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and Sentinel-2 Images Using a Reference MODIS
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Abstract—Radiometric normalization is an essential prepro-
cessing step for almost all remote sensing applications such as
change detection, image mosaic, and 3-D reconstruction. This arti-
cle proposes a novel radiometric normalizing method based on spa-
tiotemporal filtering using a reference moderate resolution imaging
spectroradiometer (MODIS) product. This differs from traditional
relative radiometric normalization (RRN) methods in two folds:
first, the number of reference images is more than one, which intro-
duces more complexities than RRN with a single reference image;
second, the resolution of MODIS product is significantly lower,
thus requiring the algorithms to accommodate scale differences.
To address, our approach extends the traditional spatiotemporal
filtering method with per image bias that represents both internal
(e.g., sensor characteristics) and external (e.g., atmosphere and
topography) against the reference data. In addition, we use the
Kullback-Leibler divergence metric to statistically determine the
resemblance degree between the temporal images for weighting. We
applied our proposed method to normalize Landsat Operational
Land Imager, Enhanced Thematic Mapper Plus +, and Sentinel
MSI using MODIS Nadir BRDF-adjusted reflectance product, cov-
ering two study areas of 30 × 15 km2 and 32 × 52 km2, respec-
tively, and we show a notable radiometric consistency over both
temporal and spatial dimension after the processing through three
comparative experiments with state-of-the-art methods. 1) 3–7%
improvement in the contexts of transfer learning, which favors
only images with consistent radiometric properties and 2) Mosaic
results using our processed images show no apparent seamlines as
compared with images processed by other methods.

Index Terms—Bias term, intersensor normalization,
Kullback-Leibler (KL) divergence, Landsat 7 Enhanced Thematic
Mapper Plus (ETM+), Landsat 8 Operational Land Imager
(OLI), radiometric consistency, Sentinel MSI, transfer learning
classification (TFC), wavelet transform.
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I. INTRODUCTION

RADIOMETRIC normalization is an essential preprocess-
ing step for many remote sensing applications such as

change detection, image mosaic, 3-D reconstruction, etc. [1]–
[3]. In general, there are two main categories of radiometric
normalization: 1) absolute radiometric normalization (ARN),
interchangeable with absolution radiometric correction for mul-
titemporal images), and 2) relative radiometric normalization
(RRN) based on respectively whether or not the absolute/global
reflectance measures are needed as the desired output [4], [5].
ARN methods require information such as sensor responses,
radiometric calibration coefficients, viewing angles, sun angles,
atmospheric conditions, topography data, and in-situ data [6]–
[8], which is oftentimes unavailable. On the contrary, RRN
methods do not require prior information such as weather or
aerosol depths; it corrects the images using a single reference
image, and requires the reference image to be noise-free and
spectrally well-balanced [6], [9], [10]. Recent studies have sug-
gested that integrating ARN and RRN for radiometric calibration
can effectively achieve absolute and consistent normalization
[2], [11]. On one hand, ARN methods are able to correct specific
types of noises of individual images such as atmospheric noises,
viewing angle-induced bias, topography-induced bias, while
being considered as the most rigorous solution for radiometric
correction, it does suffer from modeling errors introduced by
the fact that a single or multiple correction models are not
able to comprehensively cover the varying images under other
unknown sensory or environmental conditions. As a result, the
ARN processed images remain to be temporally inconsistent.
On the other hand, RRN methods with the aim to homoge-
nize spectral responses across temporal images do not demand
for measures, and thus, can only support limited applications,
e.g., regional change detection and qualitative spatiotemporal
analysis, thereby are much less demanding in terms of the
needed in-situ data. Integrating both ARN and RRN for pro-
cessing remote sensing raw images is obviously advantageous
to achieve products that can be used for a wider scope of
applications.

However, a simple sequential application of both methods
is potentially problematic: first, the effort of acquiring in-situ
data is still needed for model-inversion based ARN; second,
RRN methods are often developed to accommodate scenarios
in which one reference image is used, while only selecting one
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out of multiple ARN-corrected reference images can potentially
produce propagated errors. Meanwhile, there are RRN studies
performing the intersensor RRN by developing a global fixed
linear model based on a large number of archived synchronous
images from the multisensors to transform the TOA reflectance
or surface reflectance, or night-time light data of one sensor
to another [12]–[14], which obviously can be problematic to
accommodate local variations. Therefore, normalizing the im-
ages using preprocessed reflectance products can be potentially
more viable, as at least the sensor specific variations have been
preaccommodated when these data are converted to a surface
reflectance product following a physical-based correction proce-
dure. Since obtaining corresponding in-situ auxiliary data (i.e.,
weather, aerosol depth, etc.) at a high resolution for ARN is
potentially impractical, we consider to utilize low resolution
and standard reflectance product such as Nadir BRDF-adjusted
reflectance (NBAR) product from moderate resolution imaging
spectroradiometer (MODIS) as the reference images, which
brings clear advantages and challenges: the advantage is that
such data are often for global coverage and have very high
temporal resolution (i.e., on a daily basis) and with good radio-
metrical consistency and continuity over both the space and time
dimensions, while the challenges are obviously the resolution
being a factor of 20 less than high-resolution images such as
Landsat and Sentinel-2, and thus, made it hard to perform accu-
rate intersensor radiometric normalization [15]. In this article,
we address these challenges by proposing a novel spatiotemporal
filtering model that extends a traditional spatiotemporal filtering
method [16] in two ways: 1) we have incorporated a per image
bias, which accommodate corrections from multiple reference
images and 2) use the Kullback-Leibler divergence (KL diver-
gence) metric to statistically determine the resemblance degree
between the temporal images for optimal weight determination.
This model inherits the nonparameterization nature of the spa-
tiotemporal filtering method to accommodate local variations;
hence, this new model may be able to yield images cross different
sensors with accurate reflectance to the level of well-calibrated
MODIS dataset, as well as temporally consistent results for var-
ious remote sensing image processing and applications such as
change detection, classification, and mosaics. Our contribution
of this work is mainly two-fold. 1) We have proposed novel
method that extend the existing spatiotemporal filtering method
by incorporating a per-image bias term to accommodate sys-
tematic radiometric corrections using multiple low-resolution
reference images. 2) We have experimentally demonstrated that
the proposed method achieves a leveraged relative consistency
and global consistency over state-of-the-art methods, through
both spectral analysis, transfer learning, and global mosaicking
applications.

The rest of the article is organized as follows: Section II
briefly introduces relevant works related to radiometric normal-
ization; Section III describes the general methodology of the
proposed work; Section IV presents the experimental results and
performs quantitative analysis and evaluation through typical
remote sensing applications; and Section V concludes this article
by discussing its pros and cons.

II. RELATED WORKS AND CONSIDERATION

A. Related Works

As mentioned in Section I, both ARN and RRN are two ma-
jor categories of methods in radiometric normalization. In-situ
measurements are crucial for absolute algorithms [6], [17]. RRN
algorithms (i.e., RRN) tend to homogenize images to a reference
image to remove all the spectral variations unrelated to the land
surface change using mathematical models. It is considered
to be a solution for applications that do not require absolute
reflectance measures, whereas the need for absolute reflectance
is still essential for global-scale applications. Studies have shown
that exploiting the spatial and temporal information can provide
accurate radiometric information of targeted objects in the scene
[16]. The authors in [16] developed a 3-D spatiotemporal filter-
ing algorithm to utilize the temporal images to enhance radio-
metric properties and consistency among images. Their method
eliminates the necessity to have a reference image to normalize
the subject images, and overall, they showed improvements in
the temporal consistency of data and noise and artifacts reduction
by 15% in their experiments [16]. Their method models the
consistency by weighting the measure of spectral differences in
the temporal direction with respect to the reference image, which
selectively takes the temporal images to homogenize the spectral
information in the image stack; this mathematically modeled
solution, however, minimizes the discrepancy wherever possible
without incorporating the absolute measures of the radiance.
As a result, improperly weighted parameters may simply ho-
mogenize all spectrums saturating all possible seasonality and
phenological differences between the images [2], [6], [18], [19].

Another line of work considers RRN across different sensory
data, often known as intersensor calibration, which focuses on
calibrating sensors by correcting the pixel values using the radio-
metric calibration coefficient based on some reference sensory
data [20], [21]; however, it is still regarded as a relative correc-
tion as it does not address the uncertainties from the ambient
(systematic) differences between sensors. The sensor-to-sensor
bias can be somehow addressed by determined bias through
prediction-based models [20], [22], which, however, require
at least a few of the overlapped images to be captured as the
same time, which generates limitations of such methods, and in
addition, the bias modeling can be subject to modeling errors,
as the sensor-to-sensor bias can be subject to many sources such
as the sensor responses, time dependent, and location dependent
factors, which may be difficult to predict using a few overlapping
intersensor images captured at the same time.

It was shown that integrating both absolute and relative
approaches can provide better results in terms of improving
radiometric consistency and minimizing distortions [2], [11],
[19], [23]—[25]. Most approaches apply atmospheric correc-
tion as the first step for ARN to get reliable pseudo-invariant
features (PIFs). PIFs being features that present reliable holders
of spectrums that often do not change (e.g., concrete surfaces),
and this is followed by a feature-based RRN [2], [11], [24],
[26]. These methods vary with the ARN and RRN methods. For
instance, the authors in [4] suggested using an atmospherically
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corrected reference image to normalize every band in the target
images individually using PIFs. Similarly, the authors in [27]
improved PIFs selection for the RRN by first conducting an
absolute correction using dark object subtraction; the authors
in [11] proposed a method called “mixed radiometric normal-
ization”, where they first used fast line-of-sight atmospheric
analysis of spectral hypercubes to convert from DN to surface
reflectance, and then used iteratively reweighted multivariate
alteration detection (IR-MAD) to radiometrically normalize and
scale the temporal images.

B. Considerations in Our Proposed Approach

Satellite data such as MODIS recording data with global
coverage on an almost daily basis have been very helpful to
provide comprehensive spectral information about the Earth, as
well as their imaging conditions (e.g., atmosphere, slope, and
viewing angles) [21]. Because it has a very frequent revisit-
ing time, and there exist the best available in-situ data with
equivalent or lower resolution, the MODIS coarse resolution
reflectance product (MODIS NBAR product) have trustwor-
thy stability, accuracy, and temporal consistency in radiance,
which can potentially serve as a reliable reference image for
radiometric normalization for other satellite imageries such as
Landsat [28]. However, a direct application of existing RRN
or intersensor calibration methods may produce artifacts due to
the large resolution differences, as both traditional down-scaling
and transformation-based methods (e.g., wavelet transform [29])
may generate artifacts such as aliasing and blocking artifacts
[30], [31]. The sensor-level biases may be subject to two major
sources: 1) sensor specific biases such as static spectrum re-
sponse and 2) time-varying inter-sensor biases that may be de-
pending on specific scenes, objects, and in-situ variables that are
not measurable. Therefore, the algorithms taking low-resolution
ARN products (i.e., MODIS NBAR product) for normalizing
high resolution data (e.g., Landsat and Sentinel), must consider
components addressing the large resolution differences, as well
as components considering leveraging both relatively radiomet-
ric consistency between temporally neighboring images and
overall consistency with respect to the low-resolution ARN
product.

III. METHODOLOGY

Our proposed work is described in Fig. 1, in which we
specified the possible data to be normalized (but not limited
to). Our method starts with preparing and preprocessing both
low resolution ARN product (MODIS NBAR) and the to-be-
normalized data [e.g., Landsat 7 Enhanced Thematic Mapper
plus (ETM+), Landsat 8 Operational Land Imager (OLI), and
Sentinel-2 Multispectral Instrument (MLI)], components shown
in white boxes, in which we used the discrete wavelet analysis
for data down-scaling. The light-grey boxes indicate works
associated with our proposed spatiotemporal filtering method
and dark-grey boxes implies evaluation and validation of our
work.

Fig. 1. Flowchart of the proposed method.

A. Data Preprocessing

The data preprocessing involves several steps.
1) Geo-registration and initial radiometric calibration:

Since the images are collected from varying sources, we
perform the registration for geometric alignment. The
data from MODIS, Sentinel, and Landsat ETM+ are geo-
registered using the Landsat-8/OLI data of which the Level
1 product accuracy is geometrically corrected with terrain
correction and a global sample of ground control points
(L1T) [32]. All the high -resolution images are geometri-
cally coregistered using the image registration workflow
tool of ENVI 5.3 software [33] and with the residuals
reported as 14 m, and the MODIS data are coregistered
based on the image-based control points using ArcMap
10.6 software [34]. Meanwhile, the Sentinel-2B MSI im-
ages are resampled to 30 m as same as the Landsat-8/OLI
image. When TOA reflectance is not available, the initial
radiometric calibration is performed to convert the DN
for all satellites to TOA reflectance using the calibration
coefficients provided by the satellite sensors.

2) 2-D Discrete Wavelet transformation (DWT): The 2-D
DWT-based decomposition and reconstruction is utilized
to downscale the coarse resolution MODIS product to
30 m to be same as the Landsat OLI data, where the
fine-resolution data is used to provide the spatial details.
The procedure is composed of the following steps and per-
formed using MATLAB program: first, we perform mul-
tilevel decomposition, where we use the fine-resolution
image to obtain the approximation [low–low (LL)] and
detail (high–low, low–high, and high–high) components.
The decomposition level is set as log2(ratio), determined
by the spatial resolution ratio of the fine resolution data
and the coarse resolution data, which is a factor of 4 in
our work as the spatial resolution ratio is approximately
16 for 30-m resolution data, either Landsat or resampled
Sentinel image, since the majority of MODIS’s bands have
500 m spatial resolution (four bands out of the six), thus,
we choose the 500 m as a reference to downscale all
bands, i.e., coarse-resolution/fine-resolution = 500 m/30
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m≈16. The next step is to replace the component LL by the
coarse resolution product, and finally, perform the Wavelet
reconstruction using inverse discrete wavelet transform
to obtain the downscaled fine resolution of the MODIS
product. For more details on DWT, refer to [29].

B. Proposed Algorithm

Based on our prior developed work [16], we propose a
modified version of the 3-D spatiotemporal filter, in which our
goal is to enhance the temporal consistency at the same time
maintaining a relatively accurate reflectance values with respect
to the reference MODIS product. As mentioned in Section II-B,
to account for different types of errors (e.g., sensor-specific and
time-varying errors), we propose to add a per-image bias term
modeling such nonparametric variations, and to account for the
large resolution differences between the high resolution image
(e.g., Landsat and Sentinel) and low resolution MODIS product,
we propose to incorporate KL divergence [35] as a statistical
similarity measure for effective weighting in the spatiotemporal
filtering.

1) Nonparametric and Per-Image Bias: The generic form for
correcting the uncertainty in satellite data can be expressed as
in (1)

IF = Ip − ε+Δ (1)

where, IF is the corrected image, Ip is the input image, ε is the
random noise, and Δ (an image grid with the same dimension
of Ip) is the bias correcting term to cover the systematic error
(as discussed in Section II-A.). We, in the first step, eliminate
random noises using the traditional 3-D spatiotemporal filtering
following the method in [14]:

Ip − ε =
1

wq

∑
q∈S

wqIq (2)

where wq is the aggregated weight composed of the spatial,
spectral, and temporal weights over the image space S , and
Iq is the temporal images processed for each pixel and each
band individually.

Since the input images vary in their spectral and spatial distri-
butions from the reference MODIS product, we use a bias term to
correct and match their spectral values to the reference. The bias
term can be decomposed into two sources [in (3)]: the first bias
term Δ1 is used to model the per-pixel inter-sensor bias [in (4)],
and the second bias term Δ2 (a grid with a constant value) [in
(5)] models a per-image bias to leverage the potential mismatch
of spatial resolution between the reference image and the image
to be corrected, for example, the MODIS and Landsat image
have a resolution difference of a factor of 20, and a mere Δ1

correction might potentially saturate the high resolution Landsat
image grid with low-resolution MODIS image grid. The weight
λ leveraging both can be empirically determined based on the
type of images to be processed

Δ = (1− λ) Δ1 + λ Δ2. (3)

Specifically, Δ1 is a residual grid that measures the spectral
difference between the downscaled reference product (after

applying 2D-DWT) and the filtered image (Ip − ε)

Δ1 = Dp − (Ip − ε) . (4)

Δ2 is fixed throughout the computation for each high-
resolution image and their corresponding low resolution MODIS
product (determined as the image captured from the closest
date), and is measured by taking the spectral difference between
the mean value of the coarse resolution productCp and the mean
value of the filtered image (Ip − ε) as follows:

Δ2 = Mean (Cp)−Mean (Ip − ε) . (5)

Substituting (3) into (1), we obtain

IF = Ip − ε+ (1− λ) Δ1 + λ Δ2. (6)

By further substituting (2)—(5) into (6) we obtain

IF = (1− λ)
1

wp

∑
q∈S

wqIq + λDp +Mean (Cp )

−Mean

⎛
⎝ 1

wp

∑
q∈S

wqIq

⎞
⎠ . (7)

2) Enhanced Spatiotemporal Filtering Algorithm: The 3-D
spatiotemporal filtering method proposed by [16] is a typical
RRN method; it utilizes the temporal images to radiometrically
calibrate the images and eliminate the noise and random errors
[refer to (2)]. The aggregated weight wq in (2) in the filter is
described in the following equation:

wq = wSpatial × wBand × wTemporal. (8)

The spatial weight can be further characterized using two
terms the spatial distancewSpatial_Distance and the spectral value
wspectral_value between every pixel and its neighboring pixels
[see (9)]

wSpatial = wSpatial_Distance × wspectral_value. (9)

Using 2-D Gaussian kernel functionG (•), we can measure the
weight in the spatial and spectral dimension to reduce the spatial
inconsistency while preserving its spatial detail as follows:

wSpatial_Dist = exp

(
− (xp − xq)

2 + (yp − yq)
2

σS,D

)
(10)

wSpatial_value = exp

(
− (Ip (xp, yp)− Iq (xq, yq))

2

σS,V

)
(11)

where (xp, yp) are the coordinates of the pixel and (xq, yq) are
the corresponding neighboring pixels in spatial or temporal
dimension, σS,D and σS,V are the spatial and spectral value
bandwidths to determine the extent of filtering. Since this filter
operates on every band individually, a delta Dirac weighting
function is used to assure operation only on similar bands

wBand =

{
1, if band(p) = band(q)
0, if band(p) �= band(q)

. (12)

As to the temporal weight, the original filter only computes the
weight through measuring the differences between the spectral
differences of the centric pixel of the filter; this, however, is not
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Fig. 2. Study area. (a) Study area-I of which the left side is region 1 and the right side is region 2. (b) Study area-II.

robust enough to noises caused by potentially the large resolution
differences of the original data

wTemporal_V = exp

(
− ((Ip,t0 (xp, yp)− Ip,ti (xp, yp))

2

σT,V

)
(13)

where, Ip,t0 is the spectral value of pixel (xp, yp) in the current
image, Ip,ti is the temporal neighboring image, and σT,V refers
to the bandwidth of this component in the spatiotemporal filter.
To robustify such a measure, we incorporate the patch-based KL
divergence and the reflectance value difference is computed to
determine the new temporal weight

wT = wTemporal_V × wTemporal_KL. (14)

The KL divergence is a mathematical and statistical measure
of how one probability distribution is different from another
reference probability distribution, and the weightwTemporal_K_L

is calculated based on a patch centered around every pixel to
measure the similarity among different temporal images

wTemporal_K_L = exp

(
−KL(Ip,t0 , Ip,ti)

2

σT,KL

)
. (15)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We perform our experiment on two study areas as described
in Section IV-A (also see Fig. 2), and validate our results
both qualitatively and quantitatively. To demonstrate the global
radiometric consistency, we consider a mosaic experiment that
stitches data of two regions separately processed by our proposed

method to evaluate their seamlines. The quantitative evalua-
tion considers a before-and-after comparative study using ours
and other existing methods, and the evaluations include the
following. 1) Sampling analysis of the spectral and temporal
consistency. 2) We presume that the well-normalized data will
perform better in classification and transfer learning tests, we
therefore, evaluate the results by analyzing classification and
transfer learning practices on data processed by ours and other
comparable normalization methods including the method of [16]
and the IR-MAD [36] based RRN method. Our choice of pa-
rameters is empirical for the window size w = 5, σS,D = 3,
σS,V = 30, and we inherit the conclusion that σT,V = 0.2 is
optimal as stated in [16], these parameters remain throughout
the experiments. For the modified temporal weight in which we
use a patch-based KL divergence weight, the patch size is set to
30 × 30 pixels allowing us to monitor the change in the spectral
values around each pixel. TheσT,KL is also set as 0.2 throughout
our experiments. The bias terms weights λ in (3) is empirically
set as 0.3.

A. Data description

Our experimental dataset consists of two study areas: the
study area-I covers an area of 30 × 15 km2 in Illinois in U.S.
(41.25–41.39 N, 88.37–88.74 W); the study area-II covers an
area of 35 × 52 km2 in Missouri in U.S. (38.22–38.70 N,
90.71–91.13 W), shown in Fig. 2, which both includes a va-
riety of land covers (i.e., water surfaces, forests, impervious
surface, Cropland); and the forest in study area-I are mainly
evergreens forest, and corn is the primary components of the
cropland. We perform our experiments on two regions of the
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TABLE I
RELEVANT SENSOR AND PRODUCT INFORMATION

TABLE II
TEMPORAL INFORMATION OF THE DATASET OF STUDY AREA-II

TABLE III
OVERLAPPING BANDS USED IN THE EXPERIMENT

study area individually, respectively outlined in the red and light
green boxes. Our dataset includes multitemporal satellite images
from Landsat-7 ETM+, Landsat-8 OLI, and Sentinel-2 MSI
[37]–[39], and the associated MODIS NBAR product of the
same days. Table I summarizes detailed information of these
sensors. The test datasets are randomly chosen (in our experi-
ment, they are from 2016), and their temporal footage covers the
growth season, thus we are able to evaluate our method on its
adaptability to seasonal and phenological changes, and details of
data are listed in Table II. To ensure fair comparison with other
methods, our method performs normalization only on common
bands among different satellite sensors. Table III summarizes
the six bands for normalization in our experiments, including
Blue, Green, Red, NIR, SWIR-1, and SWIR-2, where we refer
these bands in the rest of the article as B1–B6, respectively.

B. Qualitative Analysis

The normalization results of study area-I region-2 and study
area-II (see Section A.) from different methods are shown in

Fig. 3, and note that unit of the images are in radiance and the
images use the same scaling. Comparing the last row [of Fig. 3(a)
and (b)] to the other rows, it can be seen that our proposed
method matches much better to the reference images, while
the method of (Albanwan and Qin, 2018) and IR-MAD (the
Time 5, Landsat-8 OLI image acquired in September 09, 2016
and Time 3, Landsat-8 OLI image acquired in June 05, 2016
are respectively used as reference for study area-I region-2 and
study area-II) shows a good consistency in the temporal direction
(from left to right), while apparently it averages through all
the images, and thus, lacks fidelity in radiance. Specifically in
Fig. 3(a), the MODIS image of date 07/26 appears to be an
artefact that shows high levels of NIR components. Our proposed
method preserves such an NIR content with high levels of spatial
details, while the method of [14] tends to average its magnitude
that differs significantly from the MODIS reference image, and
the IR-MAD method not able to preserve the reflectance change
pattern of either the original image or the MODIS reference data.

We have also performed a mosaic experiment of the two
regions in study area-I to show the radiometric compliance of
the two regions after being processed separately. Fig. 4 shows
the mosaic output for the raw data, coarse resolution MODIS
product, the 3-D spatiotemporal filter [14], and our proposed
method. These images are simply stitched using the mosaic
tool of ENVI 5.3 software without any postprocessing such as
feathering [33], [40]. There is an apparent seam line in the raw
data where it is presented as the TOA reflectance for the two
regions (see Fig. 4). Meanwhile, the patches of the MODIS
reflectance product in the seamed area look smoother than the
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Fig. 3. Visual comparison between the original high-resolution data, downscaled MODIS product, the 3-D spatiotemporal filter, and our proposed method. Note
that the image reflectance uses the same scaling, so their visuals reflect the absolute reflectance (RGB: NIR, Red, Green). (a) For the dataset in study area-I region
2. (b) For the dataset in study area-II. *the reference image for IR-MAD.
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Fig. 4. Visual radiometric consistency comparison using a Mosaic before and after the normalization of region 1 in Time 1 and region 2 in Time 2. Note that the
image reflectance uses the same scaling, so their visuals reflect the absolute reflectance [RGB: Band 1, 2, 3 (Landsat-7 ETM+)/Band 2, 3, 4 (Landsat 8/OLI)].

original raw images; this provides a good basis for normalizing
high resolution images from different scenes. The results of our
proposed methods show a clear advantage to leverage the global
radiometric consistency even though images are from different
regions and are processed separately.

C. Quantitative and Experimental Analysis

Our analysis involves the consistency check in the spatial,
spectral, and temporal domain. It also includes an accuracy
assessment using transfer learning classification (TFC) of the
radiometrically normalized images to evaluate the overall en-
hancement of the consistency

1) Temporal Quality Analysis: Fig. 5 shows the temporal
trend between the reference MODIS product and corresponding
original and filtered images of study area-I region-2 and study
area-II, where the mean reflectance is computed for each band
for all times. It can be seen that our proposed method is visually
more consistent with the MODIS and at the same time it lever-
ages well the relative temporal consistencies similar to relative
methods, while for example, the method of (Albanwan and Qin,
2018) and IR-MAD show that the results tend to over achieve

temporal stability while presenting a large disparity to absolute
radiance measures (as compared to the MODIS product).

We can notice that our proposed method coincides well with
the MODIS product (see the blue and green lines marked in
triangles and squares in Fig. 5), where they follow the same
trend along the time; the slight shifts between the two lines
represent systematic errors. The method of Albanwan and Qin,
2018 and IR-MAD shows that the resulting data in the temporal
direction tend to be flat as compared to the MODIS NBAR
product (indicated in purple and blue like marked with stars and
asterisks, accordingly), which basically achieves good temporal
consistency with correctly derived absolute values (presumed as
the MODIS NBAR values).

2) Spectral Quality analysis: For the spectral analysis, we
plot the histograms of the original image, MODIS’s reference
product, (Albanwan and Qin, 2018) filtered image, IR-MAD,
and our proposed method for study area-I region-2 and a sample
of bands (i.e., NIR, Red, and Blue) (see Fig. 6). We note that
the band distributions in the original image vary greatly in
the reflectance values and ranges from the MODIS reference
product with an obvious shift between their means (see first and
second rows in Fig. 6). Image normalized using IR-MAD moves
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Fig. 5. Temporal trend comparison between the original image, MODIS’s reference data, (Albanwan and Qin, 2018), IR-MAD, and our proposed method for
study area-I region 2. All figures share the same legend as indicated on the right figures of the second row. Date of the images refer to Table II. (a) For the dataset
in study area-I region 2. (b) For the dataset in study area-II.

Fig. 6. Spectral analysis using the histograms for a sample of bands: NIR, Red,
and Blue comparing the original image, MODIS’s reference data, (Albanwan
and Qin, 2018), IR-MAD, and our proposed method for region 2. All the figures
share the same legend.

slight but with a similar distribution as the original images. The
normalized image using (Albanwan and Qin, 2018) method,
changes the histograms and their ranges to some extent, might
move closer to the average of the corresponding neighboring
images of the subject image due to its temporal averaging effect
introduced in the previous subsection. In our proposed method
(Fig. 6), where we can see that the centers (i.e., means) and
ranges of the bands distributions of our method matches well
with the MODIS’s reference product, this might be contributed

Fig. 7. Two patches from the dataset in study area-I region 2 showing the
spatial detail.

by the correct inter-band spectral relations provided by the
well-radiometric-corrected MODIS product.

3) Visual Quality of the Normalized Data: Visual details are
shown in Fig. 7. We note that the noise is reduced in both filtering
methods. The spatial details are well preserved in our proposed
algorithm, and due to the statistical KL divergence measure we
introduced, the results show lower noise than the images normal-
ized by IR-MAD and less blurring effect than the images nor-
malized by (Albanwan and Qin, 2018) (see Fig. 7). The adaptive
filtering with their edge-preserving capability can effectively
keep large changes among temporal data. Our approach adopts
this concept, in which we keep the local variance of the data by
only compensating the radiometric difference using bias terms,
at the same time, with the capability of denoising local nonlinear
distortions using the adaptive filter. The temporal bandwidth of
the adaptive filtering can be critical, which we derived from
our previous work that has shown a good leverage between the
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TABLE IV
ZERO-MEAN PSNR OF THE NORMALIZED IMAGES

(Using the original image as reference).

ability to denoise while preserving areas with significant changes
temporally [14].

Table IV shows the zero-mean peak signal-to-noise ratio
(PSNR) of the normalized images by (Albanwan and Qin, 2018),
IR-MAD, and the proposed method, taking the original image
as reference. For the ten images used in our experiment, we find
that the proposed method keeps the best averaged quality over
the other two methods, which shows that although our proposed
method involves the use of low-resolution MODIS data, the
normalized images still preserve the spatial details of the data.
The IR-MAD method, although yield very high PSNR in some
of the images, because it considers per-pixel transformation
between image pairs, it performs poorly for images whose
reference images are drastically different (e.g., Time 7 versus
Time 5 for IR-MAD).

4) Classification Experiments: We perform a supervised
classification using support vector machine (SVM)[41] through
a transfer learning practice to evaluate the radiometric consis-
tency between the images before and after the normalization.
The classification is performed by training one image and ap-
plying to the other image. In general, the classifier trained by
one image will yield good classification accuracy on other image
if they are radiometric consistent, i.e., the spectral distribution
of that image is similar to the image from which the classi-
fier is trained. Although state-of-the-art deep learning methods
can be a good option for classification, here we take SVM
for two reasons. 1) It has been a standard method land-cover
classification of high resolution (Landsat and Sentinel) data in
practice, and requires much fewer training samples as compared
to deep learning models [42], [43]. 2) It accepts manually-crafted
features and is more suitable for controlled experiment. To
evaluate the consistency of radiance among different images, we
used the radiance values as the only features for classification;
this ablates unnecessary roles that more advanced feature plays
in classification. Note that, in this transfer learning experiment,
we do not perform any additional domain adaptation algorithm
rather we train classifiers from one dataset and apply that to

other datasets to understand how consistent these datasets are.
We assume for well normalized radiometric images, a classifier
trained from one image could readily predict reasonable results
on other images. Therefore, we use the training information in
one reference image to train and test the classification accuracy
to the rest of the dataset. In our experiment, we consider four
land-cover classes: forest, impervious surfaces, cropland, and
water based on the land-cover classification system developed
by [44]. Fig. 8 shows a sample for the TFC results for image of
Time 5 from region 1 using the training data from a reference
image of Time 4. Classification map of the original image shows
many misclassifications and noise, for instance, we can see that
at the forest region is mostly classified into cropland. Meanwhile,
the water surface in IR-MAD is misclassified into forest. With
the algorithm proposed by (Albanwan and Qin, 2018), we can
see better classification results, where forest and water surface
are better identified; however, the impervious surfaces are in-
correctly detected in many locations. Our proposed method,
on the other hand, shows even better classification outcome,
where misclassifications of impervious surfaces are significantly
reduced.

Two experiments with the TFC are carried out over the two
regions. For the first experiment (visual results shown in Fig. 8),
we train a classifier for one temporal image and apply it to the
rest of temporal images, and the goal is to evaluate the degree
of radiometric consistency between the normalized temporal
images. In the second experiment, we train a classifier from one
temporal of one region and apply the classifier to the normalized
images of another region, and the goal is to evaluate the level of
global radiometry consistency over the space. We indicate the
accuracy of TFC using two measures: the overall accuracy (OA)
and Kappa coefficient (KC).

TFC Experiment I: Tables V and VI show the statistical
results of TFC for study area-I regions 1 and 2. The “original
image” column refers to the TFC on images with no radiometric
normalization, meaning a direct application using the classier
trained from Time 4 image (e.g., for Table V) to the rest of the
images, and statistics under other columns indicate the same op-
eration but on images processed with the respective radiometric
normalization methods. The average OA enhancement is about
∼6–11% in our proposed method (see last rows in Tables V and
VI). The accuracy enhancement in (Albanwan and Qin, 2018) is
notably higher (∼14–15%), and this is expected because the goal
of the (Albanwan and Qin, 2018) method aims to homogenize the
spectrums, and for areas that have relatively smaller changes, it
presents superior results. Our proposed normalization algorithm
although has relatively lower improvement, it does leverage the
RRN and ARN, and thus, variations resulted from the effort for
keeping the spectrum similar to the MODIS products lead to
the relatively less improvement, this can be noted in Table VI,
in which the classifier trained on Time 8 has a very poor result
for Time 4 image (taken on July 26t) using our method. This
is because this Time 4 image is significantly different from the
others in the original MODIS data (shown in Fig. 3.), while the
method of (Albanwan and Qin, 2018) correct this image with no
constrain, which happen to result in higher accuracy.

TFC Experiment II: To test the global consistency of the
normalized results, we perform the TFC experiment by means of
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Fig. 8. TFC results from region 1 using image of Time 5 and reference training data of Time 4.

TABLE V
TFC RESULTS EVALUATED USING THE OA AND KC FOR REGION 1

TABLE VI
TFC RESULTS EVALUATED USING THE OA AND KC FOR REGION 2
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TABLE VII
TFC RESULTS EVALUATED USING THE OA AND KC AND USING A REFERENCE TRAINING DATA FROM ONE REGION AND APPLYING IT TO

IMAGE FROM ANOTHER REGION

training a classifier on one Landsat/Sentinel-2 image and applied
that to an image of a different region, under this comparative
condition that these images are processed by different normal-
ization methods. Specifically, for each image from region 1, an
SVM classifier will be trained, and then applied to an image from
region 2. Our hypothesis is that if the normalized images pre-
serve consistent radiances, a classification model trained from
one image in any location will ideally yield fairly consistent and
accurate classification results. In practice, we expect to observe
that radiometric consistencies will outperform unnormalized im-
ages or images that are only normalized by RRN methods. In this
experiment, we take the region-1 images and find the most unlike
corresponding region-2 images (selected as the region-2 image
with largest KL divergences to this region-1 image). Table VII
shows the experimental results, in which training data column
indicates the region-1 images used to train the classifier, and the
testing data column indicates the selected region-2 images that
the classifier will be applied to evidence the effectiveness of our
approach; we optimized the parameters and hyper-parameters
of both competing normalization approaches [IR-MAD and the
method of Albanwan and Qin (2018)] to achieve the best results
on this dataset. Among these comparing approaches shown in
the Table VII, we note that our method achieves an average
improvement of∼5% (see last rows in Table VII) in OA. We also
note that classification accuracy after IR-MAD and (Albanwan
and Qin, 2018) normalization decreases; they show a drop in the
OA of ∼25.72% and 6.66%, respectively. This is reasonable,
since IR-MAD method is only able to normalize pairs of images
at a time, which introduces even larger gaps in a multitemporal
image case, and the method of (Albanwan and Qin, 2018) is an
RRN method and only accounts for the spectral homogeneity
in each region, meaning that the normalization is performed

completely in these two regions with no absolute metrics. Our
proposed method in this case outperform in most of the cases,
except for the last image, in which the unnormalized data are
consistent already. Images normalized by a multitemporal image
case, and the method of (Albanwan and Qin, 2018) is an RRN
method and only accounts for the spectral homogeneity in each
region, meaning that the normalization is performed completely
in these two regions with no absolute metrics. Our proposed
method in this case, outperform in most of the cases, except
for the last image, in which the unnormalized data is consistent
already

V. CONCLUSION

In this work, we propose a radiometric normalization method
for high resolution images that does not rely on in-situ data,
rather on a well radiometric corrected, low resolution, and
globally available reference product (such as MODIS’s NBAR
product). Our method takes advantage of the nonparametric and
adaptive characteristics of the spatiotemporal filter and further
extends it by an image-to-image bias term to accommodate the
per-image and per-pixel differences.

In our proposed method, the bias minimization is carried
out adaptively such that on one hand, the resulting normalized
images are as consistent as possible temporally, and on the other
hand, their absolute radiometric values are as close as possible
to the reference low-resolution product. We demonstrate that
the proposed method is able to produce images with notably
consistent radiometric properties in different aspects. First, the
visual analysis of the mosaic shows a good radiometric consis-
tency and the seamlines between two images are barely visible
in comparison to the mosaic results of the unnormalized data and
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of normalized data processed by other normalization methods.
Second, the normalized images of our method, although involve
the use of low-resolution MODIS data, preserves spatial details
well and yields sharper and cleaner images than those gener-
ated from other methods. The statistical analysis of the TFC
experiments shows that the proposed method can consistently
improve the accuracy of the classification by 6–11% in the case
of TFC on multitemporal images of the same region. Although
one RRN method that is used for validation slightly outperforms
our method, we show that our proposed method is able to achieve
global transferability in TFC experiment II, in which we train
classifiers from normalized dataset of one region and applied to
another region, and improved the accuracy by ca. 5%, while other
RRN methods contrarily reduced the transferability of classifiers
over different regions.
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