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Lattice-Point Mutually Guided Ground-to-Aerial
Feature Matching for Urban Scene Images

Xianwei Zheng , Hongjie Li, Hanjiang Xiong, and Xiao Xie

Abstract—Ground-to-aerial feature matching bridges informa-
tion from cross-view images, which enables optimized urban ap-
plications, e.g., pixel-level geolocating and complete urban 3-D
reconstruction. However, urban ground and aerial images typically
suffer from drastic changes in viewpoint, scale, and illumination,
together with repetitive patterns. Thus, direct matching of local
features between ground and aerial images is particularly difficult
because of the low similarity of local descriptors and high ambiguity
in true–false match discrimination. For this challenging task, we
propose a novel lattice-point mutually guided matching (LPMG)
method in this article. We specifically address two key issues: 1)
reducing descriptor variance and 2) enhancing true–false match
discriminability. The former is solved by recovering the geometry
and appearance of the underlying image region in 3-D through
automatic view rectification on ground and aerial images. The
latter is circumvented by replacing the conventional mismatch
removal with an LPMG strategy. In this strategy, the topology
structure of repeated façade elements (i.e., lattice), and the high
reliable point matching seeds, are first extracted from the rectified
ground and aerial images. Then, the point matching seeds guide
the self-similar lattice tiles from two views to be precisely aligned,
thereby estimating an accurate transformation model from lattice
tile correspondences. Finally, the estimated model powerfully su-
pervises the differentiation of true and false matches from the entire
putative match set. Extensive experiments conducted on several
datasets show that our method can obtain a considerable number of
nearly pure correct matches from urban ground and aerial images,
significantly outperforming those existing methods.

Index Terms—Aerial oblique imagery, feature matching, ground
imagery, ground-to-aerial image matching, repetitive pattern.

I. INTRODUCTION

W ITH the rapid development of unmanned aerial ve-
hicle (UAV)-borne sensors and the popularization of

smartphones and consumer-level cameras, images from aerial
and street views have become easily accessible. While aerial
view images provide a larger and more complete range of top
views, street view images delineate points of interest and details
of urban façades. Establishing correspondence between street
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(ground) and aerial view images can facilitate a variety of urban
applications that require supplementary information from both
views, ranging from geolocating [1], [2], urban 3-D model-
ing [3]–[5], and autonomous driving [6] to ancient architecture
preservation [7]. However, establishing such correspondence is
a particularly challenging problem due to the drastic changes in
viewpoint, scale, and illumination between ground and aerial
images. Occlusion and repetitive patterns common in urban
scenarios also complicate the problem [8].

Image matching aims to find correspondence between two
or multiple overlapped images, which have been extensively
studied under different baselines and scenarios [9]–[14]. The
problem of image matching is typically solved by three steps:
local feature extraction and description, putative match con-
struction, and mismatch removal. Well localized feature points
and strongly discriminative descriptors can bring good input
to the subsequent matching stage. For this purpose, a variety
of local appearance features and descriptors have been devel-
oped [15], [16]. A notable milestone is scale-invariant feature
transform (SIFT) [17], which is designed to be invariant to scale
and illumination. Its variants, such as speeded-up robust features
(SURF) [18], affine SIFT (ASIFT) [19], and perspective SIFT
(PSIFT) [20], also attempt to improve its speed or invariance to
affine or perspective transformations. These local features can
also be assembled to handle different image conditions, as like
in MODS [21]. Due to the use of only local appearance for
descriptors, putative matches constructed with local features are
inevitably contaminated with mismatches.

Thus, mismatch removal is an essential step to discard false
matches (outliers) for true matches (inliers), which is usu-
ally implemented by restricting matches to satisfy geomet-
ric constraints of an underlying image transformation. In the
literature, numerous mismatch removal methods have been
developed mainly on the basis of statistical regression [22],
resampling [23], nonparametric interpolation [24], and graph
matching [25]. Among them, resampling-based methods, such
as RANSAC and its variants [26], are the most commonly used
in engineering applications. Methods based on nonparametric
interpolation or graph matching can generally achieve promising
performance but usually have high computational complexity.
Additionally, by incorporating piece-wise motion smoothness,
bilateral function-based motion modeling (BF) [27] and grid-
based motion statistics (GMS) [28] also yield good results in
single-source wide-baseline matching. However, these typical
matching systems are hardly effective on urban ground and
aerial images. From a practical point of view, feature descriptors
cannot be truly invariant under projective transformations [29].
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When abrupt viewpoint changes occur on two images, per-
spective deformations can severely undermine the local feature
extraction and matching.

To allow view-dependent matching using local features, many
studies have aimed to alleviate the difference in view angle.
One strategy is to apply view rectification to transform images
of arbitrary views into a standard view [30]–[33]. This task
can be done by detecting the vertical and horizontal vanish-
ing lines of urban façades to solve the camera rotation that
unwarps the view [34]. More generally, et al. [29] performed
view rectification by using transform invariant low-rank textures
(TILT) formed by repetitive patterns, which needs neither 3-D
geometry priors nor any intermediate low-level features (e.g.,
corners or edges). Although view rectification is helpful to
reduce descriptor variance, other nuisance factors, such as large
variation in scale and appearance, and repetitive patterns in
urban ground and aerial images can still cause ambiguities to
descriptors. As a result, the putative matches constructed from
those cross-view images are usually highly noisy and chaotic.
It is therefore particularly hard for existing mismatch removal
methods to create a separability constraint for such a putative
match set. A different way of matching local features between
ground and aerial images is to warp one view into another by
using camera pose and 3-D geometric information [3], [4], [10],
and performing feature matching on synthetic images. Some
of these methods have been successfully applied in practical
applications. The disadvantage is that these methods need to
reconstruct the 3-D geometry of scenes as prior, which may not
be necessary in other lower-level applications.

Instead of attempting to establish accurate point correspon-
dences, researchers have also focused on finding similarities
between ground and aerial images to serve a specific downstream
application. An active research field is geolocating, which aims
to estimate the geolocation of a street-level image based on
a database of referenced aerial view images. Considering the
rich pattern information of urban façades, many methods have
been developed for geolating by exploiting the near-regular and
self-similar structures of urban façades for matching [35]–[37].
Bansal et al. [35] proposed a method for matching façades
between ground and aerial images that relies on the calcula-
tion of statistical self-similarity between local patches on a
façade. They further devised a scale-selective self-similarity (S4)
descriptor for the self-similar structure of façades for match-
ing [36]. Repetitive façade elements can also be discovered
and represented by lattice tiles or motifs [38] and used as a
descriptor for façade matching [37], [39]. However, to exploit
the regularities of urban façades, these methods usually require
an additional segmentation step for accurate façade detection,
which is complex and costly. Moreover, their descriptors created
from repeated elements can only be assembled for façade-level
matching, which are unable to determine a unique tile for match-
ing. In recent years, deep learning-based methods [40], such as
WhereCNN [41], CVM-Net [2], and OriCNN [1], have also
made great process on ground-to-aerial matching for geolocat-
ing. Deep learning-based methods usually require large sample
data for training and their performance could be degraded if the
data distribution of the matching scenarios is different from those
of sample datasets. Furthermore, the methods used in geolocat-
ing only achieve image- or façade-level matching, whereas the

feature-level correspondences are still missed, which may boost
geolating accuracy from an average of 5–20 m level to a pixel
level (centimeter) [3].

In summary, direct matching local features between ground
and aerial images without 3-D information as prior remains a
problem. Basing correspondence solely on local appearance fea-
tures for urban ground and aerial images is extremely intractable.
The main difficulty lies on the inability to find a valid separability
constraint from a highly noisy point match set. Lattices extracted
from repeated elements of urban façades provide rich structural
information that potentially forms a natural complement to local
appearance features. Matching/aligning two lattices at tile level
can build a compact relationship between two façades, thereby
bringing strong structural constraints for reliable image transfor-
mation model estimation. In existing works, repetitive patterns
are considered to be negative to accurate patch- or feature-level
correspondences due to their inherent ambiguity [42]. For ex-
ample, [36] and [37] exploited the repeated patterns of façades
for ground-to-aerial image matching, but lack a solution to
determine a unique tile or a local feature for matching. However,
based on the spatial relationship between point features and
lattice tiles, it is possible to use point features as matching
indicators for lattice tiles. Although it is difficult to find all
the exact feature matches from a highly noisy putative set at
once, obtaining a few correct ones is feasible. Correct matches
with feature points that overlap with or are adjacent to lattice
tiles from two views are able to link two unique tiles together
and therefore align two lattices. As a result, the local feature
matching and the unique tile matching can be well coupled and
benefit from each other.

To this end, we propose a lattice-point mutually guided feature
(LMPG) method for urban ground and aerial images. Given a
pair of ground and aerial view images, we first identify the rough
building façades with an efficient local feature classification.
By extracting and recovering the low-rank textures of urban
facades, view rectification is performed on both view images
to transform them into an orthorectified view, thereby making
them more matchable. Then, the two key ingredients, lattices of
building façades and point matching seeds, are obtained from the
orthorectified images. To meet the quality requirement for subse-
quent matching, we incorporate the horizontal and vertical edge
features from the orthorectified images to discover lattices with
a good structure. Moreover, two simple yet effective constraints,
i.e., a repeatability constraint (RC) and a triangular constraint
(TC), are applied to ensure strict filtering on the putative match
set, thereby generating point matching seeds with high reliability
but are few in number. The mutually guided feature matching is
accomplished after being equipped with well-structured lattices
and point matching seeds. One point matching seed is first
selected as an indicator to link two unique tiles, respectively,
from two views, hence achieving a coarse alignment of two
lattices. A refined alignment of two lattices is conducted by
minimizing the total transformation error of all point matching
seeds, which is computed by shifting one tile to the other pixel
by pixel. During this process, the transformation model between
two ground and aerial images are progressively estimated and
optimized. Eventually, the resultant model imposes geometric
constraints on the putative set to discriminate between all true
and false matches.
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Fig. 1. Workflow of the proposed method.

The rest of this article is organized as follows. The methodol-
ogy is described in Section II. Experimental results are presented
in Section III, and discussion is provided in Section IV. Section V
concludes this article.

II. METHODOLOGY

This study aims to exploit the rich pattern information of
building facades to assist in the task of ground-to-aerial feature
matching in urban areas. The main workflow of the proposed
matching pipeline is shown in Fig. 1. The input consists of a
pair of ground and aerial view images, and the output consists of
the reliable feature matches directly obtained from raw images.
First, view rectification is performed on both view images (see
Section II-A). Second, the ortho-rectified images from both
views are processed, which consist of the extraction of lattices
from building facades (see Section II-B), and the generation
of point matching seeds (see Section II-C). Finally, the lattices
of building facades and point matching seeds coupled to
undertake the mutually guided feature matching are described
in Section II-D.

A. View Rectification

In our matching pipeline, view rectification serves two im-
portant purposes. One is to transform images of arbitrary views
into an orthorectified view, thereby recovering the geometry
and appearance of the underlying planar region in 3-D, which
allows corresponding features from two views to have more
similar descriptors. The other is to facilitate the use of horizontal
and vertical edge features for well-structured lattice discovery
from orthorectified views, thereby enabling the precise align-
ment of two ground and aerial tiles/lattices. Among all view
rectification methods, the TILT-based implementation is highly
robust to significant image deformation and corruption, which
needs neither 3-D geometry priors or any intermediate low-level
features but only a user-specified low-rank texture region as
input. For further details, readers can refer to [29]. In this study,
we first use an undirected feature graph to identify local features
representing repetitive patterns of building facades. Then, we
perform a refined clustering on the identified features to obtain
such a low-rank texture region.

A key insight is that local features that correspond to the
same repetitive pattern are spatially close and share a similar
appearance and scale [43]. Based on this observation, we are

Fig. 2. Feature graph segmentation for different types of repetitive patterns.

able to group the local features representing different kinds of
repetitive patterns. This task is performed by first constructing an
undirected feature graph Gf = (V,Ef ) on local SIFT features
extracted from a given ground or aerial image. In the graph,
V = {(xi, si, di)}Ni=1 denotes N vertices of graph Gf . Each
vertex vi in V consists of feature location xi, scale si and
corresponding descriptor di, and Ef represents the edges. In the
initial stage,Ef is fully connected. Then, the graph is segmented
by applying three conditions to determine the connectivity on
the edges, as illustrated in Fig. 2. In Fig. 2, conditions 1© and 2©
constrain that two connected vertices vi and vj are spatially close
and with similar scales, where c in condition 1© is a constant set
to 10 [43]. Conditions 3© constrains two connected vertices vi
and vj share at least one visual word, where Ki, Kj are the top
K = 50 nearest visual words assigned to di and dj (descriptors
of vi and vj) from a precomputed visual vocabulary of visual
words provided in [43].

After disconnecting the edges that do not satisfy these three
conditions, all the vertices in Gf are segmented into a set of dis-
joint groups representing various types of repetitive patterns, and
a number of isolated points representing nonrepetitive patterns.
Generally, the dominant building façade in an image has a higher
repetition intensity than other objects, and can receive more
vertices in the segmented graph. Thus, for these disjoint groups,
the one with the highest number of vertices can be identified
as the repetitive pattern corresponding to a dominant facade,
which is denoted as Grep,f . The rectangular region covered by
Grep,f is then defined as the rough facade region denoted as Rf .
In practice, for the very high resolution images, objects with
dense repeated elements, such as trees and grassy areas, may
receive much more vertices than facades. In this case, whenGf is
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Fig. 3. Example of façade identification and low-rank texture region detection.
(a) Repetitive patterns identified by local features grouped with different colors.
(b) Mean-shift clustering on local features identified as façade (white points are
obtained cluster centers). (c) Extracted candidate low-rank texture region.

presegmented with a small K = 10, features (vertices) obtained
from facades cannot be grouped, whereas features (vertices)
from objects with dense repeated elements can be grouped and
thus removed in advance.

In general, Rf is too large to be used as the input window for
TILT because it may contain considerable noise and background
information that disturb the solving of an accurate transforma-
tion matrix for low-rank texture recovery. However, selecting a
small region from Rf may lead to limited information, which is
insufficient to calculate a transformation matrix representing the
entire facade. It is also not feasible to use a predefined window
with fixed size for facades with varied shapes. To select an
appropriate candidate low-rank texture region that is adaptive
to different facades, we first select a window W with its size as
2/3 width and length of Rf (This size helps to keep the selected
window has a similar shape to building facade and contains
enough information for TILT-based rectification). Then, we find
a suitable location as the window center. As Rf only defines the
rough building facade area, direct assigning its center point as
the center of W may cause W to exceed the facade boundary.
Thus, we perform a refined mean-shift-based clustering [44]
on Grep,f to find a location that is close to the center of the
actual building façade. We use a default bandwidth of 20 to
classify the vertices of Grep,f into a set of smaller clusters, with
their cluster centers denoted as C = (c1, c2, . . ., cn). Then, we
calculate a location Pc by averaging the coordinates of C as
follows:

Pc =

(
n∑

i=1

ci

)
/n (1)

where Pi is is assigned as the center of W , and we denote
the image region covered by W as Rc. Using Rc as the in-
put candidate low-rank texture region, TILT simultaneously
recovers the intrinsic low-rank texture and the unknown image
transformation, thereby transforming an arbitrary view into an
ortho-rectified view. An example of rough facade identification
and low-rank texture region detection is presented in Fig. 3.

B. Lattice Extraction

Building façades are commonly a type of near-regular and
translationally symmetric texture that consists of multiple re-
peated pattern elements (e.g., windows). Previous work [45]–
[47] has demonstrated that the structure of any of such texture
can be generated by a pair of shortest vectors (t1, t2), saying that
the orbits of (t1, t2) form a 2-D quadrilateral lattice representing
the repeated texture elements and their topological structure.

Their idea for lattice detection is mainly based on proposing an
initial lattice by seeking t1 and t2 neighbors with point detector,
and subsequently growing this initial lattice. However, using
randomly distributed point features to search for t1 and t2 is
prone to producing lattices with deformed structures and is un-
stable in the number of extracted tiles. In our task, the extracted
lattice should correctly represent the structure and topology of
repetitive pattern of a facade, otherwise it could be difficult to
establish one-to-one tile correspondence between lattices from
two views. Moreover, for large building facades, the extracted
lattice should contain as many repeated elements as possible.
This condition guarantees that lattices from two views can have
overlapped tiles, thereby facilitating the correspondence model
estimation.

For high-quality lattice extraction, we seek a pair of (t1, t2)
lattice generating vectors from the ortho-rectified facades by
incorporating the edge features distributed along horizontal and
vertical directions, and generate the initial lattice by a periodic
translation of this (t1, t2). As the accurate façade region is
unknown, we use the recovered candidate low-rank region R′

c

as an input for initial lattice generation. For simplicity, vectors
t1 and t2 can be viewed as the vertical and horizontal edge of
an initial lattice tile. The detailed procedure of initial lattice
generation is as follows:

(1) Generating edge intensity histograms. Extract the binary
edge map of R′

c with canny operator, and generate the edge
intensity histograms along the vertical and horizontal directions.
As illustrated in Fig. 4, the red curves in (a) and (b) are the
generated vertical and horizontal edge intensity histograms,
respectively, denoted asHv andHh. TheHv andHh are actually
two vectors and each of their element records the number of edge
pixels at a specific x or y position.

(2) Finding starting point of vectors t1 and t2. Find two
peaks from the vertical and horizontal edge intensity histogram,
each having a maximum intensity value in the corresponding
histogram; use the positions of these two peaks to determine
a point as the starting point of vectors t1and t2. As shown
in Fig. 4(a) and (b), x0 and y0 are the positions of the two
maximum peaks on Hv and Hh, respectively. Here, due to the
disturbance of noise and occlusion, we consider the position
where a peak with a maximum value localizes the boundary of a
desired repeated element with the highest probability. Thus, two
localized boundaries determine a corner point of that repeated
element (their intersection point), which is used as the starting
point of vectors t1 and t2, as point (x0, y0) shown in Fig. 4(c).

(3) Determining the vector lengths of t1 and t2. Generate
the vertical and horizontal autocorrelation histograms for Hv

and Hh (this can be simply implemented by inputting the two
vectors into MATLAB autocorr function); find two smallest
intervals with maxima autocorrelation from the two autocorre-
lation histograms, and assign the two intervals as the lengths of
vectors t1 and t2. Note that multiple small repeated elements can
form a larger repeated unit. Thus, repeated units with different
sizes (lengths and widths) can have different repetition intervals
along vertical and horizontal directions. As shown in Fig. 5,
the local maxima points in vertical or horizontal autocorrelation
histograms indicate the intervals of different repeated units.
Among these local maxima points, the one with the smallest
interval implies the interval of a smallest repeated unit, as the
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Fig. 4. Finding starting point of t1 and t2 from edge intensity histograms: (a) and (b) are vertical and horizontal edge intensity histograms, and (c) starting point
of vector t1 and t2 (yellow triangle).

Fig. 5. Finding repetition intervals of vector t1 and t2 from edge autocor-
relation histograms: (a) and (b) are autocorrelation histograms for vertical and
horizontal edge intensity histograms, respectively.

red dot lines indicate in Fig. 5(a) and (b). These two intervals
are then assigned as lengths of vectors t1 and t2.

(4) Constructing the initial lattice. After steps (1)–(3), a pair
of initial (t1, t2) lattice generating vectors is obtained. Then, we
use this (t1, t2) to produce an initial lattice tile, and periodically
translate this tile to generate a lattice withm rows andn columns
that cover low-rank texture region R′

c.
Once the initial lattice is generated, a heuristic mean-shift

belief propagation [47] is used to simultaneously grow and refine
the lattice tiles. An example of the initial lattice and the lattice

Fig. 6. Example of lattice extraction: (a) extracted initial lattice where the
two yellow lines represent the initial (t1, t2) lattice-generating vectors and (b)
lattice after refinement and expansion.

after refinement and expansion is shown in Fig. 6, where the
two perpendicular yellow lines indicate the initial (t1, t2) lattice
lattice generating vector.

From Fig. 6, we can also observe that tiles in the initial lattice
overlapped with trees are rejected because of the unaccepted
appearance similarity between those tiles and the initial tile. It
is necessary to exclude such tiles because the occluded façade
region may not contain the same repeated elements. Within the
lattices extracted from ground and aerial façades, we fine-tuned
the rectified aerial image to force each pair of ground and aerial
image to have the same length-to-width ratio. Suppose that
(tg1, t

g
2) and (ta1 , t

a
2) are lattice generating vectors of a pair of

ground and aerial images, and we stretch the aerial image along
the horizontal direction with a factor (‖ta1‖‖tg2‖)/(‖ta2‖‖tg1‖),
where ‖ · ‖computes the moduli of a vector. This operation can
make the geometry and appearance of two ground and aerial
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Fig. 7. Local feature repeatability calculation: (a) original repeatability cal-
culation and (b) modified repeatability calculation.

facades more similar, thereby help to mitigate the descriptor
difference between two correspondence features, except for
scale difference.

C. Point Matching Seed Generation

As matching lattice tiles from two views is inherently am-
biguous due to their self-similar structure, we generate a small
number of highly reliable point matching seeds from the putative
set, and use them as a guidance for corresponding lattice tiles.
Given a pair of orthorectified ground and aerial images, we distill
such matching seeds by first constructing a putative match set,
e.g., ASIFT, with a nearest-neighbor matching on extracted local
features, and then strictly filtering the putative matches (after
ratio test) with two simple yet effective constraints, that are, a
RC and a TC.

RC. Given a pair of local features fg and fa from two
overlapped images, as illustrated in Fig. 7(a), each consisting
of a keypoint location and a circle region with radius equal to its
scale, the overlap error is Oe = 1− C/A ∪B. Here, A, B, C,
represent the area of fg , fa′

(reprojected fa) and the overlapped
region of fg and fa′

.
According to [48], local feature repeatability informs that two

features of a correct match should have an overlap error less
than 0.4 when reprojecting one feature from an image onto an
matched image. Mishkin et al. [49] argued that local feature
repeatability is too strict a condition for successful matching
because the affine adaption procedure can cause the drop in the
number of correct matches. However, this condition is suitable
for our task, which aims to strictly filter the putative matches to
obtain the high reliable ones. The problem is that the overlap
error calculation requires a known transformation model for
reprojection operation, which is to be solved subsequently. To
address this problem, we adjust the condition of local feature
repeatability as a simple RC. In Fig. 7, we can observe that
the keypoint location and shape/area of the reprojected feature
actually determines this overlap error. In our case, each pair of
ground and aerial images is transformed into an orthorectified
view and their façades are stretched to maintain the same length-
to-width ratio. Thus, reprojecting a feature from an aerial image

Fig. 8. Triangular constraint.

into a ground image does not change much in the shape of its
descriptor support region, and vice versa. As shown in Fig. 7(b),
with two features fg and fa of a match, the adjusted overlap
error is calculated as

Oe = 1−B/A ∪B = 1− π(sa′)2

π(sg)2
(2)

where Sa′
= Sa‖tg1‖/‖ta1‖, Sg , Sa are feature scales of fg, fa,

and tg1, ta1 are t1 lattice generating vector sought from a given pair
of ground and aerial images. Although RC does not consider the
real location of the reprojected features, it is able to incorporate
feature area requirements early on to reject a large number of
unwanted matches.

TC. To obtain the desired point matching seeds, we apply a TC
to refine the matches filtered by RC, which is partially based on
feature motion consistency theory [50]. The creation of an exact
motion model for correspondence between ground and aerial
images is complicated. Here, we instead use a joint topological
relation of a group of three matches to impose constraints on
feature motion smoothness. As illustrated in Fig. 8, we suppose
that (p1, q1), (p2, q2), and (p3, q3) constitute a group of three
matches after filtering by RC, and p1, p2, p3 and q1, q2, q3 are
the corresponding feature points from ground and aerial images,
respectively. Thus, TC restricts that the three feature points from
the same image are not all inside the same tile and noncollinear.
The constructed triangles T (p1, p2, p3), T (q1, q2, q3) should
satisfy the following two conditions:⌊

d1
d2

⌋
=

⌊‖tg1‖
‖ta1‖

⌋
; �θp1� = �θq1� , �θp2� = �θq2� (3)

where d1 and d2 represent the length of edge p1p2 and q1q2, and
‖tg1‖, ‖ta1‖ compute the moduli of vector t1 sought in the step of
lattice extraction (i.e., the length of a lattice tile) for the ground
and aerial images, respectively. θp1 , θ

q
1, θ

p
2 , θ

q
2 are the angles at

the corresponding vertices. �g� is the floor function. The number
of outliers is greatly reduced after filtering by conditions in (3).
In this manner, RANSAC is capable of creating a geometrical
constraint for discarding outliers while retaining inliers. There-
fore, TC also involves a RANSAC to finally determine the point
matching seeds.

D. Mutually Guided Feature Matching

Within the obtained lattices and point matching seeds, the
LMPG can be performed. This condition is started by establish-
ing the tile correspondence under the guidance of point matching
seeds, followed by progressively estimating the optimized trans-
formation model from tile correspondences, and finished with



ZHENG et al.: LATTICE-POINT MUTUALLY GUIDED GROUND-TO-AERIAL FEATURE MATCHING FOR URBAN SCENE IMAGES 4743

Fig. 9. Shift error between two ground and aerial lattices after coarse
alignment.

identifying all true matches with the supervision of the estimated
model.

Based on the topology of lattice structure, only a pair of tiles
being matched is enough to derive the complete tile correspon-
dences between two lattices. To find such a tile match, we apply
a coarse-to-fine alignment strategy. Here, for convenience, we
denote the collection of the point matching seeds as Mseed, and
denote the feature points of Mseed from a ground image Ig and
an aerial image Ia asF g andF a, respectively. We first search for
one point match fromMseed, with their feature points overlapped
with two tiles, respectively, from two views. We denote this pair
of tiles as (T g

i , T
a
i ). Here, in the extreme condition, if the point

matching seeds do not overlap with any of the extracted lattice
tiles, we can perform a nearest neighbor search to obtain such
a pair of tiles. Due to the large-scale difference between the
ground and aerial images, the lattices extracted from Ig and Ia

usually exhibit a certain shift on tile boundaries along the vertical
and horizontal directions, as indicated by the errors δ1 and δ2 in
Fig. 9.

Therefore, when the point match from Mseed is directly used
as the matching indicator, a tile may be wrongly matched with
a neighbor of its correct match. To solve this problem, we
use a tile distance index (TDI) to allow a pair of tiles to be
matched with high probability. This TDI is defined as the total
transformation error of all point matching seeds when using a ho-
mographgy model computed from corner point correspondences
of (T g

i , T
a
j ). The smaller the TDI, the higher is the probability

that the two tiles are matched. Given a tile T g
i , it is able to find

a tile T a
x from T a

j and its eight neighbors that has a minimum
TDI with T g

i . We regard this T a
x as a correct match of T g

i .
Note that identifying (T g

i , T
a
x ) only builds a coarse alignment

between two lattices because the deviations between corre-
sponding corners or boundaries of T g

i and T a
x could still exist.

Thus, based on minimizing the transformation error of the point
matching seeds, a refined alignment is further applied on the two
tiles T g

i and T a
x . This is done by shifting T a

x along the vertical
and horizontal directions pixel by pixel, and finding a location
that derives a minimum TDI for T g

i and T a
x . We find that the TDI

of T g
i and T a

x decreases with an increase toward shifting along a
certain direction in the range of half-length or width ofT a

x . Thus,
we can easily find a location that achieves a minimum TDI forT g

i
and T a

x . During the process of coarse-to-fine tile alignment, the
transformation model between two façades is actually progres-
sively estimated and optimized until a minimum TDI is obtained.
As the point matching seeds are extremely few and the number

Fig. 10. Local dataset. (a) Five ground and aerial image pairs with different
architecture types and visual appearances of buildings from local dataset I. The
first row shows street-level building images collected by a mobile phone, and
the second row shows the respective aerial oblique images. In the third row,
rectangles in different colors indicate the locations of the aerial images. (b) Two
image pairs from local dataset II.

of searched tiles in coarse matching is only nine, the entire
coarse-to-fine tile alignment is highly efficient. Transformation
model computed from lattice tile correspondences is generally
highly reliable because of the strong restriction imposed by the
lattice structure. We denote the resultant model asHa→g and use
it to filter the entire putative set for true matches. For matches
that satisfyHa→g with a transformation error, no more than three
pixels [49] are classified as true matches. We have to emphasize
that when two lattices are well aligned, the corner points of their
overlapped tiles are also established correspondences. Thus,
correspondence from the lattice corner points and local feature
points together determine the final point correspondences for a
pair of ground and aerial images.

III. EXPERIMENTAL RESULTS

In this section, we provide the experimental results and com-
parisons with other sophisticated methods to evaluate the effec-
tiveness of the proposed LPMG. The datasets are first described,
and then the results for the different datasets are presented.

A. Datasets

We first employed two challenging local datasets (termed as
local dataset I and II) obtained from Wuhan University in the
experiments, as shown in Fig. 10. The local dataset I contains
a set of oblique images captured by UAVs and a number of
street-level view images collected by a mobile phone. For the
purpose of detailed evaluation, five ground images (pair L1–L5),
which contain buildings with different heights, architectural
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Fig. 11. Four ground and aerial image pairs with diverse buildings from public
dataset.

styles, and degrees of occlusion are selected in our experiment.
The corresponding aerial image regions are manually cropped
from airborne oblique images. Fig. 10(a) shows the selected
image regions, in which the drastic difference between ground
and aerial images, in terms of image resolution, viewpoint, and
illumination, are clearly visible. Furthermore, the temporal and
sensing disparities make those ground and aerial image pairs
visually different, bringing extra difficulties in matching with
local appearance features. The local dataset II contains two
image pairs that are captured in two architectural scenes of
Wuhan University, as shown in Fig. 10(b). The aerial images
are captured at a relatively close range. For both datasets, the
repeated windows of building façade are obvious.

To further evaluate the generalization ability of the proposed
LMPG in different scenes, we also included those public datasets
in experiments. As mentioned in [10], few large-scale publicly
available datasets have ground and aerial images for the same ar-
chitectural scene. Many released datasets are specifically meant
for the task of urban 3-D reconstruction, and each dataset only
contains complete ground and aerial image pairs for one build-
ing. To include diverse buildings for evaluation, we collected
four image pairs from four public datasets, as shown in Fig. 11.
The image pair P1–P4 is from BF [27], Centre of Dortmund [51],
Zeche of Zurich [51], and SWJTU-BLD [4], respectively. In
Fig. 11, the drastic variation in viewpoint between ground and
aerial images is visible. However, for the purpose of optimized
3-D reconstruction, those images are captured at a relatively
close range; thus, both the ground and aerial images have a high
resolution.

B. Results on Local Dataset

In this section, we present some relevant results of LMPG
conducted on the local dataset, which include some intermediate
results (from local datast I) for different steps of LMPG and the
final ground-to-aerial feature matching results and comparisons.

1) Results of Different Components of LMPG: As a nec-
essary step, view rectification is first performed on both the
ground and aerial images. Some results are shown in Fig. 12,
where the first column is the different repetitive patterns obtained
with SIFT feature classification; the second column shows the
extracted candidate low-rank texture region (red window) and
recovered texture region returned by TILT (green window); and
the third column displays the orthorectified images after view
rectification. In Fig. 12, by extracting the reasonable candidate
low-rank texture regions from rough building façades, TILT can
successfully recover the underlying image transformation and

Fig. 12. Results of view rectification. The first column is the repetitive patterns
identified by local features with different colors; the second column displays the
original (in red) and recovered low-rank texture regions (in green); and the third
column shows the orthorectified images.

rectify the images of arbitrary views into orthorectified views.
Thus, the large difference in viewpoint between ground and
aerial images is corrected.

After view rectification, lattices are extracted from the or-
thorectified views of the ground and aerial images. To evaluate
the effectiveness and necessity of the proposed solution for
lattice extraction, the method developed by [47] as a representa-
tive is also selected for comparison. The extracted lattices were
projected back into the original view to allow good inspection.
Some examples are presented in Fig. 13. As shown in the first row
of Fig. 13, lattices extracted by [47] cannot meet the demand for
the subsequent ground-to-aerial feature matching. For example,
the two lattices in the first and second columns only cover
different small parts of the same building façade, which have
no overlapped tiles for establishing correspondences. Lattices in
the third and fourth columns are seriously distorted, and are also
difficult to align finely. The results from [47] are not surprising
because their method is not specially designed for urban building
façades; it does not consider the pattern regularities of building
façades but only uses the scattered point features to seek t1 and
t2 neighbors, which are unstable in delivering well-structured
lattice tiles. Taking advantage of the good initial region for lattice
discovery and the exploiting pattern information of building
façades, our solution can extract high-quality lattices with a more
reasonable structural representation of repeated façade elements.

In our study, point matching seeds are adopted as matching
indicators for aligning lattice tiles from two views. As a result, it
is crucial to extract a few but highly credible matching seeds from
noisy putative matches. To verify the effectiveness of the two
constraints, i.e., RC and TC, for point matching seed generation,
some visual effects of filtering putative matches with RC and TC
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Fig. 13. Qualitative comparison results of lattices extracted by different methods. The first and second rows are lattices derived by [47] and the proposed method,
respectively.

Fig. 14. Analysis of RC and TC for point matching seed generation. From the first to last row are initial putative matches, matches after RC and TC filtering,
respectively.

are presented in Fig. 14. In all our experiments, we use the ASIFT
feature for putative match construction. Acting on highly noisy
putative matches, RC helps to filter out most significant outliers,
while TC further eliminates matches that have an inconsistent
motion with inliers. Considering the results after TC, we can
observe that although the finally obtained point matching seeds
are few in number, they are highly reliable for use as matching
indicators for lattice tiles.

2) Matching Results on Local Dataset I: Based on the ex-
tracted lattices and point matching seeds, the final mutually
guided feature matching is conducted on each pair of the selected
ground and aerial images. The qualitative results are presented
in Fig. 15, which show that the proposed LMPG can be success-
fully applied to urban ground and aerial images, and achieved
promising matching performance consistently on image pairs
with different conditions.

We also tested a considerable body of existing matching
methods on the selected datasets. However, most of them almost
completely failed. To help evaluate the proposed method, we
selected for comparison the sophisticated matching methods
GMS [28], SparseVFC [24], and BF [27], which have avail-
able implementations. To ensure fairness, all methods use the

TABLE I
QUANTITATIVE COMPARISON RESULTS OF DIFFERENT METHODS

Nc denotes the number of correct matches, and Nt represents the total number of
obtained feature matches.

ASIFT feature for matching, and the common ASIFT matcher
that uses RANSAC for mismatch removal is also included for
comparison. For those compared methods, a ratio test at standard
0.66 ASIFT threshold is conducted after the nearest-neighbor
matching. The comparison results are listed in Table I, where
correct matches are manually checked.

The results in Table I show that the ASIFT matcher obtains
no correct matches in most cases except in image pair L3,
demonstrating that basing correspondence solely on local
features for urban ground and aerial images is intractable.
Similar to ASIFT, GMS achieves no correct matches in
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Fig. 15. Matching results obtained by the proposed LMPG on local dataset I.

Fig. 16. Qualitative comparison results for image pair L2 under original view: (a) ASIFT, (b) GMS, (c) SparseVFC, (d) BF, and (e) proposed LPMG.

Fig. 17. Qualitative comparison results for image pair L5 under original views: (a) ASIFT, (b) GMS, (c) SparseVFC, (d) BF, and (e) proposed LPMG.

all cases probably because the local grid-based motion
smoothness is miscomputed in the presence of large perspective
deformations and repetitive patterns. The SparseVFC that bases
correspondence on the estimation of vector field consensus of
true matches can only obtain very few correct matches in image
pairs L1 and L4. By incorporating global motion consistency,
BF achieves better performance than the former three methods
in terms of the obtained correct matches, but the matches are still
few in number. In other words, when the descriptor similarities
weaken significantly in case of ground-to-aerial feature
matching, all the compared methods seem unable to differentiate
true and false matches. Contrary to these existing methods, the
numeric results of the proposed LMPG are deemed good for all

the five pairs of ground and aerial images. Taking advantage of
view rectification, we can mitigate the potential deformations
of ground and aerial images, thereby making images from
the two views more matchable. Moreover, the obtained nearly
pure correct matches reveal the strong discriminability of
the transformation model that results from matching in a
lattice-point mutually guided manner, which we consider as the
key to successful ground-to-aerial feature matching.

The visual effects of different matching methods are shown
in Figs. 16 and 17, where results from image pairs L2 and L5 are
selected as a reference (with aerial images from two different
large oblique images). It can be seen that the qualitative results
of different comparison methods are visually consistent with the
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Fig. 18. Qualitative comparison results for image pair L2 under rectified views: (a) ASIFT, (b) GMS, (c) SparseVFC, (d) BF, and (e) proposed LPMG.

Fig. 19. Qualitative comparison results for image pair L5 under rectified views: (a) ASIFT, (b) GMS, (c) SparseVFC, (d) BF, and (e) proposed LPMG.

TABLE II
QUANTITATIVE COMPARISON RESULTS OF DIFFERENT METHODS ON RECTIFIED

VIEWS

quantitative results in Table I. The erroneous matches from the
results of the compared methods are clearly visible, especially
for ASIFT and GMS.

Considering the uncertainty of whether existing methods can
effectively function after view rectification, we further apply the
four other methods on the rectified views to form a comprehen-
sive comparison. The quantitative results are listed in Table II.

In Table II, most methods can witness a slight improvement
in terms of the number of obtained true matches in some image
pairs after view rectification. However, the obtained true matches
are still few and the false matches increase rapidly. Thus, the
analysis results imply that finding a powerful separation model
for matches constructed from ground and aerial images is indis-
pensable even when view rectification is employed. The qualita-
tive comparison results from orthorectified views for image pairs
L2 and L5 are also shown in Figs. 18 and 19. All the matching
results are projected back into the original view to ensure good
inspection.

In Figs. 18 and 19, all the compared methods still failed to
deliver acceptable matching results, and the messy matches can
be easily found in the results of the different compared methods.
Although projective deformations can be mitigated by view rec-
tification, the repetitive patterns still have a strong effect on local
feature matching. This fact is often overlooked by the existing
feature matching systems. For high-resolution images, the local
features extracted from repeated image regions are sometimes
still distinctive because of the rich detail differences between
repeated elements. However, for low-resolution images, such
detail differences can be smoothed, which significantly weaken
the distinctiveness of the extracted local features. This condition
may result in a large amount of ambiguous matches, which is
exactly the case of ground-to-aerial feature matching in urban
scenarios. Without a powerful separation model, it is hard to
judge whether the two features of a match come from the same
repeated element or different repeated elements. For example,
in Figs. 18(d) and 19(d), BF seems to achieve a considerable
number of true matches from ground and aerial façades, but
actually few of them are correct. In contrary, by estimating the
accurate homography model, LPMG can differentiate the true
and false matches from those ambiguous matches.

3) Matching Results on Local Dataset II: Different from
local dataset I, the aerial images in local dataset II are captured
at a relatively closer range and they are not cropped. Hence, the
complex backrounds of the two aerial images are clearly visible.
The numeric matching results obtained by different methods
are listed in Table III. The overall situation is similar to the
quantitative comparison results on local dataset I. The ASIFT
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Fig. 20. Matching results obtained by different methods on local dataset II: (a) ASIFT, (b) GMS, (c) SparseVFC, (d) BF, and (e) proposed LPMG.

Fig. 21. Matching results of LMPG on public datasets.

TABLE III
MATCHING RESULTS OBTAINED BY DIFFERENT METHODS ON LOCAL

DATASET II

Nc denotes the number of correct matches, and Nt represents the total number of
obtained feature matches.

and GMS are completely failed in two scenes. The SparseVFC
and BF can obtain a few correct matches on pair L6, but obtain
no correct matches on pair L7. The proposed LPMG relies on
information from both local features and geometric structure
of building facades, is able to deliver stable matching results.
The visual effects are shown in Fig. 20. All the results confirm
the potential of the proposed LPMG in ground-to-aerial feature
matching for urban building images.

C. Results on Public Dataset

To validate the effectiveness and generalizability of the pro-
posed LMPG, we also conducted experiments on the four image
pairs from those public datasets, as shown in Fig. 11. The
final matching results obtained by the proposed LMPG for the
four image pairs from public datasets are presented in Fig. 21.
The results show a similar performance to that on the local
dataset, revealing the robustness of the proposed LMPG for
images from different architectural scenes and with different
viewing angles. LMPG is capable of processing façades that are
partially or completely covered by near-regular and repetitive
textures.

To evaluate the proposed LMPG, we also conducted the
ASIFT, GMS, SparseVFC, and BF on the public datasets for
comparison. The quantitative results of different methods per-
formed on the four image pairs from the public datasets are listed
in Table IV.
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Fig. 22. Qualitative comparison results for image pair P1: (a) ASIFT, (b) GMS, (c) SparseVFC, (d) BF, and (e) proposed LPMG.

Fig. 23. Qualitative comparison results for image pair P2: (a) ASIFT, (b) GMS, (c) SparseVFC, (d) BF, and (e) proposed LPMG.

TABLE IV
QUANTITATIVE COMPARISON RESULTS OF DIFFERENT METHODS

Nc denotes the number of correct matches, and Nt represents the total number of
obtained feature matches.

The results in Table IV show that the performance of ASIFT
and VFC are similar to that of the local dataset, revealing that
those two methods are unable to match images with repetitive
patterns and abrupt changes in viewpoint and illumination. The
results of GMS show that compared with the complete failure
on the local dataset, GMS is able to find correct matches from
image pairs P2 and P3 on the public datasets. The reason may
be that image pairs P2 and P3 has a high resolution and the
façades are small and have a relatively weak repetitive pattern,
which may allow GMS to derive correct motion statistics in
some local regions. The numeric results of BF show that BF
are able to identify a number of true matches from each pair of
images, achieving a relatively more stable performance than on
the local dataset. Evidently, the enhanced resolution mitigates
the scale variation between ground and aerial images, thus
improving the description of local features and resulting in a
less noisy scattered putative match set. Compared with the other
methods, BF models the global motion consistency in a bilateral
domain, which is more capable of finding true matches from
the improved putative match set. However, all these methods

still fail to deliver a satisfactory result, revealing that ground-
to-aerial feature matching is beyond the processing ability of
those existing methods. Meanwhile, the consistent performance
of the proposed LMPG on both local and public datasets again
demonstrates that this dedicatedly designed method is suitable to
urban ground-to-aerial feature matching task. Some comparison
results from image pairs P1 and P2 are provided in Figs. 22 and
23.

IV. DISCUSSION

As mentioned in the abstract, this work specifically addresses
two key technical issues: 1) reducing descriptor variance, and 2)
enhancing true–false match discriminability. In this section, an
in-depth analysis of the challenging local dataset is also provided
to further reveal whether and how the proposed method functions
on the two issues.

A. Analysis of Influence of View Rectification

The drastic viewpoint variation is one of the major problems
that impede the ground-to-aerial feature matching. In the follow-
ing, we analyze how viewpoint variation degrades the matching
performance and verify if view rectification is effective based
on observing changes in descriptor similarities. Taking image
pair L1 as an example, we first analyze the descriptor distance
changes on local features before and after view rectification, as
shown in Fig. 24.

Fig. 24(a) reports the descriptor distances of two sets of correct
matches from image pairs before and after rectification, and
matches with the same number on horizontal axis share same
feature locations (location distance is less than 1.5 pixels) on
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Fig. 24. Analysis of changes of descriptor distances (a) before and (b) after
view rectification.

the two image pairs. To guarantee visual quality, the figure
shows only the results of 21 matches. We can observe that the
descriptor distances do not show an obvious change for most
of the matches that remain correct in the original and rectified
views. However, for matches that are false in the original views
but are true in the rectified views, the descriptor distances show
a clear decrease after rectification, as illustrated in Fig. 24(b).
The reason may be that when transforming ground and aerial
view images into an orthorectified view, both the geometry and
appearance of the underlying planar region in 3-D are recovered,
thereby leading to more similar descriptors of the features of
a match. This is helpful to increase the number of potential
true matches in the putative match set. To demonstrate this
condition, Fig. 25 shows a comparison of the number of true
matches involved in the putative set constructed from original
and rectified views. For each pair of images, the transformation
model estimated from all the obtained correct matches is used
as the geometric constraint to identify the true matches from the
original putative set. Clearly, each pair of rectified image pairs
obtains an increasing amount of latent true matches in varying
degrees.

B. Analysis of Homography Model Estimation With LMPG

Aside from improving the descriptor similarity of local fea-
tures, finding a homography model with sufficient separability
for true and false matches is another vital step. In this section,
we discuss the separability of homography models obtained
at different stages of our matching pipeline. The models are,

Fig. 25. Number of latent true matches in original and rectified views for
image pairs from local dataset.

Fig. 26. Statistical results for transformation models estimated at different
stages (for local dataset). (a) Matching precision. (b) Number of true matches.

respectively, computed from point matching seeds, coarsely
aligned lattices, and finely aligned lattices termed as Hseed, Hcl,
and Hfl. Then, we apply the models to the putative set to observe
how each stage influences the performance of the final feature
matching. The statistical results are reported in Fig. 26.

As shown in Fig. 26(a), the application of Hseed on different
image pairs produces a large discrepancy in the derived matching
precision. For example, it can achieve nearly 90% matching
precision for image pairs L2 and L5 while only obtaining a
nearly 30% precision in image pair 3. Furthermore, the num-
ber of true matches returned by Hseed is also unsatisfactory,
particularly for image pairs L2, L3, and L4, which are too
few for a successful matching. The reason may be that point
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matching seeds are usually very few in number and distributed
randomly and/or locally, thereby leading to unstable model
estimation. For Hcl, the results imply that a large deviation from
the real underlying image transformation models occurs. The
reason is the extremely large difference between ground and
aerial view images, and the lattice tiles extracted from the two
views usually cannot accurately localize the same physically
repeated element. Thus, a coarse alignment is not enough to
derive accurate tile correspondences. From the statistical results
of Hfld, we can observe that both the matching precision and
number of obtained true matches are at the highest level. The
results demonstrate that the fine alignment of ground and aerial
lattices based on minimizing the transformation error of point
matching seeds is feasible. To summarize, LMPG demonstrates
superior standing on the ground-aerial image matching task. The
multistage transformation model estimation and optimization
toward LMPG proves to be not only effective but also necessary.

V. CONCLUSION

In this article, we presented a LMPG feature matching method
for urban ground and aerial images that need no 3-D informa-
tion as prior. The experimental results show that the proposed
LMPG can be successfully applied to a variety of ground and
aerial image pairs that have drastic variations in viewpoint,
scale, and appearance, as well as contain urban buildings with
different heights, architectural styles, and degrees of occlu-
sion. The qualitative and quantitative comparison results also
demonstrate that by incorporating the local features with the
pattern information of urban buildings, our LMPG outperforms
those existing feature matching methods with a large margin in
terms of quantity and accuracy. Specifically, most of the existing
matching methods failed to deliver available matching results
for urban ground and aerial images, whereas our LMPG can
obtain a considerable number of purely correct matches. The
achievements of LPMG are mainly attributed to view rectifica-
tion for descriptor similarity, and LPMG matching strategy for
reliable transformation model estimation and true–false match
differentiation. The in-depth analytical results in the discussion
also verified these findings, thereby emphasizing that the most
important contribution we have to consider is the mutually
guided feature matching, which solves the ambiguous matching
problem of repeated elements and local features for urban ground
and aerial images.

The direct ground-to-aerial feature matching is however, a
notoriously hard problem, which needs substantial effort to
promote its robustness and efficiency in different scenarios. In
the current stage, we still miss a more advanced method of
extracting any regular or nonregular repetitive pattern for various
types of urban objects, and LMPG can match only one pair of
façades at a time. In future studies, we intend to match multiple
façades at once and also extend the idea of mutually guided
feature matching to highly complex urban objects.
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