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Abstract—Hyperspectral image (HSI) classification often faces
the problem of multiclass imbalance, which is considered to be one
of the major challenges in the field of remote sensing. In recent
years, deep learning has been successfully applied to the HSI clas-
sification, a convolutional neural network (CNN) is one of the most
representative of them. However, it is difficult to effectively improve
the accuracy of minority classes under the problem of multiclass
imbalance. In addition, ensemble learning has been successfully ap-
plied to solve multiclass imbalance, such as random forest (RF) This
article proposes a novel enhanced-random-feature-subspace-based
ensemble CNN algorithm for the multiclass imbalanced problem.
The main idea is to perform random oversampling of training
samples and multiple data enhancements based on random feature
subspace, and then, construct an ensemble learning model com-
bining random feature selection and CNN to the HSI classification.
Experimental results on three public hyperspectral datasets show
that the performance of the proposed method is better than the
traditional CNN, RF, and deep learning ensemble methods.

Index Terms—Convolutional neural network (CNN),
enhanced random feature subspace (ERFS), ensemble learning,
hyperspectral image (HSI) classification, multiclass imbalance.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs), which contain abun-
dant information in hundreds of continuous spectral fea-

tures, have been widely applied in land cover mapping, military
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field, environmental modeling and monitoring, and precision
agriculture [1]–[4]. HSIs usually contain multiple classes, hence,
one of the most important tasks in hyperspectral research is
to design a supervised classification algorithm that assigns a
class label to each pixel after proper training. However, the
number of instances of each class tends to vary greatly, which
is called class imbalance [5], [6]. The problem of class im-
balance brings serious challenges to the HSI classification,
which reduces the effectiveness of many existing algorithms [5].
Therefore, how to improve the accuracy of minority classes
without damaging the accuracy of majority classes is a great
challenge [7].

There has been a lot of effort devoted to the problem of im-
balance data classification, such as cost-sensitive algorithms [8],
kernel-based algorithms [9], and active learning algorithms [10].
However, the aforementioned approaches have large compu-
tation costs, especially for HSIs [11]. Some methods try to
solve class imbalanced by generating artificial samples of the
minority class, e.g., random undersampling (RUS), random
oversampling (ROS) [12], the synthetic minority oversampling
technique (SMOTE) [13], and the orthogonal complement sub-
space projection (OCSP) [14]. However, these methods have
limitations, RUS and ROS lose valid information or increase
the risk of overfitting, respectively. SMOTE generates artificial
samples by a linear combination of real samples, hence, the new
features generated are limited. The OCSP uses nonlinear arti-
ficial sample generation, which can produce rich new features,
but the gradient-constraints-based algorithm is computationally
intensive and time consuming [15].

As a powerful feature extraction tool to solve nonlinear prob-
lems, deep learning is widely used in several image processing
tasks [16], [17]. Inspired by these successful applications, deep
learning is also introduced into HSI classification [18], [19]. The
convolutional neural network (CNN) is one of the deep learning
models successfully applied to the HSI classification [20]. A
well-designed CNN model can be used to extract the spec-
tral [21] or spectral-spatial [22], [23] features of hyperspectral
images and obtain the final classification results. Although the
CNN-based method can effectively improve the classification
effect of HSIs, it usually needs a large number of samples [24].
When facing the class imbalanced problem, the accuracy of
minority class is severely impaired. Therefore, to effectively

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-1907-2664
https://orcid.org/0000-0001-6541-9441
https://orcid.org/0000-0002-0677-6702
https://orcid.org/0000-0003-3888-8124
https://orcid.org/0000-0002-4084-0915
mailto:qzlv@stu.xidian.edu.cn
mailto:wfeng@xidian.edu.cn
mailto:yhquan@mail.xidian.edu.cn
mailto:gabriel.dauphin@univ-paris13.fr
mailto:gaolr@aircas.ac.cn
mailto:xmd@xidian.edu.cn


LV et al.: ERFS-BASED ENSEMBLE CNN FOR THE IMBALANCED HYPERSPECTRAL IMAGE CLASSIFICATION 3989

TABLE I
DATA INFORMATION

TABLE II
ARCHITECTURE OF THE CNN DESIGN FOR INDIAN PINES AVRIS
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ARCHITECTURE OF THE CNN DESIGN FOR UNIVERSITY OF PAVIA ROSIS,

AND SALINAS

deal with the multiclass imbalanced problem, the CNN-based
method must be improved, such as reducing network parameters
or simplifying network architecture [25] or generating artificial
samples for minority classes.

Ensemble learning combines multiple learners to achieve
more generalization than a single learner and has been success-
fully applied to the HSI processing, such as rotation forest (RoF)
and its improvement [26]–[29], but most of them are imple-
mented on balanced datasets. In recent years, ensemble learning
has been used to solve the class imbalanced problem [30], such
as dynamic synthetic minority oversampling technique-based
RoF [7]. Given the superior performance of ensemble learning
compared with the subclassifier and the strong feature extraction
ability of the CNN, this article will explore a new method
combining ensemble learning with the CNN to improve the
imbalanced HSI classification performance.

The contribution of this article is twofold. First, we propose
a novel enhanced random feature subspace (ERFS)-based en-
semble CNN (EECNN) algorithm for the multiclass imbalanced
problem. Second, the proposed ERFS algorithm can be used
alone to generate a balanced training set and improve the clas-
sification accuracy of the RF and CNN. The proposed method
makes ROS of a dynamic sampling rate for each training sample
of minority classes and divides each sample obtained by ROS
into different random feature subspaces (RFSs). We use a variety
of data augmentation methods such as rotation, folding, etc., to
randomly enhance the data on each RFS and obtain the ERFS.
Finally, ensemble learning, which combines a well-designed
CNN and random feature selection is used to obtain HSI clas-
sification results. The experimental results on three common
datasets validate the effectiveness of the aforementioned two
contributions.

The rest of this article is organized as follows. Section II
provides an overview of the related work. Section III describes
the proposed methodology in detail. Section IV evaluates the
performance of the proposed approach. Finally, Section V con-
cludes this article.

II. RELATED WORK

When faced with the multiclass imbalanced problem, the
CNN model needs to oversample the training samples before
classifying to obtain a relatively balanced dataset. Ensemble
learning can improve the generalization ability of the overall
model to a certain extent, thus improving the overall classifica-
tion effect [31]. The purpose of this article is to find an ensemble
CNN based on the ERFS to overcome the multiclass imbalanced
problem. This section introduces the background knowledge of
the sampling methods (ROS, RUS), ERFS, CNN, and ensemble
learning.

A. Random Sampling Methods (ROS, RUS)

The random sampling method is usually used to balance the
distribution of multiclass data [32]. Simple random sampling
method mainly includes ROS and RUS. ROS obtains balanced
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TABLE IV
CLASSIFICATION RESULTS OF EECNN IN INDIAN PINES AVRIS

data by randomly extracting and replicating a certain number of
minority samples, to obtain balanced training samples, the orig-
inal sample size of each minority class is Ni, and the maximum
class sample size is Nmax, the ROS times of each minority class
are equal to Nmax −Ni. On the contrary, RUS obtains balanced
data by randomly eliminating samples of majority classes, to
obtain balanced training samples, the original training sample
size of majority classes isNm, the original training sample size of
the minimum class is Nmin, and the RUS times of each majority
class are equal to Nm −Nmin. RUS loses samples of majority
classes and leads to the loss of effective information, hence, this
article chooses the ROS to generate balanced data.

B. Enhanced Random Feature Subspace (ERFS)

After ROS processing for imbalanced training samples, there
are a large number of duplicate samples in the balanced sample
set, especially for those with few original samples. However, a
large number of repeated samples increase the risk of overfitting
of the classification model, which is unfavorable for correct clas-
sification. Random subspace ensembles can be used to alleviate
the curse of dimensionality and the high feature-to-instance ra-
tio [33]. The ERFS is constructed by RFS and data augmentation.
First, a 3-D sample xi generated by ROS, which containing
spectral-spatial feature is selected and randomly divided into
K RFSs in the band dimension [31]. Second, k kinds of data
augmentation methods, such as horizontal flip, vertical flip,

diagonal flip, and rotation with different angles, are performed
on RFSs. Finally, when all samples generated by ROS have
completed the aforementioned processing, a new training set
is obtained that not only balances the data distribution but also
avoids the risk of overfitting caused by repeated data. Compared
with the random data augment of each minority sample, the
ERFS can generate more diverse training samples, which is
conducive to HSI classification.

C. Convolutional Neural Network (CNN)

A well-designed CNN has been proved to be more accurate
for HSI classification [34], [35]. The classical CNN structure
includes convolution layers, nonlinearity mapping layers, and
pooling operation layers.

The convolution layer is the most characteristic part of the
CNN, for example, when the input of the CNN is a 3-D matrix
X with spectral-spatial information, its shape is m×m× d,
where m×m represents the size of the spatial information and
d is the number of bands, suppose the first convolution layer
contains k filters, the output of the jth filter can be represented
as follows [18]:

yj =

d∑

i=1

f (xi ∗wj + bj) , j = 1, 2, . . . , k (1)

where xi is the ith feature map of X; wj and bj represents
the weight and offset of the jth filter respectively; ∗ represents
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the convolution operation; and f(·) is an activation function
used to enhance the nonlinear representation of models. ReLU
is one of the activation functions that researchers used most
frequently [16], [36]. The ReLU function can be expressed as
follows:

σ(x) = max(0,x). (2)

Pooling, also known as undersampling, is mainly used to
reduce the size of feature maps, compress the number of pa-
rameters and reduce overfitting. It mainly includes max pooling
and average pooling.

Compared with other fully connected networks, the unique
design of the CNN lies in its local connections and shared
weights, which greatly reduces the number of parameters, speeds
up the learning rate, and reduces the possibility of overfitting to
a certain extent [37].

D. Ensemble Learning

The ensemble method is a metaalgorithm that combines sev-
eral machine learning techniques into a prediction model to
reduce variance, bias, or improve prediction. The classical en-
semble learning algorithms can be divided into three categories:
bagging [38], boosting [39], and stacking [40].

In bagging, the original dataset is randomly extracted (with
replacement) part of the samples to form a new dataset, which
is used to train subclassifier, and each subclassifier can be

generated in parallel because of its independence. The predic-
tion results of all subclassifiers are voted by the majority or
weighted to get the overall prediction results of the ensemble
model. The RF is an upgrade based on Bagging and adopts
two randomization ideas: random instance selection and random
feature selection [7].

Boosting, which is also known as adaptive resampling and
combining (ARCing) [11]. AdaBoost is the most famous algo-
rithm in this family and uses a complete dataset to train each
subclassifier, which is characterized by adjusting weights after
each iteration to improve the classifier’s attention to misclassi-
fied samples [41].

Stacking, also known as stacked generalization, is different
from the two methods described previously that use determin-
istic algorithms to realize ensemble, and stacking uses a sec-
ondary model to ensemble primary models. In short, the stacking
method first trains multiple primary learners with the original
training set, then trains the secondary model with the outputs of
the primary models, and resulting in a complete model.

III. PROPOSED APPROACH

In this article, a novel EECNN is proposed, which is inspired
by DSRoF [7]. First, the data preprocessing is completed through
ERFS, and then, the ensemble learning model with the CNN as
subclassifiers is used for classification, in which random feature
selection provides a subset of data for each CNN. Algorithm 1
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TABLE VIII
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TABLE IX
CLASSIFICATION RESULTS (%) OF THE SALINAS, RESPECTIVELY, OBTAINED BY RF, CNN, ECNN, ERFS+RF, ERFS+CNN, AND THE PROPOSED EECNN

introduces the process of this method in detail. This method
has a lower risk of information loss than using RUS in the
preprocessing step, and the feature extraction capability of the
CNN as subclassifiers is more powerful. Most importantly,
the EECNN framework can be used to solve the problem of
multiclass imbalance, which is regarded as one of the biggest
challenges in the HSI classification.

As described in Algorithm 1, Nl is the number of training
instances of the lth class, with a total of L classes. We sort

in descending order based on the number of instances of each
class, and N1 is the training size of the largest class 1. We
achieve Nl (1 ≤ l ≤ L) = N1 by ROS training samples from
each of the minority class with the oversampling rate α% =
(N1−Nl)/Nl · 100%, and the obtained dataset is defined as
Sc (2 ≤ l ≤ L). We designed A methods of data augmentation
such as horizontal flip, vertical flip, diagonal flip, and rotation
with different angles. Randomly split the feature set F of Sc into
A subsets Fc,a (a = 1, . . . , A), and different data augmentation
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Algorithm 1: ERFS-Based Ensemble CNN.
1: Training phase
2: Input: S = [X,Y ] = {xi, yi}Ni=1: training set, where

sample xi represents a 3-D pixel block containing
feature set F and yi represents its label; F : the size of F ;
L: number of classes; Nl: the number of training
instances of lth class; α%: resampling rate; A: number
of data augmentation methods; Mt (t = 2, . . . , T ): tth
subclassifier; T : number of classifiers; E = ∅: the
ensemble CNN model.

3: ERFS:
4: Sort the classes of the imbalanced data in descending

order according to their number of instances and keep all
the N1 instances of the largest class 1

5: for l=2:L do
6: α% = (N1−Nl)/Nl · 100%
7: Obtain the dataset Sc (c = 2, . . . , L) by randomly

resampling α% ·Nl instances from the original dataset
with replacement.

8: Randomly split the feature set F of Sc into A subsets
Fc,a (a = 1, . . . , A), and different data augmentation
methods were used for each Fc,a to obtain Sca.

9: end for
10: Build a new balanced dataset Sbalanced (c = 1, . . . , L) by

mixing the Sca with original training set S.
11: Ensemble CNN:
12: The size of feature subset Ff (0 < f ≤ F ) is given as f .
13: for i=1:T do
14: The feature subset Ff is extracted randomly from the

feature space F of Sbalanced by random feature
selection.

15: The training set Sf with feature subset Ff is used to
train a sub-classifier CNN Mt.

16: Save the trained model Mt.
17: end for
18: E = {Mt}Tt=1

19: Output: The trained E.

1: Prediction phase
2: Input: The ensemble E = {Mt}Tt=1; a new sample x∗.
3: Output: Class label

y∗ = argmax
T∑

1(M(x∗)=c,c∈{1,2,...L})

methods were used for each Fc,a to obtain Sca. A new balanced
dataset Sbalanced (c = 1, . . . , L) is built by mixing the Sca with
original training set S.

In the next phase, the feature subset Ff is extracted randomly
from the feature space F ofSbalanced by random feature selection,
and the training set Sf is used to train subclassifier Mt. The
overall prediction results of the ensemble model are obtained
by majority voting on the prediction results of all subclassifiers.

Finally, we get a fully trained model E = {Mt}Tt=1 that can be
used to classify multiclass imbalanced HSIs.

IV. EXPERIMENTAL RESULTS

A. Datasets

To evaluate the proposed ERFS-based Emsemble CNN al-
gorithm, three standard hyperspectral datasets were used in the
experiment: Indian Pines AVRIS;University of Pavia ROSIS; and
Salinas.

1) Indian Pines AVRIS is extremely imbalanced and consisted
of 145 * 145 pixels, and 200 spectral bands after removing 20
water absorption bands. The dataset was gathered by the AVIRIS
sensor over the Indian Pines test site in North-western Indiana
with 16 classes and 10 249 instances.

2) University of Pavia ROSIS was acquired by the ROSIS sen-
sor during a flight campaign over Pavia, northern Italy, consists
of 610 * 340 pixels, and 103 spectral bands. The dataset consists
of nine land cover classes and 42 776 instances.

3) Salinas was collected by the 224-band AVIRIS sensor over
Salinas Valley, CA, USA, consists of 512 * 217 pixels, and 204
spectral bands after removing 20 water absorption bands. The
dataset consists of 16 land cover classes and 54 129 instances.

The aforementioned three datasets are divided into indepen-
dent training sets and test sets, respectively, to verify the effect
of various algorithms in the experiment. Randomly selected
(without replacement) 5% labeled samples of each dataset as
training samples and the rest as test samples. Besides, we give
the class imbalance ratio (IR) of the dataset that can be obtained
by dividing the number of the smallest class by the number of
samples of the largest class to better verify the effectiveness of
the proposed EECNN. The IR of the original training set sampled
from three hyperspectral datasets is 123, 19.83, and 12.26,
respectively. More detailed information on the aforementioned
three experimental datasets is shown in Table I.

B. Experiment Settings

As mentioned previously, the Indian Pines AVRIS dataset
is the most imbalanced, and the other two datasets are larger
and have similar IR. Considering the differences in IR and
experimental conditions, we set the spatial feature size m×m
of Indian Pines AVRIS dataset with small data volume and large
IR as 25 × 25, which for University of Pavia ROSIS dataset and
Salinas dataset with larger data volume but small IR is 15×15.
Therefore, two different structures of CNNs as subclassifiers
are designed to accommodate different sample sizes, and they
are all convoluted by three convolutions (Conv.) layer, three
ReLU layers, and three pooling layers. The detailed structural
information of the two CNN models is given in Tables II and III,
respectively. In the proposed EECNN algorithm, the optimal
values of empirical parameters F (the size of feature subset)
and T (the number of sub-classifiers) need to be obtained from
experiments, so we decided F = (10, 20, 30, 40, 50) and T =
(5, 10, 20, 30).
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Fig. 1. Classification maps of the Indian Pines AVRIS (IR=123) obtained by (a) ground truth, (b) RF (OA = 75.68%, AA = 76.48%), (c) CNN (OA = 94.21%,
AA = 88.30%), (d) ECNN (OA = 96.16%, AA = 95.34%), (e) ERFS+RF (OA = 77.55%, AA = 80.35%), (f) ERFS+CNN (OA = 94.66%, AA = 92.27%), and
(g) proposed EECNN (OA = 97.57%, AA = 96.23%), respectively.

To evaluate the performance of the EECNN, described in
the previous section, RF, traditional CNN, Ensemble CNN,
ERFS-based RF, and ERFS-based CNN (recorded as RF, CNN,
ECNN, and ERFS+RF, ERFS+CNN) are utilized in the compar-
ative experiment. In this article, all experiments are performed
on a computer with 8-core 3.0 GHz CPU and 16.0-GB RAM
using Python 3.7 (64-bit). All the results are the average of the
algorithms run independently over ten times.

C. Evaluation Metrics

In the experiment, we choose overall accuracy (OA), average
accuracy (AA), F1 Score (F1), Recall, and Kappa (K) as eval-
uation indexes to measure the effect of various algorithms in a
multiclass imbalanced hyperspectral classification clearly. AA
and OA represent the average of the accuracies for each class
and the percentage of correctly predicted instances, respectively,
which are the most common indicators in classification tasks.
Recall is the percentage of instances correctly classified in

each class, which is considered as an important index to mea-
sure the performance of algorithms in a multiclass imbalanced
problem [42]. F1 score, also known as balanced F score, is
defined as the harmonic average of precision rate and recall
rate. Kappa is used for the consistency test. In the multiclass
imbalanced classification, the training model is biased, which
is more conducive to the classification of majority classes of
samples, and Kappa of the model with strong bias is low.

D. Results and Analysis

Tables IV–VI show the experimental results of the proposed
EECNN algorithm with different ensemble size T and feature
subset size F on Indian Pines AVRIS, University of Pavia RO-
SIS, and Salinas, including OA, AA, F1, Recall, Kappa, and
running time. The best experimental results are shown in bold.
In the experiment of Indian Pines AVRIS, when the ensemble
size T = 20 and the feature subset size F = 20, the proposed
EECNN algorithm has the highest OA, AA, F1, and Kappa,
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Fig. 2. Classification maps of the University of Pavia ROSIS (IR=19.83) obtained by (a) ground truth, (b) RF (OA = 86.67%, AA = 87.97%), (c) CNN (OA
= 95.65%, AA= 95.34%), (d) ECNN (OA = 96.44%, AA = 98.12%), (e) ERFS+RF (OA = 87.81%, AA = 88.49%), (f) ERFS+CNN (OA = 96.43%, AA =
96.14%), and (g) proposed EECNN (OA = 98.48%, AA = 98.37%), respectively.

which are 97.57%, 96.23%, 96.82%, and 97.23%, respectively,
which preliminarily proves the effectiveness and robustness of
the algorithm. For University of Pavia ROSIS and Salinas, the
proposed EECNN algorithm has the highest OA, AA, F1, Recall,
and Kappa when the ensemble sizeT = 20 and the feature subset
size F = 40, which are 98.48%, 98.37%, 98.21%, 98.08%,
and 97.89%, respectively, in University of Pavia ROSIS, and
99.34%, 99.30%, 99.27%, 99.26%, and 99.27% in Salinas. The
experimental results of the three datasets show that although the
Indian Pines AVRIS dataset adopts a larger spatial feature size
of 25 (15 for others), the classification effect is the lowest due to
the largest IR (IR=123), and the other two classification results
are also inversely proportional to the IR value.

Tables VII–IX show the experimental results of RF, CNN,
ECNN, ERFS + RF, ERFS + CNN, and the proposed EECNN
algorithm on the aforementioned three datasets, including OA,
AA, F1, Recall, Kappa, and running time. In the experiments of
three datasets, the proposed EECNN algorithm always has the
best classification effect. Figs. 1–3 show the ground truth (gt) of
Indian Pines AVRIS, University of Pavia ROSIS, and Salinas, and
their classification effect maps obtained by different algorithms.
In the Indian Pines AVRIS dataset, the OA and AA of the

proposed EECNN algorithm are 21.89% and 19.75% higher than
RF, 3.36% and 7.93% higher than the CNN, 1.41% and 0.89%
higher than the ECNN, respectively. In the University of Pavia
ROSIS and Salinas datasets with lower IR, the classification
effect of all algorithms are better than their performance in
Indian Pines AVRIS, and the classification effect of the proposed
EECNN algorithm is better than other algorithms. In addition,
the EECNN algorithm is more effective than the traditional
algorithm in the dataset with larger IR, and all the classification
effects of the traditional algorithms combined with the ERFS
are improved. Moreover, the results of F1, Recall, and Kappa
in all datasets also show that the proposed EECNN has better
classification performance than other methods.

Figs. 4 and 5, respectively, show the change curves of OA and
AA of the aforementioned algorithms when the spatial feature
size m×m changes. In Indian Pines AVRIS, set T = 20, E =
20, m = (25, 27, 29, 31, 33), and in University of Pavia ROSIS
and Salinas, set T = 20, E = 40, m = (15, 17, 19, 21, 23).
From Figs. 4 and 5, it can be seen that the performance of all
algorithms remains stable or increases slightly with the increase
of the spatial feature sizem, and the proposed EECNN algorithm
always works best.
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Fig. 3. Classification maps of the Salinas (IR=12.26) obtained by (a) ground truth, (b) RF (OA = 90.63%, AA = 93.88%), (c) CNN (OA = 95.23%, AA =
96.78%), (d) ECNN (OA = 98.58%, AA = 98.61%), (e) ERFS+RF (OA = 90.84%, AA = 94.77%), (f) ERFS+CNN (OA = 96.40%, AA = 98.04%), and (g)
proposed EECNN (OA = 99.34%, AA = 99.30%), respectively.

Fig. 4. Evaluation of the overall accuracy according to the size of spatial feature (m). (a) Indian Pines AVRIS. (b) University of Pavia ROSIS. (c) Salinas.

Fig. 5. Evaluation of the average accuracy according to the size of spatial feature (m). (a) Indian Pines AVRIS. (b) University of Pavia ROSIS. (c) Salinas.
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V. CONCLUSION

In this article, a novel ERFS-based ensemble CNN (EECNN)
algorithm is proposed to solve the multiclass imbalanced prob-
lem in the HSI classification. The EECNN mainly generates
training samples by ROS of dynamic sampling rate, and en-
hances the data in the RFS to get the balanced training set,
and constructs ensemble learning model with the CNN as sub-
classifiers for classification. The proposed method is compared
with other similar algorithms (RF, CNN, ECNN, ERFS+CNN,
ERFS+CNN) on three HSI datasets. The performance of this
method is evaluated by several methods. The experimental
results show that the proposed method provides an effective
solution to the multiclass imbalanced problem of HSIs, and it is
more effective than the existing algorithms.
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