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Abstract—This article compares the performances of the most
commonly used keypoint detectors and descriptors (SIFT, SURF,
KAZE, AKAZE, ORB, and BRISK) in keypoint-based relative
radiometric normalization (RRN) of unregistered bitemporal
multispectral images. The keypoints matched between subject
and reference images represent possible unchanged regions
and form a radiometric control set (RCS). The initial RCS is
further refined by removing the matched keypoints with a low
cross-correlation. The final RCS is used to approximate a linear
mapping between the corresponding bands of the subject and
reference images. This procedure is validated on five datasets of
unregistered multispectral image pairs acquired by inter/intra
sensors in terms of RRN accuracy, visual quality, quality, and
quantity of the samples in the RCS, and computational time.
The experimental results show that keypoint-based RRN is
robust against variations in spatial-resolution, illumination, and
sensors. The blob detectors (SURF, SIFT, KAZE, and AKAZE)
are more accurate on average than the corner detectors (ORB
and BRISK) in RRN, with an expense of higher computational
cost. The source code and samples of datasets used in this
study are made available at https://github.com/ArminMoghimi/
keypoint-based-RRN to support reproducible research in
remote sensing.

Index Terms—AKAZE, BRISK, change detection, KAZE,
keypoint detector and descriptor, keypoint matching, ORB, relative
radiometric normalization (RRN), SIFT, SURF.

I. INTRODUCTION

R ELATIVE radiometric normalization (RRN) is the process
of rectifying radiometric distortions of a multiband subject
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image with respect to a multiband reference image, acquired by
inter/intra sensors on the same scene at different times [1]. RRN
is usually applied as a preprocessing operation on multitemporal
data prior to their use for remote sensing applications [1]–[3]
such as time series image analysis [4], video processing [5],
automatic change detection [6], [7], pansharpening [7], and
image mosaicking [8].

RRN methods seek to find a linear or nonlinear model based
on a radiometric control set (RCS), which is nothing but a set
of corresponding pixels between reference and subject images,
to rectify radiometric distortions between each corresponding
band of the subject and reference images [2]. RRN methods can
be broadly classified into two main groups based on how they
form the RCS: dense RRN (DRNN) and sparse RRN (SRRN)
methods [1]. DRNN methods use the entire set of all pixels
in forming the RCS and use global band statistics to learn the
parameters of a model for each band of the subject and reference
images [1], [2]. Their RRN performances highly deteriorate
when the RCS contains a considerable amount of outlier pixels
due to changes on the earth surface, or nonlinearities of imaging
sensors [1], [9]. In contrast, SRRN methods identify the invariant
pixels between the subject and reference images based on their
features to form the RCS. Thus, they are more robust against the
outliers [2].

Among the SRRN methods, the iteratively reweighted modi-
fication of multivariate alteration detection transformation (IR-
MAD) [10] as an efficient and flexible probabilistic method has
been successfully used and further improved for many remote
sensing applications, especially for change detection [11]. Bai
et al. [12] improved on the IRMAD technique to handle com-
plicated radiometric differences caused by temporal changes
(e.g., seasonal variations) between the subject-reference image
pair by employing kernel canonical correlation analysis and
nonlinear regression. Although this method was efficient for
RRN of bitemporal multisensor images, including dominant
land cover/land use (LCLU) changes, it is prone to overfitting
and computationally intensive for dealing with large-size image
pairs. Similarly, Denaro and Lin[13] proposed a hybrid IRMAD-
based SRRN method to significantly reduce the computational
complexity and overfitting by combining the linear and nonlinear
CCA and mapping function. Although IRMAD and its improved
versions are robust to temporal changes, they only employ band

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0455-4882
https://orcid.org/0000-0001-6925-6010
https://orcid.org/0000-0003-3329-5063
https://orcid.org/0000-0001-5762-6678
https://github.com/ArminMoghimi/keypoint-based-RRN
mailto:moghimi.armin@gmail.com
mailto:a_mohammadzadeh@kntu.ac.ir
mailto:celikturgay@gmail.com
mailto:huseyinkusetogullari@gmail.com


4064 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
DETAILS OF KEYPOINT DETECTORS AND DESCRIPTORS CONSIDERED IN OUR STUDY

statistics for RRN, which may not be adequate for accurate
normalization of multisensor image pair [14]. To handle this
problem, [14] presented a step-by-step approach using the nor-
malized difference water index that automatically exploits the
RCS based on the physical characteristics of the land surfaces.
Moghimi et al. [1] also proposed a robust SRRN method that
automatically generates robust, reliable, and spatially distributed
RCS using a multistep strategy. Although this method is robust
to outliers and anomalies, it is computationally demanding.
Recently, Bonnet and Celik [2] proposed an efficient RANdom
SAmple Consensus (RANSAC)-based SRRN method, which
only uses small pixel subsets to form the linear relationship
between image pair, and it is free of calibration of its parameters.

The aforementioned SRRN methods often concentrate on
reducing radiometric discrepancies between geo/coregistered
image pairs [1], and thus they are limited when RRN of un-
registered images is required [9]. These methods cannot ade-
quately handle the radiometric differences between image pairs
with different spatial resolutions unless they are resampled to
the same spatial resolution [9]. Moreover, the majority of the
SRRN methods extract their RCS solely based on the intensity
information, which results in low-quality RRN of image pairs
with significant illumination and views angle differences. To
cope with these limitations, image feature point (or keypoint)
detection and matching methods can be efficiently used to form
a representative RCS between the reference and subject images.
Generally speaking, these methods detect salient keypoints in
multiple images, each associated with a keypoint descriptor, and
use a similarity metric between the descriptors to find keypoint

correspondences (or matches) between the images [15]. These
matches are typically invariant to illumination, rotation, and
scale variations and thus can be suitable to form a robust and
representative RCS [9].

The scale-invariant feature transform (SIFT) [16] and
speeded-up robust features (SURF) [17] are among the most
commonly used keypoint detectors and descriptors (or keypoint
detectors/descriptors in short) [25]. To improve on the perfor-
mance of SIFT and SURF, several keypoint detectors/descriptors
have been introduced, such as KAZE [18], accelerated-KAZE
(AKAZE) [20], ORB (oriented FAST and rotated BRIEF) [21],
and BRISK (binary robust invariant scalable keypoints) [24].
The characteristics of the keypoint detectors/descriptors consid-
ered in this article are summarized in Table I. Fig. 1 demonstrates
a wordle to visualize the most common keywords found in
keypoint detector/descriptor studies. The wordle shows that
SIFT, SURF, KAZE, AKAZE, ORB, and BRISK were among
the most commonly used keywords, indicating their pop-
ularity in various applications. Moreover, keypoint detec-
tors/descriptors have been frequently used for image match-
ing, and registration [15], [25]. However, to the best of our
knowledge, their effectiveness in RRN has rarely been studied.
Recently, Moghimi et al.[9] proposed a distortion robust method
for RRN of unregistered/registered image pair using blockwise
KAZE matching and a conditional probability based-regression.
Although this study has well demonstrated the importance of
image features in RRN, it focuses only on a detector’s ability
(i.e., KAZE) in the radiometric correction. It does not evaluate
the capability of other detectors/descriptors in this way. In order
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Fig. 1. Word cloud of the keywords from keypoint detector/descriptor studies.

to fill this gap, we compare SIFT [16], SURF [17], KAZE [18],
AKAZE [20], ORB [21], and BRISK [24] for the first time
in RRN of unregistered bitemporal image pairs, acquired by
inter/intra sensors with same/different spatial resolutions. The
performances of keypoint detectors/descriptors are further eval-
uated in terms of the RRN accuracy, visual quality, quality, and
quantity of inliers (correct matches) in the RCS, computing time,
and indirect effects on the change detection results.

The remainder of this article is structured as follows. Section II
describes the keypoint-based RRN method, details of the five
used datasets, and measurement criteria. Section III provides
a comparative evaluation of keypoint-based RRN methods in
different unregistered image pairs considered in this article.
Finally, Section IV concludes this article.

II. MATERIALS AND METHODS

A. Methodology

Let us consider two unregistered multispectral images R and
S, respectively, as reference and subject images with differ-
ent/similar sizes, acquired by intra/inter sensors over the same
geographical region at different times. Let Mk(PR,i, PS,j) be a
matched keypoint between a keypoint PS,j(xS,j , yS,j) of image
S and a keypointPR,i(xR,i, yR,i) of imageR. The main focus of
this study is to test the capability of keypoint detector/discriptor
to generate a normalized subject image SN , in which radio-
metric differences are minimized. To reach such objective, the
main steps of keypoint-based RRN using keypoint are depicted
in Fig. 2. In the following, the details of steps involved are
discussed.

1) Step (i): Keypoint Detection and Matching: As shown in
Fig. 2, the first step aims at identifying a set of matched keypoints
between reference (R) and subject (S) images to be used as
candidates of the RCS used for the keypoint-based RRN. The
contrast of each spectral band ofR andS images is first enhanced
using gamma correction to support the keypoint detection pro-
cess. The keypoints PR,i and PS,j are then extracted in the
form of blobs or corners from each spectral band of image pair
using a keypoint detector in Table I. A unique feature vector
representation is then assigned to each keypoint PR,i and PS,j

based on its neighboring pixels to obtain descriptors DR,i and
DS,j , respectively. To find matching features in each spectral
band, the nearest neighbor distance ratio (NNDR) method [16]
is adapted as a matching strategy. In this strategy, for each DS,j

in S, L1-norm distance or hamming distance (depending on
type of obtained descriptors) is computed to all DR,i in R.
The first and second nearest neighbor DR,i

(1) and DR,i
(2) are

then obtained for each DS,j in S. Finally, the distance ratio

RD =
dist(DS,j ,DR,i

(1))

dist(DS,j ,DR,i
(2))

is calculated for each descriptor DS,j

to determine whether the potential match point will be accepted
or not. The matches with a distance ratio value larger than a
threshold are removed form the further analysis. Such a strategy
can not completely reduce the risk of false matches and outliers
in the matched keypoint set during the feature-matching stage.
The majority of matching strategies employ (RANSAC) [26]
algorithm or its variations to reduce mismatches. However, such
algorithms can not accurately handle complex local distortions,
especially when the size of images is huge or when the goal is
a precise matching of cross-sensor optical satellite images [27].
Hence, RANSAC algorithm is first applied to remove extreme
outliers, and a triangulated irregular network (TIN)-based local
estimation [27] is then employed to remove the rest of the false
matches in each spectral band. Finally, all the obtained keypoints
identified as inliers (corrected matches) in each spectral band are
joined to a set of matched points.

2) Step (ii). Detecting RCS: The second step of the method-
ology aims at forming a set of reliable RCS using the matched
keypoints from the previous step. In this way, digital numbers
(DNs) of each Mk is first aggregated from all the spectral bands
of R and S images. To enhance the RCS selection accuracy,
the possible noise/changed points are further eliminated from
the RCS by setting a threshold t on the correlation coefficient
between matched pixels of bitemporal images as follows:

ρk =

∑Nb

b=1

(
Qb

S,k −Q
b
S

)(
Qb

R,k −Q
b
R

)
√∑Nb

b=1

(
Qb

S,k −Q
b
S

)2 ∑Nb

b=1

(
Qb

R,k −Q
b
R

)2
> t

(1)
whereNb is the number of spectral bands,Qb

S,k andQb
R,k denote,

respectively, DN of the kth match pixel in spectral band b of

the R and S images, and Q
b
S and Q

b
R are their mean values.

The range of ρk is [−1, 1], and its larger value indicates higher
similarity between inliers. Therefore, inlier pixel pairs with a ρk
larger than the threshold t are selected as RCS pair for further
analysis.

3) Step (iii): RRN Model Parameter Estimation: This step
aims at generating the normalized subject imageSN by adjusting
the image S to the image R through a general form of the linear
regression based on the RCS, generated in the previous step as
follows:

SN
b = αbSb + βb (2)

where αb and βb are normalization coefficients (gain and offset)
for the bth spectral band, estimated through the least-squares
method based on the DN values of RCS in R and S images as
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Fig. 2. Keypoint-based RRN.

TABLE II
CHARACTERISTICS OF DATASETS USED IN THIS STUDY

follows:

αb =
σ2
SR,b

σ2
S,b

(3)

βb = μR − αbμS (4)

where σ2
S,b is the variance of DNs of RCS in the image S, σ2

SR,b

refers to the covariance between DNs of RCS inR andS images,
and μS and μR denote means of DNs of RCS inR andS images,
respectively.

B. Data

We collected five different datasets of unregistered multispec-
tral reference and subject images acquired by different inter/intra
sensors under various acquisition conditions as shown in Table II
and Fig. 4. It was also assumed that the subject and reference
images contain no geo-location information to comprehensively
verify the effectiveness of keypoint detectors/descriptors in the
keypoint-based RRN method when nongeoreferenced remote

sensing images are available. The bitemporal images in Datasets
1 and 2 are acquired by the same sensor (inter-sensor case) in
different rows/paths with significant illumination differences.
In contrast, the bitemporal images in Datasets 3, 4, and 5 are
acquired by different sensors (intrasensor case) with different
spatial resolutions and diverse illumination differences. The
datasets are used to test the sensitivity of keypoint-based RRN
under various imaging conditions.

Dataset 1 from Tabriz, Iran, shows typical characteris-
tics of images captured in urban areas. The keypoint detec-
tors/descriptors are expected to perform well on this dataset
because of artificial objects (e.g., buildings) with distinct visual
features. Dataset 2 from Cagliari, Italy, is mainly comprised
of scenes with different LCs such as rural areas, mountains,
vegetation (e.g., farmland and sparse forest), water body and also
shows heavy seasonal changes due to the vegetation transition
and increase in the surface area of the water body. The keypoint
detectors/descriptors are expected to perform moderately well
on this dataset because of the presence of textured regions (e.g.,



MOGHIMI et al.: COMPARISON OF KEYPOINT DETECTORS AND DESCRIPTORS 4067

Fig. 3. Grid search to find the optimal parameters of keypoint detec-
tors/descriptors using average RMSE over all datasets: (a) SURF with opti-
mal ‘MetricThreshold’=150; (b) SIFT with optimal ‘EdgeThreshold’=9 and
‘PickThreshold’=1; (c) KAZE with optimal ‘Threshold’=2.92e-4; (d) AKAZE
with optimal ‘Threshold’=1e-5; (e) ORB with optimal ‘MaxFeatures’=18 000
and ‘FastThreshold’=20; and (f) BRISK with optimal ‘Threshold’=37.

mountain and sparse vegetation patterns) with diverse image
contents. The bitemporal images in Dataset 3 are from Daggett
County, USA. The images cover mountainous regions with
scattered vegetation patterns and a water reservoir (Flaming
Gorge) and show temporal changes, which occurred largely
due to cloud covers and their shadows. It is expected that
the performance of keypoint detectors/descriptors is adversely
affected by the presence of the clouds and their shadows in
the subject image. Dataset 4 from Cape Town, South Africa,
depicts the characteristics of images acquired on coastal areas.
It is expected that the keypoint detectors/descriptors will not
be able to completely handle radiometric distortions from this
dataset, mainly due to the presence of large texture-free regions
(e.g., water bodies and bare soil). Dataset 5 from Bamako, Mali
is comprised of a moderately high-resolution image pair covered
by a semiurban area with diverse image contents. The keypoint
detectors/descriptors are expected to exhibit reasonably good
performance on this dataset due to the distinct image features in
high-resolution images.

C. Evaluation Criteria

The quality and performance of each keypoint detec-
tor/descriptor in RRN procedure is evaluated using the root mean
square error (RMSE), normalized total gradient (NTG) [28],

TABLE III
OVERVIEW OF KEYPOINT DETECTOR/DESCRIPTOR FUNCTION SETTINGS FOR

SURF (MATLAB), SIFT (VLFEAT), KAZE (OPENCV), AKAZE (OPENCV),
ORB (OPENCV), AND BRISK (OPENCV)

Note that use of “· · · ” in functions represents the rest of parameters with default settings.

and mean absolute percentage error (MAPE), which are calcu-
lated for each spectral band as follows:

RMSE =

√√√√ 1

Nt

Nt∑
j=1

(Rj − SN
j )

2 (5)

NTG =

∑
l

∥∥∇l

(
SN −R

)∥∥
1∑

l (‖∇lSN‖1 + ‖∇lR‖1)
(6)

MAPE =
1

Nl

Nl∑
tl=1

∣∣∣∣∣
Rtl − SN

tl

Rtl

∣∣∣∣∣ (7)

where R and SN denote the reference and normalized subject
images, respectively, Nt is the total number of pixels of the
overlap between R and SN , Nl represents the number of test
samples in specific LCLU, operator ∇l, with l ∈ {x, y}, refers
to the image derivative along the direction l, and‖.‖1 isL1-norm.
The lower the value of RMSE and NTG better RRN is

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

We implement the keypoint-based RRN in MATLAB (ver-
sion 2020a) using OpenCV (version 3.4.1) and VLFeat [29]
libraries on a desktop computer with Intel(R) Core(TM) i7-3770
CPU@3.40 GHz,12.00 GB RAM, running Windows 8.1.1

In experiments, the keypoints between the subject and refer-
ence images were matched based on the NNDR with a distance
ratio threshold of 0.75. RANSAC with 2000 iterations and TIN-
based local strategy with a threshold of 1 pixel was employed
to reject the false matches (or outliers). The cross-correlation
threshold in RCS selection was set as 0.5 to reject the possible
changed/noise pixels. Fig. 3 provides a summary of keypoint
detectors/descriptors and the corresponding MATLAB functions
with parameters. Each keypoint detector/descriptor has a set of
parameters that needs to be set appropriately. Although default
settings of the parameters of keypoint detectors/descriptors may
yield good performance, we applied grid search on certain
parameters of keypoint detectors/descriptors as listed in Table III
that can benefit from fine-tuning by considering the average
RMSE on all datasets. This process also aims to perform a fair

1The source code and samples of datasets used in this study are made available
at https://github.com/ArminMoghimi/keypoint-based-RRN to support repro-
ducible research in remote sensing.

https://github.com/ArminMoghimi/keypoint-based-RRN
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Fig. 4. Keypoint-based RRN results on different datasets: (a) Subject (Sub.) and reference (Ref.) images in each dataset; (b) Normalized subject images (bottom)
using different keypoint detectors/descriptors; and (c) The percentage of inliers, generated by the keypoint detectors/descriptors with different cross-correlation
ranges.

comparison between different keypoint detectors/descriptors
considered in this article. The results from the grid search are
shown in Fig. 3 and optimal parameter values are tabulated
Table III.

B. Results and Discussion

The qualitative and quantitative results from the experiments
are given in Fig. 4 and Table IV, respectively. Table IV shows that
the application of keypoint-based RRN on all datasets results
in significantly lower RMSE and NTG between the reference
and normalized subject images on all bands in comparison to
the same metrics computed for the reference and subject (raw)
images only. In terms of average RMSE, KAZE achieved the
best results on all datasets, but Dataset 2 and 4, where ORB
and SIFT, respectively, yielded the best results. For instance,

KAZE-based RRN reduced the raw average RMSEs by 81.34%,
67.39%, and 73.12% for the Datasets 1, 3, and 5 while using the
ORB and SIFT decreased the raw average RMSEs by 75.99%,
and 19.80% for the Dataset 2 and 4, respectively. Considering
the average NTG, SIFT-based RRN performs best on all datasets
but Dataset 1 and 5, in which KAZE and SURF achieve the best
performance, respectively. This result indicates that the normal-
ized subject images generated by the SIFT-based RRN are more
robust to local intensity variations than the other ones. Overall,
ORB-based RRN yielded the worst results for almost all datasets
regarding RMSE and NTG values. SURF- and AKAZE-based
RRN achieved moderate results in most cases. The results in
Table IV also show that the “blob” detectors (SURF, SIFT,
KAZE, and AKAZE) in general perform better than the “corner”
detectors (ORB and BRISK).
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TABLE IV
PERFORMANCE OF KEYPOINT-BASED RRN WITH DIFFERENT KEYPOINT DETECTORS/DESCRIPTORS IN TERMS OF RMSE, NTG,

AND COMPUTING TIME (IN SECONDS)

The best performance is highlighted in blue and the worst in red.

Considering computing times in Table IV, AKAZE, ORB, and
BRISK, which employ binary descriptors, result in faster RRN
compared to other keypoint detectors/descriptors. ORB-based
RRN achieves the minimum computing times for all datasets,
which BRISK-based RRN follows. However, BRISK’s com-
puting time depends on the number of image features (e.g.,
edges and corners), as such, for it requires higher computing
time for Dataset 5 with the highest spatial-resolution. SIFT-
and SURF-based RRN results in the highest and second-highest
computing times. This is mainly due to the Gaussian scale-space
representation of SIFT and its approximation in SURF.

As shown in Fig. 4(b), the normalized subject images gener-
ated by blob detectors for all datasets are considerably similar
to the corresponding reference images in terms of perceived
brightness and color. The performance of corner detectors was
relatively similar to that of blob detectors in generating the nor-
malized images on low/medium spatial-resolution datasets (e.g.,
Dataset 2, 3, and 4). However, their performance deteriorates
with respect to that of blob detectors on high spatial-resolution
images (e.g., Datasets 1 and 5). For instance, BRISK-based
RRN on Dataset 1 and 5 results in normalized subjects image,
which are not as vivid as the blob detectors’ results. Moreover,
the normalized images generated using ORB-based RRN show
color distortions on the high spatial-resolution datasets. The
performance loss of corner detectors can be attributed to why
the RCS extracted by these methods are object corners often
considered point-wise properties [30] and thereby are typically

affected by sharp intensity changes and occlusion boundaries.
Therefore, they are more sensitive to temporal changes than the
blob detectors, resulting in generating the deteriorated normal-
ized subject images, especially for high-resolution datasets. It
can also be seen from rose graphs in Fig. 4(c) that the correlation
values between DN of inliers generated by corner detectors are
much less than that of blob detectors, which justifies why their
results are relatively inferior. For Datasets 2, 3, and 4, about 25%
of inliers generated by the corner detectors had nearly high cor-
relation values (≥0.75). The results in Fig. 4(b) show that a high
number of matched keypoints (or the size of the RCS) between
the reference and subject images does not necessarily mean that
the corresponding normalized image would have higher quality.
For instance, SIFT consistently detects the highest number of
matches; however, its performance is not best for all datasets.

It is necessary to have a sufficient number of keypoint matches
in the RCS with a representative spatial distribution to estimate
the correct normalization coefficients. Moreover, the keypoint
detectors/descriptors considered in this article cannot seamlessly
detect features over textured and textureless areas, which dete-
riorates the performance on datasets with large areas without
patterns (e.g., water bodies). It is mainly because these methods
inherently select the local image features from surfaces having
good patterns to secure keypoint detection and description [31].
With this in mind, the blob detectors SURF, SIFT, KAZE, and
AKAZE performed better than the corner detectors ORB and
BRISK in RRN for most cases. This is because blobs include
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Fig. 5. Comparison of the MAPE values between the reference and subject images and the reference and normalized subject images generated by keypoint-based
RRN with different keypoint detectors/descriptors over of vegetation, bare soils, water bodies, and asphalt (only for Dataset 5) for Datasets 1(a)-5(e).

more detailed information on local feature regions and reflect
better their characteristics under various radiometric and geo-
metric distortions (e.g., differences in illumination, rotation, and
scale) between image pairs [32].

The MAPE values before and after RRN are compared over
test samples of different LULC classes to evaluate the local
performance of keypoint-based RRN [see Fig. 5(a)–(e)]. To
this end, multiple polygons from different LULC classes on the
overlapped areas of reference, subject, and normalized images
were considered.

It can be seen from Fig. 5 that the MAPE values of LULC
classes are generally reduced after normalizing subject images
of Datasets 1-5, using keypoint-based RRN with different de-
tectors/descriptors. The corner detectors resulted in the highest

MAPE values for vegetation, water bodies, and asphalt classes,
indicating a low capability of these methods in correcting ra-
diometric distortions from these classes compared to that of
the blob detectors. For instance, the MAPE values between
the normalized subject images generated by corner detectors
(ORB and BRISK) and the reference images were close to those
between the subject and reference images and sometimes even
higher, especially for Dataset 5 in Fig. 5(e). However, the BRISK
performed better than the other keypoint detectors/descriptors in
reducing radiometric distortions from bare soils for Datasets 1,
3, and 4, while SURF and KAZE performed better, respectively,
for Dataset 2 and Dataset 5. SIFT, SURF, ORB, and AKAZE
achieved the most significant effect in normalizing vegetation’s
radiometric properties for Dataset 1, Dataset 2, Dataset 3,
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Fig. 6. Change detection and RRN results before and after applying keypoint-based RRN methods on Datasets 1-5. (Top row) Normalized subject images, (middle
row) difference images, and (Bottom row) change maps generated based on applying keypoint-based RRN with (c) SIFT, (d) SURF, (e) KAZE, (f) AKAZE,(g)
ORB, and (h) BRISK, on reference and subject images in (a) and (b); and (i) Comparison of the difference histogram of the reference and subject images (dr), and
the difference histogram of the reference and normalized images (dn) in the Red band of Datasets 1 to 5.

Dataset 4, and Dataset 5, respectively. AKAZE was the most
effective keypoint detector/descriptor in rectifying radiometric
distortions of asphalt for Dataset 5. KAZE and AKAZE were
the most efficient keypoint detectors/descriptors in correcting
radiometric preterites of water bodies for Datasets 1 and 4 and
Dataset 2 and 3, respectively.

The difference images and change maps are specifically em-
ployed to support visual comparisons between reference and
normalized subject images. Before processing, the subject and

normalized subject images are carefully registered to corre-
sponding reference images using inliers. The difference images
are then generated using change vector analysis (CVA) [33]
technique. Finally, Otsu’s thresholding method [34] is applied
to them for producing change maps, in which “1” (or white)
means unchanged and “0” (or black) denotes changed. The
normalized subject images, difference images, and change maps
for part of each of the datasets resulting from keypoint-based
RRN methods are demonstrated in Fig. 6(a)–(e). Moreover,
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TABLE V
SUMMARY OF THE PERFORMANCE OF KEYPOINT-BASED RRN FOR DIFFERENT

KEYPOINT DETECTORS/DESCRIPTORS IN TERMS OF ACCURACY FOR THE

ENTIRE IMAGE (OVERALL) AND LULC CLASSES, QUANTITY AND QUALITY OF

KEYPOINTS IN THE RCS, VISUAL QUALITY, AND SPEED (COMPUTING TIME)

One bullet denotes the worst performance, while four bullets refers to the best
performance.

the difference histograms of the reference and subject images
(dr) to those of the reference and normalized images (dn) (i.e.,
generated by keypoint-based RRN methods) in the red band for
all datasets are demonstrated in Fig. 6 (i).

As shown in Fig. 6(a)–(e), one can visually observe that
the change detection results generated from the reference and
normalized subject images are more accurate compared to those
of the reference and original subject images for all datasets. For
example, the noise and anomalies have significantly prevailed in
the difference images generated from the reference and original
subject images in most cases except for Dataset 2, where the
valid changes were not well highlighted. This is mainly due to
the existing radiometric differences (e.g., temporal variations in
atmospheric conditions, soil color, and illumination changes) be-
tween the reference and original subject images, resulting in po-
tential false/miss detections in the change maps. The normalized
subject images in (b)-(e) indicate that SIFT-, SURF-, KAZE-,
AKAZE-based RRN yield visually similar results better than
those produced by ORB- and BRISK-based RRN. Likewise, the
difference images and change maps under the RRN using blob
detectors are less affected by the outliers and more in line with
the real changed regions (i.e., happened between the image pairs)
than those under the RRN using corner detectors, especially for
Datasets 1, 3, and 5. For example, the RRN using ORB and
BRISK detectors was not able to handle phenological variations
(i.e., induced by the growth of plants) adequately for Dataset 4,
thus resulting in noisy change detection products. This is mainly
because a significant amount of complementary information
content about points and/or regions is not considered by corner
detectors in the RRN procedure.

As observed in Fig. 6(i) histograms of dn have approximately
bell-shaped distribution and are narrower than the curves of (dr)
for all datasets. This is because the histograms of dr have been
shifted to zero and near-zero position (the unchanged part) after
radiometric calibration by the keypoint-based RRN methods.
Among these methods, the mean of the blob histograms’ curves
are closer to zero value than curves of dBr RISK and dOr RB for
all datasets, indicating the capability of blob detectors in RRN
of image pairs. For example, KAZE-, SIFT-, and SURF-based
RRN have a minimum mean of the curves, respectively, for the
red band of Dataset 1, Datasets 2 and 3, Datasets 4 and 5.

The overall summary of the above analysis is given in Table V.
It is clear that SIFT-based RRN achieves the best performance

in all categories except the computing time, which is the worst
among all keypoint detectors/descriptors. SURF-based RRN
performs its operations faster with respect to the SIFT-based
RRN at the expense of losing accuracy and the RCS. KAZE-
and AKAZE-based RRN achieves a good balance between
all categories, making them suitable for RRN of unregistered
bitemporal remote sensing images. Although ORB-based RRN
is the fastest, its performance in other categories is inferior to
the other keypoint-based RNN methods.

IV. CONCLUSION

This article proposed a keypoint-based method for RRN of un-
registered bitemporal multispectral images. It evaluated the per-
formances of different keypoint detectors/descriptors on datasets
showing variations in terms of spatial-resolution and instru-
ments. The experimental results show that keypoint-based RRN
can satisfactorily normalize bitemporal image pairs showing
high variations in terms of spatial-resolution, illumination, and
sensors. The blob detectors (SURF, SIFT, KAZE, and AKAZE)
are more accurate on average than the corner detectors (ORB and
BRISK) in RRN; however, they are slower in computing. Thus,
there is a balance between accuracy and computing time. KAZE
and AKAZE-based RRN can achieve a good tradeoff between
these two metrics. Although the use of the keypoint-based RRN
method has shown promising results, large texture-less areas in
the images can negatively affect its results.

This study has shown the potential of keypoint-based RRN for
the most commonly used keypoint detectors/descriptors from the
literature. As a future work, one can explore advanced keypoint
detectors/descriptors to achieve better results.
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