome 8 dataset also results in a higher Jaccard
index and accuracy than without it.

3) Comparison With State-of-the-Art Cloud Detection Meth-
ods: Table III compares cloud detection results obtained by the
proposed method with other methods on various datasets. From
this table, the combination of the proposed Cloud-Net+ with
FJL1 delivers a higher Jaccard index over 38-Cloud dataset than
the U-Net, Cloud-AttU, and FMask V3 methods.

Four visual examples of the predicted cloud masks are dis-
played in Fig. 4. The second and third columns show scenes in
the presence of snow. FMask and U-Net call many fps where
land is covered with snow. The image of the third column
does not include any clouds. The only method that successfully
identifies all clear pixels is our method. The fourth column of this
figure is captured over a region with bare soil—another difficult
case for detecting clouds. The proposed method can distinguish
those regions from clouds more accurate than the other methods.

Although it is not fair to compare our method (which only uses
four spectral bands) with FMask V4 (which uses seven spectral
bands, one thermal band, DEM, and GSWO), we obtained the
numerical results of FMask V4 over 38-Cloud test set. FMask
V4 shows lower accuracy (96.23%) compared to Cloud-Net+
with FJL1. Note that FMask V4 has limited applicability, as not
many remote sensing platforms are equipped with more than
four spectral bands of RGBNir.

The numerical results over 95-Cloud test set (which has the
same test set as 38-Cloud) are improved since they are obtained
by a network trained with more training images (95-Cloud
training set is larger than 38-Cloud). Fig. 5 highlights the im-
provement of results over this dataset.

Fig. 4. Visual examples of cloud detection over 38-Cloud dataset.

For SPARCS dataset, Cloud-Net+ outperforms SegNet [68]
and PSPNet [69], two common semantic segmentation methods.
In addition, Cloud-Net+ outperforms RS-Net over two datasets
of SPARCS and Biome 8. On Biome 8 dataset, our method,
which utilizes only four spectral bands, shows a higher recall
and accuracy than that of CloudFCN that uses eleven spectral
bands. Note that Jaccard index and accuracy take into account
both fp and fn in a predicted mask and penalize for all of those
falsely labeled pixels, as opposed to precision and recall, which
only penalize for one of the fp and fn. That is why Jaccard
index—which is not reported in some papers—and accuracy are
the most important metrics when one judges different methods.
Visual results over Biome 8 dataset are shown in Fig. 6.

4) Comparison With State-of-the-Art Cloud and Shadow De-
tection Methods: The numerical results for simultaneous seg-
mentation of cloud, shadow, and clear regions over two datasets
are reported in Table IV. The reported Average Jaccard in
this table is the average of Jaccard indices over three classes.
Two settings were considered for evaluation by the authors of
SPARCS CNN: a) using 72 images from the SPARCS dataset for
training and the rest of SPARCS images for testing; b) utilizing
the same 72 SPARCS images for training and 24 scenes from
the Biome 8 dataset for testing (names of these 24 scenes are
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Fig. 5. Visual examples of cloud detection over 95-Cloud dataset.

Fig. 6. Visual examples of cloud detection over Biome 8 dataset.

listed in [48]). We used the same settings in our experiments for
a fair comparison. Two pixels were considered by the authors
of CNN SPARCS as a leeway buffer at boundaries of predicted
clouds and shadows and clear regions, where either class was
considered correct within two pixels from the predicted bound-
ary in ground truths. Note that we used no buffer pixels for
the evaluation of our method. According to Table IV, when
SPARCS CNN is trained on SPARCS dataset and evaluated
on Biome 8 (even by considering a two-pixel buffer), it is
outperformed by our method in terms of accuracy. However,
when this method is trained and evaluated on SPARCS dataset,
the numerical results are almost perfect. It should be noted that
those perfect results reported for this experiment are obtained by
having a two-pixel leeway buffer and using ten spectral bands,
as opposed to no leeway buffer and using only four spectral
bands in our method. As an example of how much this two-pixel
leeway affects numerical results of the SPARCS CNN, notice
the improvement in accuracy (from 91.04% to 95.4%), where
SPARCS CNN method is trained on the SPARCS dataset and
evaluated on the Biome 8. Fig. 7 displays some visual results for

TABLE IV
QUANTITATIVE RESULTS FOR SIMULTANEOUS CLOUD AND SHADOW

DETECTION (IN %). IN COLUMNS 2 TO 4, THE FIRST ROW INDICATES METRICS

FOR THE CLOUD CLASS, THE SECOND ROW FOR THE SHADOW CLASS, AND THE

THIRD ROW FOR THE CLEAR CLASS

simultaneous segmentation of clouds and cloud shadows over
SPARCS dataset.

For comparison againt RefUNets, we downloaded the cited
the training, validation, and testing Landsat 8 scenes and con-
ducted our experiments on them. In RefUNet v1 and RefUnet
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Fig. 7. Visual examples of cloud and shadow detection results over SPARCS
dataset. White and gray pixels show cloud and shadow regions.

Fig. 8. Training and validation loss trend for three experiments using two
versions of the proposed loss functions. For better visualization, only the first
150 epochs are shown.

v2, the input consists of four (RGBNir) and seven spectral bands,
respectively, while the default cloud and shadow masks extracted
from Landsat 8 products’ QA bands are used for ground truths
in experiments. Although sophisticated boundary refinements
were applied on RefUnet methods’s output masks, the obtained
accuracy by either of these methods is not as high as the proposed
method.

F. Recommendations on the Application of the Proposed
Loss Functions

In general, the numerical results for FJL1 and FJL2 are not
significantly different in the majority of the experiments con-
ducted. (see Tables III and IV).

Another point is that validation loss values during training
seem to be more stable in FJL1 than FJL2, as shown in Fig. 8.

TABLE V
COMPARISON OF THE CLOUD DETECTION PERFORMANCE OF THE TWO

PROPOSED LOSS FUNCTIONS OVER VARIOUS BIOME TYPES

(JACCARD/ACCURACY IN%). EACH REPORTED METRIC IS THE AVERAGE OF

THE METRIC VALUES OBTAINED OVER FOLD 1 AND 2

TABLE VI
QUANTITATIVE RESULTS FOR FURTHER EXPERIMENTS (IN %)

We believe that this is because the inverse Jaccard function is
used as the compensatory function in FJL1, which is of the same
nature as the main JL function. However, the cross entropy,
which is used as a compensatory function in FJL2, is calculated
very differently from JL as it is a log-based function. Although
the range of both FJL1 and FJL2 is bound to [0,1], the similarity
between the compensatory function and the main JL function
in FJL1 leads to a more stable validation loss trend and fewer
abrupt spikes than FJL2.

According to Table IV, for multiclass segmentation of remote
sensing imagery, FJL1 provides a higher recall for cloud class,
which means that it is more conservative in predicting noncloud
regions. As a result, for applications in which as many clear pix-
els as possible are required, FJL1 is recommended. Otherwise,
Table IV demonstrates very similar Jaccard and accuracy results
for the identification of clouds, shadows, and clear regions in
images, suggesting that either of these loss functions is effective
and leads to high-quality prediction masks.

We investigated how each loss function performed over dif-
ferent biomes/land cover types for cloud detection and reported
the results in Table V. We used the two-fold cross validation
strategy for this investigation on Biome 8 dataset, where eight
different biomes are distributed equally across the two folds.
According to this table, the numerical results of FJL1 and FJL2

are very similar in most of the biomes. The only biome type in
which both Jaccard and accuracy obtained by two proposed loss
functions differ by a large gap (more than 5%), is the snow/ice
biome. Table V shows that FJL1 is more effective in snowy or
icy land types than FJL2. As a result, we recommend using FJL1

for the cloud segmentation of regions including ice, snow, and
mountains, especially during the colder seasons.

G. Further Experiments

To further highlight the effect of some of our choices made in
this article, some experiments are conducted and summarized in
Table VI. All experiments in this table are conveyed using soft
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TABLE VII
QUANTITATIVE RESULTS OVER PASCAL VOC DATASET (IN %)

Jaccard loss function for cloud segmentation. First, Cloud-Net+
architecture is compared against Cloud-Net (with and without
using the aggregation branch, AB). As Table VI indicates, Jac-
card index and accuracy of Cloud-Net+ are higher than those of
Cloud-Net, despite Cloud-Net+’s 10% less trainable parameters.
Another interesting point is that by removing AB from Cloud-
Net+ architecture, its performance deteriorates. This indicates
that AB is capable of retrieving more details in the predicted
cloud mask.

Due to computational hardware constraints, we perform our
experiments with overlapping (OL) patches only on SPARCS
dataset, which is the smallest of all datasets used for comparison
in this article. For SPARCS, extracting and using patches with
50% overlap (as suggested in [47]) improved the performance
of cloud detection.

H. Experiment on Pascal VOC Dataset

To test the proposed FJL functions beyond cloud/shadow
detection applications, we have conducted experiments over
Pascal VOC 2012 semantic segmentation dataset [70], [71].
This dataset contains 10 582 images for training and 1449 for
testing. Each pixel in each image has been assigned to one of
the 21 existing classes, including airplane, bicycle, cat, horse,
and person, to name a few. To obtain a binary segmentation, we
considered pixels of only one of the classes—person class—as
the positive class and all other pixels in each image as the
negative class. Numerical results in Table VII indicate that both
versions of the proposed loss function outperform soft Jaccard
loss for other types of images in addition to the remote sensing
ones.

V. CONCLUSION

In this article, we have developed a novel system for cloud
and cloud shadow detection in Landsat 8 imagery using a deep
learning-based approach. The proposed network, Cloud-Net+,
benefits from multiple convolution blocks that extract global and
local cloud/shadow features. This network, which outperforms
its parent network, Cloud-Net, has been optimized using two
new and novel loss functions that reduce the number of misclas-
sified pixels. These loss functions can be used for other binary
or multiclass segmentation tasks, where the target object exists
only in some of the images. In addition, a new augmentation
technique, SDAA, is introduced for the task of cloud shadow
detection. SDAA takes into account solar angles to generate
natural-looking synthetic RGBNir images. We have also re-
leased an extension to our previously introduced cloud detection
dataset. It will help researchers to improve the generalization
ability of their cloud segmentation algorithms.
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