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Abstract—Hyperspectral unmixing (HU) has been a hot research
topic in the field of hyperspectral remote sensing. In recent years,
the employment of the probabilistic topic model to acquire the
latent topics of hyperspectral images has been an effective method
for spectral unmixing. However, such methods fail to fully exploit
the potential of topic models in uncovering image semantics,
and they need extra sparsity constraints, which greatly increases
the complexity of the model. To solve these problems, a sparse
topic relaxion and group clustering model for HU (STRGC) is
proposed. In STRGC, the sparse prior constraints implied by the
sparse topic model are introduced, which means that the sparse
characteristics of the model are used to capture the semantic
representation of the spectrum. Through the relaxation of the
model, the possible spectral representations of ground features
can be obtained, and this further alleviates the influence caused
by endmember variability on the accuracy of the unmixing
process. Then, fuzzy clustering is used to locate the position of
the endmember quickly and accurately. Furthermore, unmixing
models with different characteristics are united to alleviate the
ill-posed nature of the model, thereby improving the fractional
abundance. Experimental results obtained with one simulated
dataset and three well-known real hyperspectral datasets confirm
the effectiveness and advantages of the proposed method.

Index Terms—Abundance, endmember, group clustering,
hyperspectral unmixing (HU), sparse topic relaxion.

I. INTRODUCTION

W ITH the development of remote sensing sensors, the
wealth of spectral information of hyperspectral images

(HSIs) has opened new perspectives in many fields, such as
environmental monitoring, precision agriculture, forestry mon-
itoring and mineral exploration [1]. However, due to the mixed
effects of the ground surface and the low spatial resolution of
the sensor, a single pixel may involve multiple spectral features,
leading to the phenomenon of “mixed pixel” [2], [3]. In this case,
hyperspectral unmixing (HU) is one of the crucial steps for the
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deep development of HSIs [4]. Specifically, HU is aimed at iden-
tifying the spectral signatures of the pure constituent spectra in
the HSIs (called endmembers) and corresponding proportion of
each endmember (known as abundances) in each image pixel [5].

Spectral unmixing can be summarized into the next cate-
gories [6]: 1) Geometrical, 2) sparse regression, 3) statistical,
and 4) deep learning-based methods. Geometrical approaches
assume that linearly mixed vectors are located in a positive
cone or in a simplex set. In this way, vertex component analysis
(VCA) uses convex geometry rules to efficiently perform unmix-
ing tasks [7]. The determination of the fractional abundances
can then be handled by least-squares-based methods, such as
fully constrained least squares (FCLS) [8]. Specifically, the
combination of using VCA to extract endmembers and using
FCLS to estimate abundances is called VCA-FCLS in unmixing
[9]. However, these methods are mainly suitable for situations
where the examined image contains pure pixels and satisfies the
noise-free condition. Thus, although geometrical models have
high computational efficiency, they often fail to capture highly
mixed spectral features [10]. Sparse regression methods treat
the unmixing process as a linear regression problem on a given
spectral library. The input image is expressed as a combination of
spectral signatures by the semisupervised procedure. For these
approaches, a spectral library of image features needs to be con-
structed, and the regression process incurs a high-computational
cost [11], [12]. Statistical approaches determine the endmember
and abundance parameters by using parameter estimation tech-
niques, thus expressing them in a probability distribution. The
core of such an approach is to assume that the endmembers of
each pixel come from a sample following a certain probability
distribution [13], [14]. Regarding deep learning methods, such
as radial-basis function (RBF) neural network and backward
propagation (BP) neural network have been used to estimate
the abundances of mixed pixels [15], [16]. In this case, each
training sample of the neural network is composed of a mixed
pixel and its corresponding abundance fractions, and the weight
values of these samples are adjusted through supervised training.
Although good results can be obtained, such methods usually
need a large number of training samples and multiple parameters
must be adjusted [17]–[19]. In addition, this kind of methods
cannot meet the abundance sum-to-one constraint (ASC) and
abundance nonnegative constraint (ANC), which usually cause
their unmixing results unacceptable.

Broadly speaking, the aforementioned methods have been
shown to be effective under specific conditions. Specifically,
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the sparse regression and statistical-based methods have been
proven to achieve better results in highly mixed scenes. However,
sparse unmixing, as a semisupervised method, is difficult to
find a stable, optimal, and unique solution, and the spectral
library should be obtained in advance. In contrast, the statistical
approaches hold the advantage of not requiring a prior spectral
library. Considering the problem of the endmember variability,
statistical methods are usually taken as solutions to model the
distribution of endmembers. It assumes that the endmember of
each pixel is generated by sampling a certain probability distri-
bution. The current popular methods based on statistical model
includes Gaussian mixture model (GMM) [20], [21]. Researches
have shown that an image can be explained by representative
topics, which contribute a lot to the semantic understanding of
the image, such as scene classification [22], image annotation
[23], etc. Additionally, the probabilistic topic model (PTM) has
shown great potential in the task of HU due to its property of
effectively dealing with multiple tasks by expressing a high-level
semantic understanding of data. In this case, HSIs can be viewed
as a data cube, where each pixel is represented by a vector that
indicates its spectral reflectance at various wavelengths. This
reflectance vector is most likely a mixture. By analyzing the
semantic information of the image and converting the spectrum
of each pixel into a probability distribution, the corresponding
spectral decomposition result is obtained.

In order to avoid overfitting caused by complex models,
sparsity can be used to reduce the solution space and the number
of parameters that need to be inferred [24]. It is consistent with
the fact that most pixels are mixed only by a few features in the
scene for HSI. In fact, the performance of an unmixing model
can be significantly improved when considering the sparsity
assumption. To avoid the problem of dense topics being used for
modeling the images, sparsity has been regarded as an appro-
priate constraint for a topic model utilized to cope with HSIs. In
other words, adding sparsity constraints to the unmixing model
helps estimate spectral features and fractional abundances. This
also provides room for improvement in the study of topic-based
HU models [27]. In detail, Wang et al. first tackled the unmixing
task as a latent topic-based method and proposed the sparsity-
constrained probabilistic latent semantic analysis (SC-PLSA),
and this algorithm obtained relatively high efficiency in HU.
However, this model which introduces sparse constraints by
selecting regularization terms with auxiliary parameters may
cause problems with large-scale datasets. Fernandez-Beltran
et al. developed a new PLSA-based model in which two sparsity
factors are introduced into the topic and image to combine
sparsity. However, the introduced sparsity factors are only fixed
constants artificially preset, and the model shows high model
complexity and time consumption [24]–[26].

In topic-based approaches, the fully sparse topic model
(FSTM) mines the sparse topics of documents with linear con-
vergence. FSTM is a simple but efficient method for highly
complex scenes [28]. More specifically, it utilizes the ability
of flexible implicit semantic mining and the Frank–Wolf al-
gorithm’s sparse reasoning to estimate endmembers and abun-
dances quickly. However, the sparse characteristics of the FSTM
may cause a lack of semantic information in cases where there
are more topics than actual endmembers. Existing studies have

shown that VCA-FCLS can achieve high-computational effi-
ciency, accuracy, and flexibility when the image contains pure
pixels or satisfies the noise-free condition [7].

Motivated by the abovementioned problems, in this work,
a novel and effective method named the sparse topic relaxion
and group clustering model for HU (STRGC) is proposed.
In STRGC, flexible implicit semantic mining and Frank–Wolf
algorithm’s sparse reasoning are used to estimate the initial
endmembers and abundances. Specifically, we relax the topics
to approximate the possible representations of endmembers for
solving the problem of endmember variability [29]. Then, fuzzy
C-means (FCM) clustering is employed when the number of
topics is more than the number of actual endmembers [30],
[31]. Moreover, considering the respective characteristics of the
FSTM and VCA-FCLS with respect to HU, a weighted strategy
is adopted for the model to achieve more accurate endmembers
and abundances. Our novelty is that we propose a framework that
flexibly applies the powerful semantic mining capabilities and
sparsity constraints of the sparse topic model to HU. Although
previous studies have used topic models to extract the semantic
information of images for HU, these models [such as PLSA
and latent Dirichlet allocation (LDA)] need to add additional
sparsity constraints to adapt to HU scenarios, and this greatly
increases the model complexity and unmixing difficulty. In this
study, the natural sparse features of the sparse topic model
are applied to HU, and the flexible implicit semantic mining
function of the sparse topic model and the sparse reasoning
ability of the Frank–Wolf algorithm are used to extract the
hidden endmembers and estimate abundances. In addition, the
experimental comparison involving the model relaxation and
clustering strategy proves that this method can effectively allevi-
ate the impact of endmember variability, thereby further showing
that our proposed framework can solve the incompatibility issues
encountered when directly applying topic models to unmixing.

The main contributions of this study are as follows.
1) To effectively express the discriminative semantic infor-

mation in HSIs and reduce the complexity of the unmixing
model, the sparse topic relaxation model (STRM) is intro-
duced as an unsupervised unmixing strategy for obtaining
the initial endmembers and fractional abundances. Then,
the semantic representations extracted from the initial
spectral space are used to alleviate the ill-posed charac-
teristic of the HU problem. Note that the STRM does
not require extra sparsity constraints and thus is model-
independent. Based on the implicit sparsity constraints of
the STRM, the framework can reduce the solution space
and the number of parameters to be extracted and further
improve the unmixing rate.

2) To avoid endmember uncertainty and the lack of abun-
dances caused by sparsity, FCM clustering is used when
the number of actual endmembers is less than the num-
ber of topics. Moreover, the endmembers are determined
through the relaxation and clustering of the model, and
this can effectively alleviate the influence of endmember
variability on unmixing.

3) Considering that the STRM has good flexibility and ac-
curacy with respect to solving endmember variability
and highly complex scenes and because VCA-FCLS can
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achieve high-computational efficiency when the examined
image contains pure pixels and satisfies the noise-free
condition, the STRGC framework is proposed to ob-
tain improved unmixing results. Moreover, the proposed
framework can obtain endmembers and abundances with-
out spectral libraries and thus is unsupervised.

Comprehensive evaluations on one simulated dataset and
three well-known real hyperspectral imagery datasets, as well
as comparisons with some popular HU methods available in the
existing literature, verify the effectiveness and superiority of the
proposed methods.

The rest of the article is arranged as follows. Section II intro-
duces the related work. Section III discusses details about the
proposed STRGC framework for HSI unmixing. Section IV is
devoted to experiments with synthetic and real datasets. Finally,
Section V concludes this article.

II. BACKGROUND

STRGC is closely related to the topic model and other classic
models, e.g., the FSTM, VCA-FCLS, and FCM. In this section,
we briefly introduce related unmixing models.

A. Classic Topic Model and FSTM

Classic topic models include PLSA and LDA [32]–[34]. In
2001, Hofmann proposed the PLSA model. For PLSA, the terms
W , Z, and D denote the visual word, topic, and document, re-
spectively. However, because PLSA lacks a probability function
for describing the document, the number of model parameters
increases linearly with the size of the documents.

In 2003, the LDA model was proposed; it adds a Dirichlet dis-
tribution to the topic mixture θ based on the PLSA model. LDA
provides a probability function for the discrete implicit topics in
PLSA and is regarded as a complete PTM. However, the latent
semantics discovered from documents by LDA are often dense,
thereby yielding a large amount of redundant information and
requiring additional storage space. Some studies have tried to
reduce the complexity of the model by encoding a spike-and-slap
distribution or utilizing regularization to induce sparse topics
[35]–[37]. However, they still have some limitations: When
dealing with large-scale datasets, auxiliary parameters related
to the regularization terms require model selection, and they
cannot directly weigh the sparsity of solutions with time and
quality [28].

In 2012, as a simplified variant of PLSA and LDA, the FSTM
was proposed. FSTM uses an implicit sparse prior to process
documents instead of Dirichlet priors and extra sparsity con-
straints. In particular, it cancels the endowment of the Dirichlet
distribution in LDA. When deleting the observation variable
associated with each document, the FSTM can also be regarded
as a variant of PLSA. Fig. 1 represents the probabilistic graphical
model of the FSTM. Existing research shows that compared with
other models, the FSTM has obviously superior performance in
terms of the learning and inference times, the model complexity,
and the sparsity of the implicit representations of documents.
In more detail, the inference algorithm converges to optimal
solutions at a linear rate, and the learning algorithm has low

Fig. 1. Probabilistic graphical model of the FSTM.

complexity, which means that there exists an approximately
dimensionless method for performing dimensionality reduction
(DR). Moreover, it provides an effective approach for directly
weighing the sparsity of the obtained solutions with quality and
time [28].

B. FCM Clustering

As an unsupervised technique, FCM clustering has been
successfully used for clustering, feature analysis, and classifier
design in fields such as image segmentation, target recognition,
medical imaging, and spectral unmixing. Specifically, the FCM
algorithm can be used to analyze the distances between multiple
input datasets. Then, clusters are generated based on the dis-
tances between the datasets, and a cluster center is generated for
each cluster. In addition, datasets are clustered into n clusters,
and each dataset is associated with its corresponding cluster.
Each dataset and its corresponding cluster have a high rate of
affiliation and are as far away from other clusters as possible
[38]–[40]. The FCM clusters the obtained samples into a class
C with an iterative optimization approach that minimizes the
objective function. For each pixel, the fuzzy membership degrees
in the FCM obtained from all classes sum to unity.

C. VCA-FCLS

In the existing research, the HU problem based on linear mix-
ing model (LMM) can be divided into endmember estimation
and abundance inversion, which are then processed separately.
A variety of geometrical HU methods have been applied to
obtain endmembers. In this case, the VCA algorithm iterates
the projection data in a direction orthogonal to the subspace
spanned by the determined endmembers. The new endmember
corresponds to the most extreme projection. The algorithm is
repeated until all endmembers are obtained. It is worth noting
that VCA assumes that there are pure pixels in the dataset,
but this may not be sufficient for most scenes. On the other
hand, the inversion of fractional abundances can be handled by
least-squares-based approaches. In addition, the combination
of VCA for endmember extraction and FCLS for abundance
inversion can be used to obtain the final unmixing results [8],
[9].

III. ADAPTIVE WEIGHTING FRAMEWORK WITH SPARSE TOPIC

RELAXION AND GROUP CLUSTERING

To fully consider the applicability of the unmixing model
and effectively utilize the semantic information in images, the
STRGC framework is proposed for HSI unmixing. This is an
ensemble approach that combines spatial, spectral, and semantic
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Fig. 2. Flowchart for HU based on the STRGC framework. A pixel reflectance matrix is first generated and then input into the proposed STRM model with
sparse relaxation to obtain the initial abundances and initial endmembers. The initial endmembers are clustered according to the FCM algorithm to obtain the
final endmembers, whose corresponding abundances are clustered into the same group and added to obtain the abundances based on the STRM. Finally, the final
abundances are obtained by the adaptive weighting of the abundances based on VCA-FCLS and the abundances based on the STRM.

Fig. 3. Correspondences between HU and the STRM.

features. For STRGC, four tasks must be addressed: 1) Cooc-
currence matrix generation, 2) STRM modeling with sparse
relaxation, 3) group clustering based on the STRM, and 4)
adaptive model weighting. The overall flow chart for HU based
on the STRGC framework is presented in Fig. 2. In the flow
chart, E1′, E2′, and E3′ represent the initial endmembers based
on the STRM.A1′,A2′,A3′, andA1′′,A2′′,A3′′ are the obtained
abundances using the STRM and VCA-FCLS, respectively.

A. Cooccurrence Matrix Generation

Through the sparse relaxation strategy, the STRM model
based on the FSTM is introduced. When the STRM is applied
to HSI unmixing, the relationships between their respective
terminologies are described in Fig. 3. A corpus corresponds to a
HSI, and a document is equivalent to one pixel Q in the image.
Topics depict the endmembers E. Words are considered spectral
bands V , and the word count in each document is considered
equivalent to the reflectance of a pixel band.

Before integrating the vectors, the uniform method is utilized
to split the whole HSI into pixel blocks. The rich spectral infor-
mation in HSIs provides data support for feature classification
and target recognition. The massive bands of each pixel can
correspond to the visual words. The different reflectance of
bands is converted into 1D histograms based on multiple pixels.

Then, a statistical analysis is performed for each band reflection,
and a pixel-band cooccurrence matrix is generated. In this case,
each row of the matrix represents a pixel, and each element
denotes the value of the spectral reflectance in each band.

B. STRM Modeling With Sparse Relaxation

The index for theN local patches is represented as j, the index
for the Q pixels is expressed as i, and the index for the topics
is represented as k. The STRM assumes that a mixed pixel can
be represented with K endmembers, denoted by β1,...βK . The
unmixing process of the STRM for the HSIs is shown as follows.

1) For every pixel, a K-dimensional topic proportion θ is
randomly selected within a reasonable range.

2) For each band in pixel Q , a latent endmember Ek is
selected for each pixel conditional on the probability
p(Ek|Qi) = θk within a reasonable range, and then a
spectral reflectance Vj is selected with probability . The
probability p(Vj |Qi) between spectral reflectance and
pixel Qi can be described as follows:

P (Vj |Qi) =

K∑
k=1

p(Vj |Ek)p(Ek|Qi). (1)

It is worth noting that despite being a simplified variant, it
has been confirmed that the STRM contains an implicit prior of
the topic distribution, and the density function is expressed as
(2). This interesting property of “implicit modeling” enables the
STRM to converge to the best solution at a linear rate. In this
study, the STRM is used for modeling the endmembers with
sparsity

P (θ|λ) ∝ exp(−λ. ‖ θ‖0). (2)

To obtain sparse implicit endmembers, the STRM uses the
sparsity of the original pixels and endmember proportions. In
other words, learning endmembers is equivalent to multiplying
the new representation θ of the HSI with the original representa-
tion Q. The inference and learning tasks of the STRM algorithm
are shown in Fig. 4.
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Fig. 4. Inference and learning tasks of the STRM algorithm.

The inference task is reconstructed as a concave maximiza-
tion problem on the simplex of endmembers. Specifically, the
inference task can be described as the problem of seeking θ
to maximize the likelihood of Q. Moreover, the probability that
spectral reflectance Vj appears in a given pixelQ can be denoted
by

P (Vj |Q) =

K∑
k=1

P (Vj |Ek) · P (Ek|Q) =

K∑
k=1

θkβkj . (3)

Therefore, the log likelihood of Q can be described by

logP (Q) = log
∏
j∈IQ

P (Vj |Q)Qi =
∑
j∈IQ

Qj log
K∑

k=1

θkβkj .

(4)
Denote xj =

∑K
k=1 θkβkj , which represents the

convex combination of at most L+ 1 vertices of the
simplex Δ = conv(β1, . . . , βk) after L iterations, and
let x = (x1, . . . , xV )

t =
∑K

k=1 θkβk. This implies that∑
k θk = 1, θk ≥ 0. The log likelihood of Q can be expressed

as

logP (Q) =
∑
j∈IQ

Qj log xj . (5)

We infer the proportion θk of latent endmembers in each
pixel Q by maximizing the objective function. Note that simply
limiting the number of iterations in the Frank–Wolfe algorithm
can directly control the sparsity of the endmember proportions θ.

The learning task of the STRM is to learn all endmembers
β = (β1, . . . , βk) when given an image I . The EM algorithm is
used to iteratively learn the model. In this case, the E-step and
M-step are repeated until convergence is achieved. Specifically,
for the E-step, an inference is performed for every pixel Q of
image I; for the M-step, the likelihood of I is maximized with
respect to β. Taking the Lagrange function into account and
forcing its derivatives to be 0, this learning process can update all
endmembers by only performing simple calculations according
to

βkj ∝
∑
Q∈I

QjθQk. (6)

C. Group Clustering Based on STRM

For real scenes, one spectrum does not completely correspond
to one material in an HSI. This phenomenon means that the
endmembers can change along with the pixels. To avoid the

detrimental unmixing effect caused by endmember variability,
we take advantage of the sparsity of the STRM to relax the
topics and obtain the possible forms of each endmember. In
other words, the number of topics is greater than the actual
number of endmembers when using the STRM for unmixing. In
this case, FCM clustering is introduced to extract endmembers.
The class membership values, which are output by the FCM
algorithm, may be interpreted as degrees of sharing or posterior
probabilities. This allows analysts to adjust the fuzziness of the
output, which is attractive for decomposing the class compo-
sition of the pixels. Note also that these values are relative
measures of the category membership strength, so the calcu-
lation is performed for all classifications. Suppose the sample
set S = {s1, s2, . . . , sN}, where Sj = {j = 1, 2, . . . , N} rep-
resents the D-dimensional feature vector in FCM clustering.
The FCM algorithm minimizes the objective function [denoted
as (7)] by using an iterative optimization process; then, these
samples are clustered into C classes

J =
C∑
i=1

N∑
j=1

μm
ij ‖ sj − vi‖2. (7)

The constraints are as

μij ∈ [0, 1] ; 0 <

N∑
j=1

μij < N,∀i;
C∑
i=1

μij = 1∀j (8)

where μij represents the fuzzy membership of pixel sj in the ith
cluster; m is the fuzziness parameter; C denotes the number of
classes; vi represents the ith cluster center; and m > 1 denotes
the weighted index of each fuzzy membership used to control
the fuzziness of the analysis. The clustering centers and the
membership degrees are obtained in an unsupervised clustering
manner in the fuzzy model, where the clustering centers refer
to endmembers. In this case, the endmember generation process
can be described as follows: First, based on the sparse reasoning
ability and fast convergence characteristics of the STRM, initial
possible endmembers are mined from HSIs. Then, according
to the FCM algorithm, the improved endmembers that are ex-
pressed as cluster centers are chosen by deriving the strength
of membership of every endmember in the corresponding class.
Correspondingly, we can group the corresponding abundances
for the same feature according to the division of endmembers
and follow the ASC to obtain improved abundances.

D. Enhancing the Unmixing Results By Utilizing Adaptive
Model Weighting

For the task of improving the endmembers and abundances,
the STRM and VCA-FCLS are united effectively. Based on
the ability of flexible implicit semantic mining and the Frank–
Wolf algorithm’s sparse reasoning in the STRM, endmembers
and abundances can be quickly estimated. However, the sparse
topics obtained only by the STRM may lack representative
semantic features. Moreover, the existing unmixing researches
have shown that different models will exhibit different perfor-
mances according to their HU characteristics. For real HSIs, the
endmembers may have multiple representations, whose shapes



ZHU et al.: SPARSE TOPIC RELAXION AND GROUP CLUSTERING MODEL FOR HU 4019

Algorithm 1: STRGC for Hyperspectral Unmixing.
Input: Dataset Y .
Output: Endmembers E, abundances A.
Step 1. /� Cooccurrence matrix M for initialization �/
1. Generate A.
Step 2. /�STRM for unmixing according to Fig. 4�/

2. Infer the proportion θk.
3. Learn all topics β by using an EM scheme.
repeat

a) E-step: Update θk by (4) and (5).
b) M-step: Update βkj via (6).
until convergence
Step 3. /�FCM for unmixing�/

4. Generate E and A′ by (7).
Step 4. /� Adaptive weighting of models �/

5. Obtain A′′ via VCA-FCLS.
6. Generate A.

cannot be represented by a single distribution. In this case, the
STRM can approximate any distribution found in the library
and has high accuracy and flexibility in solving the endmember
variability problem. VCA-FCLS has a higher unmixing effect
when pure pixels exist in the HSI. Based on this, abundances of
the same features obtained from the STRM and VCA-FCLS are
united by appropriate weights to acquire the final abundances. In
more detail, for simple images, the abundance of VCA-FCLS has
a greater weight, which is adaptively adjusted between 0.65–0.9.
In contrast, for complex images, the STRM is given more weight.

Finally, the pseudocode of the proposed STRGC algorithm is
summarized in Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Settings

In this section, four different hyperspectral datasets are con-
sidered in our experiments: One simulated dataset, called Simu,
and three real HSI datasets, i.e., the Samson dataset, Jasper
dataset, and Urban dataset, as shown in Fig. 5.

To evaluate the unmixing performances of the proposed
models, two quantitative metrics are used in our experiments
[41]–[44]: the spectral angle distance (SAD), defined as in (9),
and the root-mean-square error (RMSE), as shown in (10)

SAD(
∧
V , V ) =

1

K

K∑
i

arccos

∧
Vi ·Vi

‖
∧
Vi ‖ Vi ‖

(9)

RMSE(
∧
M,M) =

√√√√ 1

R · C
R∑
i

C∑
j

(
∧
M i,j −Mi,j)

2

(10)

where K indicates the number of endmembers.
∧
V and V

represent the estimated endmembers and the corresponding
ground truth, respectively. R and C are the sizes of the input

images.
∧
M and M act as the estimated abundances and the

corresponding ground truth, respectively. To evaluate the per-
formances of the proposed methods, the experimental results

Fig. 5. HSIs used in the experiments. (a) Simu. (b) Samson. (c) Jasper.
(d) Urban.

obtained with the conventional GMM [20], VCA-FCLS [7],
minimum volume simplex analysis (MVSA) [9], and the FSTM
[28] are provided for comparison purposes. In addition, we
also provide the test results obtained with NMF-based meth-
ods, NMF-sp [45], and collaborative nonnegative matrix fac-
torization (CNMF) [46], and topic-based methods, PLSA [33],
PLSA-sp [22], which introduces a sparsity constraint over the
documents, and LDA [32], as shown in the latest papers [23].
To further illustrate the effectiveness of the proposed method
for complex datasets, the results of some recent methods, a
deep autoencoder network (DAEN) [16], a stacked nonnegative
sparse autoencoder (SNSA) [18], a deep autoencoder unmixing
(DAEU) [47], and dyadic cyclic descent optimization (DCD)
[48], are shown in the results of the Jasper and Urban datasets
[16]–[19].

B. Simulated Experiment: Simu Dataset

The Simu dataset is generated by the simulation procedure
proposed in [49], as shown in Fig. 5(a); it has a size of
100 × 100 pixels and contains 221 channels. It consists of
nine endmembers chosen from the geological survey (USGS)
spectral library: Kaolinite 1, Dumortierite, Nontronite, Alunite,
Sphene, Pyrophyllite, Halloysite, Muscovite, and Kaolinite 9.
The corresponding abundance results are obtained by a Gaussian
filter with k-means clustering, and the filter is also subject to non-
negative and additive constraints [50]. Research has shown that
the signal-to-noise ratio (SNR) observed in real hyperspectral
imaging instruments is increasing. Therefore, the consideration
of a low SNR value should not be taken as an indication of
the true parameter value of the current hyperspectral imag-
ing state [49]. In our experiments, three levels of noise are
added to the Simu dataset, i.e., SNRs of 30, 50, and 70, as
follows:

SNR = 10log10
E
[
XTX

]
E

[
nTn

]
(11)
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TABLE I
ENDMEMBER SAD ASSESSMENT FOR THE SIMU DATASET

Note that the displayed values are the averages of the experiment, with the best results in bold.

TABLE II
ABUNDANCE RMSE ASSESSMENT FOR THE SIMU DATASET

Note that the displayed values are the averages of the experiment, with the best results in bold.

where E[·] is the expectation operator, and X , n denote the
original signal and the corresponding noise, respectively.

The quantitative assessments are provided in Tables I and II
for the Simu dataset. In addition to the quantitative evaluation
presented by the SAD and RMSE metrics, the qualitative eval-
uations provided by the abundance maps are also shown. Fig. 6
shows the abundance fractions of STRGC and the ground-truth
abundances.

It can be seen from the above table that for the SAD, VCA-
FCLS achieves the best results. The main reason for this is
that the noncomplex features of the Simu dataset make it easy
for pure pixels to appear. However, due to mixing phenom-
ena, spatial resolutions, and other considerations, pure spectral
components are almost nonexistent in real hyperspectral scenes.
Moreover, in topic model-based methods, the effect of the FSTM
is significantly greater than those of PLSA and LDA. Among
them, the STRM improved by sparse relaxation is better than
PLSA-sp with sparsity constraints. Regarding the improvement
of the model, the result of the STRM based on sparse relaxation
is better than that of the FSTM. For the RMSE, compared with
other methods, the geometric method can obtain strong abun-
dance results, but the proposed adaptive weighted framework
can also achieve good accuracy. Moreover, the accuracy of the
STRM improved by the sparse relaxation strategy is effectively
improved in terms of both the SAD and RMSE. As depicted
in Fig. 6, the comparison results for abundance indicate that
the proposed STRGC can obtain almost the same effect as the
ground truth, thereby demonstrating the effectiveness of the
proposed methods.

C. Real Data Experiment 1: Samson Dataset

The Samson dataset [51], as shown in Fig. 5(b), has 156
channels and a size of 952 × 952 pixels; it is used for the HU
experiment. A region of size 95 × 95 is selected from the (252,
332)th pixel in the original image. Soil, trees, and water are
chosen as the references for three endmembers. Fig. 7 shows the
obtained abundances by the above methods and the ground-truth
abundances for the Samson dataset. The comparison between the
endmembers and abundances obtained with the various methods
is provided in Tables III and IV.

Similar to the Simu dataset, Samson is simple, and there are
numerous pure pixels in the dataset. When considering the SAD
metric, the geometrical-based method yields good results in
terms of the estimated endmembers, which agree with the char-
acteristics of the data. However, the proposed STRGC achieves a
more accurate RMSE result than that of VCA-FCLS. In addition,
the accuracy of the STRM using the sparse relaxation strategy
is effectively improved with respect to both endmembers and
abundances. The results of STRGC agree with the ground truth
in the abundance maps.

D. Real Data Experiment 2: Jasper Dataset

Jasper is a popular hyperspectral dataset [51]–[53]. It contains
224 bands, and the spectral resolution is 9.46 nm. Moreover, to
avoid atmospheric effects, bands 1–3, 108–112, 154–166, and
220–224 are removed (198 channels remained). As shown in
Fig. 5(c), considering the high complexity of the image, a 100 ×
100 × 198 subimage cropped from the original image is used in
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Fig. 6. Ground-truth abundances and the STRGC abundances for Simu. (a) Kaolinite 1. (b) Dumortierite. (c) Nontronite. (d) Alunite. (e) Sphene. (f) Pyrophilite.
(g) Halloysite. (h) Muscovite. (i) Kaolinite 9.

our experiments. The image has the following four endmembers:
Tree, water, soil, and road. Tables V and VI are the results for
the endmembers and abundances, respectively. In Fig. 8, the
corresponding abundances and the ground-truth abundances are
shown.

From the results reported in Tables V and VI, we can
see that the proposed methods achieve competitive results

relative to those of other methods. Specifically, among the topic
model-based methods, the FSTM is better than PLSA and LDA,
where the STRM is better than PLSA-sp. After relaxation and
clustering are performed, the accuracy of the STRM is better
than that of the FSTM. In general, STRGC is significantly better
than using the STRM and VCA-FCLS alone, and it has the
highest unmixing accuracy. In comparison with the ground-truth
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Fig. 7. Ground-truth abundances and the STRGC abundances for Samson.

TABLE III
ENDMEMBER SAD ASSESSMENT FOR THE SAMSON DATASET

Note that the displayed values are the averages of the experiment, with the best results in bold.

TABLE IV
ABUNDANCE RMSE ASSESSMENT FOR THE SAMSON DATASET

Note that the displayed values are the averages of the experiment, with the best results in bold.

TABLE V
ENDMEMBER SAD ASSESSMENT FOR THE JASPER DATASET

Note that the displayed values are the averages of the experiment, with the best results in bold.

TABLE VI
ABUNDANCE RMSE ASSESSMENT FOR THE JASPER DATASET

Note that the displayed values are the averages of the experiment, with the best results in bold.
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Fig. 8. Ground-truth abundances and the STRGC abundances for Jasper.

TABLE VII
ENDMEMBER SAD ASSESSMENT FOR THE URBAN DATASET

Note that the displayed values are the averages of the experiment, with the best results in bold.

TABLE VIII
ABUNDANCE RMSE ASSESSMENT FOR THE URBAN DATASET

Note that the displayed values are the averages of the experiment, with the best results in bold.

abundance maps, the proposed STRGC can achieve almost the
same result for each feature.

E. Real Data Experiment 3: Urban Dataset

The Urban dataset [51]–[53], as shown in Fig. 5(d), has a
size of 307 × 307 pixels and 210 bands covering the 400–2500-
nm wavelength range. During preprocessing, some noisy and
corrupted bands are removed (162 bands remain). The ground
truth contains four endmembers: Asphalt, grass, tree, and roof.
Tables VII and VIII list the quantitative results of the end-
members and abundances, respectively, for urban areas. Fig. 9
shows the corresponding abundance results and the ground-truth
abundances.

As can be seen from Tables VII and VIII, the proposed
approach can obtain high-precision results with respect to both
endmembers and abundances. Compared to the geometric meth-
ods, VCA and MVSA, statistical methods, NMF-sp, CNMF, and
GMM, deep learning-based methods, DAEN, SNSA, DCD, and

DAEU, and traditional topic-based methods, LDA, PLSA, and
PLSA-sp, the proposed methods can achieve higher accuracy in
terms of both SAD and RMSE. Moreover, the accuracy of the
STRM improved by sparse relaxation is significantly higher than
that of the FSTM. The results further illustrate the advantages
of the proposed approaches for unmixing with complex images.
The abundances estimated from STRGC are good matches with
the corresponding abundances in the ground truth.

Overall, the proposed methods are experimentally verified
to perform well on both the qualitative assessment and the
quantitative evaluation. Although the geometric methods exhibit
good performance in the extraction of endmembers for simple
datasets, due to mixing phenomena, spatial resolutions and other
factors, pure spectral components are almost nonexistent in
real hyperspectral scenes. Their estimations of abundances are
certainly not as effective as those of endmembers. In contrast,
the proposed approaches are proven to exhibit better unmixing
capabilities for real complex images. From the data complexity
analysis, for simulated data and the relatively simple Samson
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Fig. 9. Ground-truth abundances and the STRGC abundances for Urban.

data, the accuracy of STRGC is significantly improved through
the adaptive weighting strategy of VCA-FCLS and the STRM.
For highly complex Jasper images, the accuracy of STRGC is the
best in terms of both SAD and RMSE. For the large and complex
Urban images, the proposed methods have obvious advantages
in both SAD and RMSE, indicating the applicability of the
proposed strategy to complex scenes. The accuracy of STRGC
is significantly better than those of the geometric methods, deep
learning-based methods, and other statistical methods. From
the comparison of different unmixing methods, the FSTM is
better than the traditional PLSA and LDA approaches, and the
improved STRM using relaxation and clustering is better than
PLSA-sp for unmixing based on topic models. On the whole, the
proposed method is able to retrieve stable endmember and abun-
dance estimates for both simple datasets and complex datasets,
and this further reflects the robustness of the proposed STRGC in
actual applications. The advantages are remarkable, especially
for problems with relatively complex images. In addition, it can
be seen that the improved STRM is better than the FSTM in terms
of both SAD and RMSE, and this reflects the effectiveness of the
proposed relaxation strategy. On the other hand, for all images
in the experiment, the abundance maps obtained by STRGC
and the real abundance maps are relatively consistent, and this
also confirms the rationality and effectiveness of the proposed
methods.

V. DISCUSSION

A. Analysis of Robustness to Noise

Considering that in real hyperspectral data production sce-
narios, images are usually affected by many different types of
disturbances and image corrections that also introduce some
noise, we conduct this experiment to compare and analyze the
performances of the various algorithms. In this experiment, the
Simu dataset is polluted by different levels of white Gaussian
noise, where the SNR = {5, 15, 20, 25, 30, 40, 50, 60, 70 dB}.

Fig. 10. SAD comparison between the algorithms with Gaussian noise.

Fig. 11. RMSE comparison between the algorithms with Gaussian noise.

Figs. 10 and 11 show the SAD and RMSE comparisons between
the different algorithms with Gaussian noise, respectively.

As seen in Figs. 10 and 11, the VCA-FCLS algorithm gener-
ally outperforms the proposed STRM algorithm in terms of both
SAD and RMSE. However, as the SNR increases (e.g., SNR ≥
5 dB), the VCA-FCLS algorithm displays a large fluctuation.
In contrast, the proposed STRM seems to be largely unaffected
by the added noise and presents a relatively stable and robust
performance under different noise conditions.
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Fig. 12. Sensitivity analysis in relation to the topic number K for Simu dataset.

TABLE IX
COMPUTATIONAL TIMES OF DIFFERENT METHODS

B. Sensitivity Analysis in Relation to the Topic Number K

In order to investigate the effect of relaxion of the latent
topic on inaccurate endmember extraction, we tested the Simu
dataset with the actual number of endmembers being 9. The
topic number K of Simu datasets with different SNRs were set
to 10,15,20,25,30, respectively. As can be seen from Fig. 12,
when the number of topics is less than 30, it has less influence
on the endmember estimation. That is, the proposed method is
relatively stable as the topic numberK varies within a reasonable
range. Once the number of topics over a reasonable range
increases, the accuracy gradually decreases.

C. Comparison of Computational Times

To test the time complexity of the proposed algorithm, we
present the experimental running times of the various algorithms
on real datasets. Table IX summarizes the calculation times
required for the VCA-FCLS, NMF-sp, CNMF, STRM, and
STRGC methods on the test image.

Overall, VCA-FCLS takes the least amount of time due to its
simplicity, and the topic-based method has a faster unmixing rate
than the NMF-based method. For simple Samson data and Jasper
data, the proposed STRM requires relatively little time. For
complex Urban images, the running times of different algorithms
are increased significantly, and the time required by the proposed
STRM is second only to that of CNMF.

D. Analysis of the Adaptive Weighting Unified Framework

To analyze the contributions made by the different compo-
nents of the proposed framework and taking the characteristics
of the test image into account, we select Jasper images for an
experiment. In this experiment, the weight W of the abundances
produced by the STRM is adaptively adjusted from 0 to 1. Fig. 13
shows the changes in accuracy yielded with different weights.

As shown in Fig. 13, compared with those of the original
STRM and VCA-FCLS, the RMSE of the STRGC model after

Fig. 13. RMSE of STRGC under different weight settings.

TABLE X
REASONABILITY COMPARISON OF COMBINING SPARSE TOPIC MODEL AND

GROUP FCM

performing adaptive weighting is significantly improved. Be-
cause the accuracy of the STRM is higher than that of VCA-
FCLS, the proposed framework achieves the optimal result when
the STRM occupies a larger weight (approximately 0.65).

E. Reasonability of Sparse Topic Relaxion and Group
Clustering

To analyze the reasonability of combining sparse topic model
and group FCM for HU, ablation studies on different datasets
are implemented. SAD and RMSE of the Samson dataset, Jasper
dataset, and the Urban dataset are reported in Table X. As
shown in Table X, the endmember estimation and abundance
inversion of the proposed FSTM+FCM performs better in the
three datasets compared to FSTM by the topic relaxion and
group clustering strategies, which confirms the reasonability of
combining sparse topic model and group FCM for HU.

VI. CONCLUSION

In this study, an efficient unmixing framework called STRGC
based on a topic model is proposed for HSI unmixing. In
STRGC, the topic model is used to model a given image by
the statistics related to the spectral reflectance of each pixel to
obtain additional semantic information. In this case, the sparse
inference ability and features of fast convergence of the STRM
are utilized to mine hidden endmembers and estimate fractional
abundances in HSIs. To extract the endmembers in a highly
efficient way, we relax the topics by the sparsity of the STRM to
obtain the possible spectral representations of each endmember,
thereby alleviating a series of problems caused by endmember
variability in HU. Then, FCM clustering is adopted to further
extract endmembers and estimate abundances. With regard to
the improvements in the abundances, the adaptive weighting
of VCA-FCLS and the STRM further utilizes their respective
characteristics in unmixing and improves accuracy. This study
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shows that the proposed STRGC has better performance than
the traditional topic model in finding high-quality semantic
representations from HSIs and has a lower model complexity.
It achieves the best SAD and RMSE scores on all real datasets
except for the Samson dataset, and this demonstrates the un-
mixing advantages of STRGC in highly complex scenes. In
future work, we plan to further exploit the proposed framework
by considering the automatic determination of the number of
endmembers to improve the practicality of the proposed method.
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