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HResNetAM: Hierarchical Residual Network With
Attention Mechanism for Hyperspectral

Image Classification
Zhixiang Xue , Xuchu Yu, Bing Liu , Xiong Tan, and Xiangpo Wei

Abstract—This article proposes a novel hierarchical residual net-
work with attention mechanism (HResNetAM) for hyperspectral
image (HSI) spectral-spatial classification to improve the perfor-
mance of conventional deep learning networks. The straightfor-
ward convolutional neural network-based models have limitations
in exploiting the multiscale spatial and spectral features, and this
is the key factor in dealing with the high-dimensional nonlinear
characteristics present in HSIs. The proposed hierarchical resid-
ual network can extract multiscale spatial and spectral features
at a granular level, so the receptive fields range of this network
will be increased, which can enhance the feature representation
ability of the model. Besides, we utilize the attention mechanism to
set adaptive weights for spatial and spectral features of different
scales, and this can further improve the discriminative ability of
extracted features. Furthermore, the double branch structure is
also exploited to extract spectral and spatial features with corre-
sponding convolution kernels in parallel, and the extracted spatial
and spectral features of multiple scales are fused for hyperspec-
tral image classification. Four benchmark hyperspectral datasets
collected by different sensors and at different acquisition time are
employed for classification experiments, and comparative results
reveal that the proposed method has competitive advantages in
terms of classification performance when compared with other
state-of-the-art deep learning models.

Index Terms—Attention mechanism, double branch structure,
hierarchical residual network (HResNet), hyperspectral image
(HSI), spectral-spatial classification.

I. INTRODUCTION

R EMOTE sensing technology is one of the most important
components in the field of earth observation (EO), which

can perceive and recognize the observed scenes using their dif-
ferent reflection characteristics without making physical contact
with the objects. The imaging spectroradiometer can observe the
continuous spectrum from visible to short-wave infrared, thus
acquired hyperspectral images (HSIs) have hundreds of narrow
and approximately continuous spectral bands, and this unique
characteristic offers both opportunities and challenges for sub-
sequent information extraction and geoscience applications [1].
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According to the unique spectral and spatial characteristics,
HSI classification aims to determine the ground category of
each pixel, which has been widely used in, e.g., environmental
monitoring, resource management, urban planning, military, and
security applications over the past decade [2].

The intrinsic specificities of HSIs bring several challenges for
the classification task, basically, there are three tough problems
that need to be solved. 1) The high-dimensional nonlinear char-
acteristic in spectral domain will cause the Hughes phenomenon
and affect classification accuracy seriously. 2) The number of
annotated samples is often insufficient because labelling samples
is expensive and time consuming. 3) Effectively integrating
spatial information for spectral-spatial classification to improve
pixel-wise classification performance. Aiming to effectively
solve above typical problems, lots of classic machine learning
models have been exploited for HSI classification [3]. Contain-
ing multiple processing layers, deep learning models can learn
abstract, intricate, and discriminative features from raw data
using backpropagation algorithm, which have brought about
striking breakthroughs in many scientific research fields [4].
Deep learning techniques also revolutionize the ways of remote
sensing image processing, especially in the HSIs classification
field [5]–[8]. According to the feature types employed for clas-
sification, HSI classification methods based on deep learning
can be generally divided into three categories: Spectral-feature
based, spatial-feature based, and spectral-spatial-feature based
networks. Due to the fact that both spatial information and
spectral information make contributions to HSI classification,
the spatial-feature and spectral-spatial-feature-based networks
have witnessed more interest in recent years [9].

Because 3D convolutional neural networks (3D-CNNs) can
learn spectral–spatial features simultaneously without com-
pressing spectral and spatial information, it is now commonly
accepted that 3D-CNNs can be directly utilized for spectral-
spatial-feature-based classification without any preprocessing
or postprocessing process [10]–[12]. Combining the recurrent
network with 3D convolution operators, the recurrent 3D CNN
(R-3D-CNN) can exploit both spatial and spectral information
for classification [13]. Due to the fact that deeper learning
networks can learn more high-level discriminative features,
deeper learning models have shown more superiorities in image
recognition and classification [14], [15]. But the major problem
of very deep networks is the vanishing gradient in the training

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2463-4342
https://orcid.org/0000-0003-0848-8453
mailto:xuegeeker@163.com
mailto:xuchu_yu@sina.com
mailto:liubing220524@126.com
mailto:kjadetx@163.com
mailto:135266penalty -@M 35671@163.com


XUE et al.: HRESNETAM FOR HSI CLASSIFICATION 3567

process. By introducing identity mapping to the main path of
network structure, the residual network (ResNet) framework
can ease this training problem in which the underlying error
can be propagated through the shortcut [16]. In the contextual
deep CNN (CDCNN) initial spectral and spatial information are
extracted by multiscale convolutional filter bank, and these joint
spatial-spectral features are fed into two residual blocks and fully
convolutional network to predict corresponding class label [17].
The spectral-spatial residual network (SSRN) employs spectral
and spatial residual blocks to facilitate back propagation of
gradients and alleviate the declining-accuracy phenomenon, in
which batch normalization is also used to regularize learning
process [18]. Aiming to explore the intrinsic complexity of HSI,
the deep pyramidal residual networks use pyramidal bottleneck
residual blocks to learn high-level spectral–spatial features [19].
To solve the small samples classification of HSI, deep few-
shot learning and multiview learning are proposed in the deep
residual learning framework recently [20], [21]. Dense network
(DenseNet) connects each layer to every other layer in a feed-
forward way, which can also alleviate the vanishing-gradient
problem [22]. Using densely connected structure in network
architecture, the end-to-end fast dense spectral-spatial convo-
lution network (FDSSC) can extract spectral–spatial features
for classification, which can lead to extremely accurate classifi-
cation [23]. Deep and Dense convolutional network introduces
two dense blocks to construct deep network and integrate various
spectral–spatial features for classification [24].

Visual patterns appear at multiscales in natural scenes. Dif-
ferent objects have different sizes in the same image, and
context information of an object may occupy different areas
in different images. Therefore, in order to accurately under-
stand objects in image, it is essential to perceive information
from different scales. Recently, some CNN-based models try
to learn spectral–spatial features of multiple scales for HSI
classification. The multilayer fusion dense network (MFDN)
uses PCA and 2D dense network to extract spatial features,
and the spectral features are extracted by 3D dense blocks, then
these features are fused for classification [25]. The CNNs with
multiscale convolutions (MS-CNNs) use convolution kernels of
different sizes to extract features of different scales, and three
types of classification network structures are proposed [26]. The
multiscale deep middle-level feature fusion network (MMFN)
uses two stages to fuse complementary and related informa-
tion, the first stage extracts middle-level spectral and spatial
features by corresponding scale model, and these middle-scale
features are fused using residual blocks in the second stage [27].
The hierarchical multiscale CNN with the auxiliary classifier
(HMCNN-AC) extracts multiscale features from image patches
of different sizes, and bidirectional long-short-term memory
(LSTM) considers these features as sequential data to capture
dependence and correlation [28]. In [29], the multiscale resid-
ual network (MSRN) utilizes depthwise separable convolution
(DSC) to construct multiscale residual block (MRB), and two
MRBs are connected by high-level shortcut to aggregate features
of different levels.

Inspired by visual perception of the human visual system, the
attention mechanism has been employed for HSI classification.

In [30], recurrent neural network (RNN) with attention learns
the continuous spectrum features, and CNN with attention is
designed to extract robust spatial features. Then, the multilayer
network uses spectral and spatial features to extract conjoint
characteristics. The double-branch multiattention mechanism
network (DBMA) and double-branch dual-attention mechanism
network (DBDA) use spectral and spatial dense blocks to ex-
tract spectral and spatial features, respectively, and the atten-
tion modules are utilized to set different weights for extracted
features [31], [32]. Aiming to solve the problem that CNNs
set the same weight for all spectral bands, the spectral atten-
tion module-based convolutional network recalibrates spectral
bands so as to strengthen important bands and suppress less
useful ones [33]. The end-to-end spectral-spatial squeeze-and-
excitation residual bag-of-feature (S3EResBof) model combines
the residual block and squeeze-and-excitation block to boost
the classification performance, in which batch normalization
is also used to regularize the network [34]. In order to sup-
press the influence of interfering pixels, the spectral-spatial
attention network (SSAN) introduces two attention modules
to learn more discriminative spectral–spatial features [35]. A
series of attention blocks are used in the end-to-end residual
spectral–spatial attention network (RSSAN), the first group of
attention modules adaptively select spectral bands and spatial
pixels, then the second group of attention modules refine the
spectral–spatial features, and the residual blocks embedded
with attention modules are utilized to optimize the training
process [36].

To obtain multiscale representations of objects, feature extrac-
tors need to employ different receptive fields to describe objects
at different scales [37]. However, the existing CNNs based
multiscale extractors can only extract features of fixed receptive
fields, which can not extract global and local features at the same
time. Current hierarchical features are extracted using the layer
wise method, but this method may cause the gradient vanishing
phenomenon and need many labeled samples for training. In
addition, existing attention-based HSI classification methods
only employ single-scale features, which can not make full use
of the complex spectral and spatial features of multiple scales.
All these factors will affect the HSI classification accuracy to
some extent.

Drawing intuition from the success achieved by using the
hierarchical residual network (HResNet) to extract multiscale
features, the hierarchical residual network with attention mech-
anism (HResNetAM) is proposed, which not only extracts differ-
ent scale spectral and spatial features but also employs attention
mechanism to promote the discriminative ability of features for
HSI classification. Besides, using the residual-like style and
batch normalization in the module, the proposed method can also
avoid the gradient vanishing problem. Our main contributions
in this article can be summarized as follows.

1) First, HResNet block is exploited to extract multiscale
spectral and spatial features, and these features can repre-
sent the global and local receptive fields of the datasets.
And this is the first time to extract spectral and spatial
features of multiple scales for HSI classification at a
granular level.
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2) Second, to take full advantage of the hierarchical spectral
and spatial features for classification, the attention mech-
anism is also employed to adaptively calibrate spectral
and spatial features of different scales, which can further
promote the discriminability of extracted features for HSI
classification.

3) Third, double branch structure for HSI classification is
also utilized. In two parallel branches, different sizes of
convolution kernels are employed to learn corresponding
spectral and spatial features. And the spatial and spectral
features of different scales are fused for spectral-spatial
classification. In addition, the residual learning and batch
normalization can also facilitate the model training.

4) The experimental results, obtained over four benchmark
HSI datasets, reveal that the proposed method exhibits
potential to learn more discriminative spectral–spatial
features, providing competitive performance advantages
compared with state-of-the-art deep learning classification
models.

The remainder of this article is organized as follows. Section II
introduces the proposed HResNet with attention mechanism
model in detail. Parameter analysis and comparative HSI clas-
sification results are presented in Section III, and Section IV
concludes this article.

II. METHODOLOGY

The proposed model makes full use of the multiscale feature
extraction ability of the HResNet and the weight calibration
capability of the attention mechanism. First, drawing intuition
from the success achieved by residual network, the hierarchical
residual block can not only extract multiscale features from raw
data but also avoid the gradient vanishing problem. Then, in
order to enhance the discriminative ability of spatial and spectral
features with different scales in HSI classification, the spectral
attention module and spatial attention module are employed.
Finally, the proposed double branch structure which extracts
spectral and spatial features separately is described, and detailed
model architecture and parameters are also introduced.

A. Residual Learning

Deeper learning models have stronger feature learning and
expression capabilities, but the vanishing gradient problem will
be exposed in the training process. With the network depth
increasing, accuracy get saturated and then degrades rapidly.
Unexpectedly, this problem is not caused by overfitting, and
adding more layers leads to higher training error. The key idea
of residual learning is to introduce identity mapping into the
backbone path of network structure. In the training process of
deep residual networks, the underlying error can be propagated
through the shortcut, which can effectively solve the notorious
gradients vanishing problem. The residual learning does not
require additional parameters, so it neither adds extra param-
eter nor increases computational complexity compared with the
original network. The deep residual network is composed of
many stacked residual units, in which a single residual unit is
illustrated in Fig. 1.

Fig. 1. Illustration of the residual unit.

This residual unit contains one convolutional layer, one batch
normalization (BN) layer and one rectified linear unit (ReLU)
layer as well as the identity mapping. And the basic form of the
residual unit is formulated as

xi+1 = F (xi) + xi (1)

in which xi and xi+1 are corresponding input and output of the
unit, and F refers to the residual function. In order to train the
model more efficiently, the batch normalization is implemented
after every convolutional layer [38]. Moreover, the rectified
linear unit layer is also utilized to extract nonlinear features.
Through this skip connection strategy, the residual networks can
build very deep network structures without worrying about the
gradients vanishing problem. The deep residual networks have
been exploited for HSI classification, which can obtain superior
classification accuracy than the CNN-based methods [18], [19],
[29], [39].

B. Hierarchical Residual Learning

It is critically essential to extract multiscale features for im-
age classification task. Most existing CNNs enhance multiscale
representation strength via layer-wise way, while the multiscale
representation ability of HResNet refers to the multiple available
receptive fields at a granular level. To achieve this goal, the
hierarchical residual block divides the input feature maps into
several groups, and each subgroup of feature maps is performed
with different layers of convolution operators. In the hierarchi-
cal residual block, different subgroups of feature maps have
different receptive fields, thus the combined feature maps can
represent multiscale features, so it can increase the receptive
fields of the network [40]. Existing convolutional networks
obtain multiscale features by stacking convolutional layers, but
these features have relatively fixed receptive fields. The hier-
archical residual learning introduces a new scale dimension as
an essential factor except existing dimensions of depth, width,
and cardinality [41]. In HResNet, the scale dimension means
the number of feature groups in a hierarchical residual unit.
Fig. 2 shows the hierarchical residual unit with 3 scales, in which
� and ⊕ mean split operation and concatenation operation,
respectively.

We denote input and output of the hierarchical residual unit
with x and y. First, we split the input feature map x into s
feature subsets, and every subset is represented as xi, where
i ∈ {1, 2, . . . , s}. The subset xi has the same spatial size with
input x, but only 1/s channels. Except for x1, every xi has
corresponding convolution operator, denoted by Ki(). And we
use yi to denote the output of Ki(). To obtain hierarchical
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Fig. 2. Illustration of the hierarchical residual unit.

features, we add the output of Ki−1() to the feature subset xi,
and then they are fed intoKi(). Thus,yi can be generally written
as follows:

yi =

⎧⎪⎨
⎪⎩

xi i = 1;

Ki(xi) i = 2;

Ki(xi + yi−1) 2 < i ≤ s.

(2)

Through this hierarchical residual structure, each convolution
operator Ki() can receive information from subsets xj(j ≤ i),
thus the feature split xi has a larger receptive field than xj . The
concatenation operation at the end of hierarchical residual unit
combines feature maps of different receptive fields. In addition,
the split and concatenation strategy can force the hierarchical
residual block process features more efficiently. In the hierar-
chical residual unit, larger scale factor s allows the unit to learn
features with richer receptive field sizes. We also conduct batch
normalization and rectified linear unit activation function after
every convolutional layer to train the HResNet more effectively.
Therefore, the residual-like connections within the hierarchical
residual unit could make it capture global and local features at
a granular level.

C. Attention Mechanism

Drawing intuition from the human visual system, the attention
mechanism can recalibrate channel-wise features by explicitly
establishing the relationships between channels [42]. The tradi-
tional HSI classification models assign equivalent weights to all
pixels and bands in the spatial and spectral domains, respectively.
It is a fact that different spatial pixels and spectral bands make
unequal discriminative contributions to classification results. For
instance, several edge pixels in the HSI block have different
labels with the center pixel, and these interfering pixels will
weaken the discriminative ability of spectral–spatial features,
thereby affecting the classification accuracy. If the weight of
these pixels can be suppressed, the discriminability of the
spectral–spatial features will be increased. Thus, it is feasible to
introduce the attention mechanism to HSI classification, which
can focus more on the discriminative and effective spatial and
spectral features and weaken information detrimental to classifi-
cation. Because exploiting spectral and spatial-wise attention is
superior to only using channel-wise attention [43], so we adopt
spectral attention module as well as spatial attention module
simultaneously to recalibrate spectral and spatial features of
multiple scales. Two attention modules are introduced in detail
as follows.

Fig. 3. Structure of the spectral attention module.

Fig. 4. Structure of the spatial attention module.

1) Spectral Attention Module: The spectral attention module
is constructed by modeling the interdependencies between chan-
nels, as shown in Fig. 3. The spectral attention mapX ∈ Rc×c is
calculated from the initial input A ∈ Rc×h×w, in which h× w
represents the spatial size while c denotes the channels of the
original features. Specifically, we first reshape and transpose
A ∈ Rc×h×w into AT ∈ Rc×n, and conduct a matrix multipli-
cation betweenA andAT . And the results are fed into a softmax
layer to get the attention map X

xji =
exp(Ai ×Aj)∑c
i=1 exp(Ai ×Aj)

(3)

in which xji represents the influence of ith channel on the
jth channel. In addition, a matrix multiplication is conducted
betweenXT andA, and their results are reshaped into Rc×h×w.
Finally, a scale parameter α is used to weight the results and
perform a element-wise sum operator with the input A to obtain
the spectral attention map E ∈ Rc×h×w

Ej = α

c∑
i=1

(xjiAj) +Aj (4)

where the parameterα is initialized to be 0 and can be optimized
gradually in the training process. We can see that the spectral
attention feature map E is a weighted combination of all the
original channels, which can selectively strengthen informative
channels and suppress less useful ones. Therefore, the spectral
feature discriminability can be increased through this spectral
attention module.

2) Spatial Attention Module: Fig. 4 shows the spatial at-
tention module, the initial input A ∈ Rc×h×w is fed into two
different convolution layers to generate two new feature mapsB
andC, respectively, in which {B,C} ∈ Rc×h×w. And these two
feature maps are reshaped into Rc×n, where n = h× w refers
to the number of spatial pixels. Then a matrix multiplication
between BT and C is performed, and the results are fed into
a softmax layer to obtain spatial attention map S ∈ Rn×n as
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Fig. 5. Framework of our proposed HResNet with attention mechanism (the representative HResNetAM model has 4 scales and 6 kernels).

follows:

sji =
exp(Bi × Cj)∑n
i=1 exp(Bi × Cj)

(5)

in which sji measures the ith pixel’s influence on the jth pixel.
The closer the spatial distance between two pixels, the greater
the correlation between them.

A new feature mapD ∈ Rc×h×w is also generated from initial
input feature A through a convolution layer and reshaped into
Rc×n subsequently. Then a matrix multiplication between D
and ST is performed, and the results are reshaped into Rc×h×w.
Finally, a scale parameter β is utilized to weight the results and
perform a element-wise sum operator with the initial input A to
get spatial attention map E ∈ Rc×h×w as follows:

Ej = β

n∑
i=1

(sjiDj) +Aj (6)

in which the parameter β is initialized to be 0 and can be
optimized gradually in the training process. It can be inferred
that each position in the spatial attention feature map E is a
weighted combination of all the original pixels, which have a
global view and selectively emphasize informative positions.
Thus, the feature discriminability will be improved in the spatial
domain.

D. Framework of the Proposed Model

The whole structure of the HResNetAM model is illustrated
in Fig. 5. In order to make the most of the spectral and spatial
features of different scales, we adopt the double branch archi-
tecture for HSI classification. The upper spectral branch consists
of the hierarchical spectral residual network and corresponding

TABLE I
DETAILED PARAMETERS OF THE HResNetAM MODEL

spectral attention module. The HResNet containing spectral-
based convolution operators are utilized to extract hierarchical
spectral features, and the spectral attention module is employed
to assign different weights for hierarchical spectral features.
The lower spatial branch is composed of hierarchical spatial
residual network and corresponding attention block. For the
similar purpose, the spatial attention module can recalibrate
the spatial features of different scales. The adaptively weighted
multiscale spectral and spatial features are fused to conduct the
HSI spectral-spatial classification.

The model in Fig. 5 is a HResNetAM network with 4 scales
and 6 kernels, and the corresponding detailed parameters of the
spatial and spectral feature extraction network in HResNetAM
are listed in Table I. In this representative model, we employ the
Pavia Centre dataset and the spatial size is set to be 7. And the
HSI block serves as the input of the two branch structures. In our
proposed model, we employ the convolution kernels with (1, 1,



XUE et al.: HRESNETAM FOR HSI CLASSIFICATION 3571

TABLE II
LAND-COVER CLASSES AND SAMPLES OF THE PAVIA CENTRE DATASET

5) and (3, 3, 1) to extract spectral and spatial features, respec-
tively. Note that the stride of Conv1 in the spectral branch is (1,
1, 2) and stride for other convolution operations in HResNetAM
is (1, 1, 1).

III. EXPERIMENTAL RESULTS AND ANALYSIS

In our experiments, all the comparative classification exper-
iments are carried out on a workstation equipped with an Intel
Core i9-7900X, an Nvidia Geforce RTX 2080 Ti GPU, and 128 G
RAM. The proposed HResNetAM model is implemented using
the PyTorch library with Python language. We employ main
classification evaluation coefficients, namely, overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (κ) to
quantitatively assess the classification performance. And we
also exploit classification maps to qualitatively evaluate the
experimental results. In order to increase the reliability and cred-
ibility of experimental results, we conducted ten trials for each
classification experiment with randomly selecting the training
samples.

A. Data Description

Four different benchmark hyperspectral datasets collected by
different sensors and at different time are utilized to conduct the
HSI classification experiments.

Pavia Centre: The Pavia Centre dataset was acquired by the
ROSIS sensor over the side of Ticino river, Pavia, northern
Italy. The spatial size of this dataset is 1096 × 715 pixels, and
corresponding geometric resolution is 1.3 m. This sensor can
acquire 115 bands in total in the wavelength range of 0.43–
0.86 μm. After removing the greatly noise-affected channels,
the remaining 102 spectral bands are employed for experiments.
The corresponding image ground truth differentiates 9 classes,
and the detailed land-cover classes, training samples, and test
samples are shown in Table II.

Houston 2013: The Houston 2013 dataset was collected by
the ITRES CASI-1500 sensor over the University of Houston
campus in June 2012, which is provided by the 2013 IEEE GRSS
Data Fusion Competition [44]. The spatial size of this image
dataset is 349 × 1905 pixels, and the spatial resolution is 2.5 m.
This dataset has 144 spectral bands in the wavelength range of
0.38–1.05 μm. There are 15 land-cover classes within the image
coverage, and the detailed land-cover classes, training samples,
and test samples are shown in Table III.

TABLE III
LAND-COVER CLASSES AND SAMPLES OF THE HOUSTON 2013 DATASET

TABLE IV
LAND-COVER CLASSES AND SAMPLES OF THE DIONI DATASET

Dioni: The Dioni dataset is one of the HyRANK benchmark
datasets which have been developed in the framework of the
ISPRS Scientific Initiatives [45]. The HyRANK benchmark
datasets contain two training images (i.e., Dioni and Loukia)
along with the corresponding ground truth and two validation
images. The spatial size of the Dioni dataset is 250×1376 pixels,
which contains 176 spectral channels. There are 16 different
land cover classes in the HyRANK benchmark datasets, and the
selected Dioni dataset covers 12 classes. The detailed number of
training samples and test samples along with the corresponding
labels is reported in Table IV.

Houston 2018: The Houston 2018 dataset was gathered by
the ITRES CASI-1500 sensor over the University of Houston
campus in February 2017, which is provided by the 2018 IEEE
GRSS Data Fusion Competition [46]. We only use the training
portion of the whole HSI, and the ground truth is resampled
to adapt the hyperspectral dataset [47]. The spatial size of
this dataset is 601 × 2384 pixels at 1-m ground sampling
distance. There are 48 spectral bands in the wavelength range
of 0.38–1.05 μm. And there are 20 urban land-cover classes
within image coverage. The detailed number of training samples
as well as test samples with corresponding labels is shown in
Table V.
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TABLE V
LAND-COVER CLASSES AND SAMPLES OF THE HOUSTON 2018 DATASET

B. Experimental Setup

To evaluate the performance of proposed HResNetAM, we
use several state-of-the-art methods for comparative experi-
ments. These models include the deep learning-based models
(i.e., 3DCNN, CDCNN, SSRN, FDSSC, DBMA, and DBDA)
as well as the SVM with radial basis function (RBF) kernel. In
order to carry out comparative experiments more fairly, we use
the same number of training samples in all methods, and 20% of
the training samples are set as validation samples. Specifically,
the parameters of each method are given separately according
to the corresponding articles.

SVM: For SVM with RBF kernel, we employ the cross valida-
tion strategy to get the optimal regularization parameter C and
kernel parameter γ in the range of C = {2−2, 2−1, . . ., 27} and
γ = {2−2, 2−1, . . ., 27}, respectively. And we utilize all spectral
bands as input of SVM [48].

3DCNN: This method directly uses 3D convolution operators
to extract features of HSI, the architecture of the 3DCNN in [11]
contains two convolution layers and the fully connected layer.
This model uses 3D image cube as input, and the input size is
5×5×B, where B refers to the spectral bands.

CDCNN: The contextual deep CNN network constructs
deeper classification model with residual learning structure,
which is composed of the multiscale filter bank and two residual
blocks. Then three convolutional layers and one fully connected
layer are utilized for HSI classification [17]. The input of CD-
CNN is 5× 5×B block.

FDSSC: The FDSSC is based on 3D-CNN and dense block,
and this model contains two dense blocks and followed by the
average pooling, flatten and fully connected layer [23]. And we
also use the 9× 9×B image block as input.

SSRN: The SSRN combines residual learning and 3D-CNN,
which extracts spectral and spatial features in sequence us-
ing corresponding residual blocks, and the following average

pooling layer and an fully connected layer are employed for
classification. This method also uses 7×7×B image block as
input [18].

DAMA: The DAMA is based on attention mechanism and
dense block, which contains spectral branch and spatial branch
as well as corresponding attention blocks. The convolutions with
(1, 1, 7) and (7, 7, 1) kernels are utilized in spectral and spatial
branches, respectively, and the size of the input is 7×7×B [31].

DBDA: The architecture of the DBDA is presented in [32],
which also contains spectral and spatial dense blocks and corre-
sponding attention blocks. And we use 7×7×B image block as
input.

The DBMA [31] and DBDA [32] models utilize dense net-
work to extract spectral and spatial features, and attention
modules are employed to recalibrate extracted features. These
two methods are used as comparative methods to verify the
feature extraction capability of HResNet. In order to conduct
the ablation study of attention mechanism, we also design the
HResNet model as one comparative method, which has the same
network structure with corresponding HResNetAM but without
spectral and spatial attention modules.

C. Parameters Analysis and Setting

The parameters in deep learning models can influence the HSI
classification to some extent, so we evaluate the main parameters
in our proposed model, they are learning rate, spatial size, the
number of training samples, as well as the number of scales
and kernels. And in our classification experiments, because
the HResNetAM with different batch sizes and epoches has
relatively stable classification accuracies, so we set the batch
size and epochs as 32 and 200, respectively.

1) Learning Rate: The learning rate greatly influences
the convergence rate of the network and the HSI
classification performance. Referring to the relevant
experiments, we analyze the effect of learning rate at
{0.0001, 0.0002, 0.0003, 0.0008 0.001, 0.005, 0.01} on overall
accuracies. Fig. 6 shows the ten experimental results on
four datasets with different learning rates. In this figure, two
independent horizontal lines represent the overall range of the
classification results, and the two edges of the box denote upper
quartile and lower quartile, respectively. The horizontal line in
box refers to median value, and the � denotes abnormal outliers.
It can be found that a smaller learning rate has a relatively stable
classification accuracy and bigger learning rate will result in
larger variance in the classification accuracy. According to the
average OA and variance in four groups of HSI classification,
we set the learning rate to be 0.0002, 0.0001, 0.0002, and
0.0005 for four benchmark datasets, respectively.

2) Spatial Size: For the purpose of utilizing the spatial in-
formation for spectral-spatial classification, we exploit the 3D
image cube as input. The spatial size can also influence the
HSI classification results, and we set neighborhood size in the
range of {3, 5, 7, 9, 11, 13}. Table VI shows the average overall
accuracy and corresponding variance of the proposed method on
four hyperspectral datasets with different spatial sizes. Based on
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Fig. 6. Box plot of OAs with different learning rates on four different datasets. (a) Pavia Centre dataset. (b) Houston 2013 dataset. (c) Dioni dataset. (d) Houston
2018 dataset.

Fig. 7. Box plot of OAs with different number of training samples on four different datasets (a) Pavia Centre dataset. (b) Houston 2013 dataset. (c) Dioni dataset.
(d) Houston 2018 dataset.

Fig. 8. Bar chart of OAs with different number of scales and kernels on four different datasets. (a) Pavia Centre dataset. (b) Houston 2013 dataset. (c) Dioni
dataset. (d) Houston 2018 dataset.

TABLE VI
OVERALL ACCURACY(%) OF THE HResNetAM METHOD WITH DIFFERENT

SPATIAL SIZE ON FOUR DIFFERENT DATASETS

the experimental results, we find that the classification accuracy
generally increases and then decreases as the neighborhood
increases. Thus the optimal neighborhood sizes of the four
datasets are set to be 5, 7, 7, and 11, respectively.

3) Training Samples: The number of training samples also
have great influence on HSI classification performance. For the
purpose of evaluating the robustness and generalization of HRes-
NetAM model toward different numbers of training samples, we
randomly choose {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}
annotated samples per class for four datasets. Fig. 7 shows the
average overall accuracy achieved by HResNetAM with differ-
ent numbers of training samples on four hyperspectral datasets.
From this figure, we can observe that the classification accuracy
will quickly reach a relatively stable level with the increase of
training samples. According to the overall accuracies of each
dataset, we set 140, 180, 140, and 180 per class for training in
four datasets, respectively. Since there are fewer labeled samples
in some images, we set specific numbers of training samples for
those datasets. In the Houston 2013 dataset, we use 100 labeled
samples for Water and Tennis Court classes. In the Dioni dataset,
we use 100 labeled samples for Mineral Extraction Sites class
and 50 labeled samples for Fruit Trees class. And in the Houston
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TABLE VII
OA, AA, KAPPA, AND CLASS-SPECIFIC ACCURACY(%) OF DIFFERENT METHODS FOR THE PAVIA CENTRE DATASET (BOLD VALUES REPRESENT THE BEST

RESULTS IN THE CORRESPONDING ROWS)

TABLE VIII
OA, AA, KAPPA, AND CLASS-SPECIFIC ACCURACY(%) OF DIFFERENT METHODS FOR THE HOUSTON 2013 DATASET (BOLD VALUES REPRESENT THE BEST

RESULTS IN THE CORRESPONDING ROWS)

TABLE IX
OA, AA, KAPPA, AND CLASS-SPECIFIC ACCURACY(%) OF DIFFERENT METHODS FOR THE DIONI DATASET (BOLD VALUES REPRESENT THE BEST RESULTS IN THE

CORRESPONDING ROWS)
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TABLE X
OA, AA, KAPPA, AND CLASS-SPECIFIC ACCURACY(%) OF DIFFERENT METHODS FOR THE HOUSTON 2018 DATASET (BOLD VALUES REPRESENT THE BEST

RESULTS IN THE CORRESPONDING ROWS)

Fig. 9. Classification maps of different methods on the Pavia Centre dataset. (a) Pseudocolor image (bands 93, 53, and 19). (b) Ground-truth map. (c) SVM. (d)
3DCNN. (e) CDCNN. (f) FDSSC. (g) SSRN. (h) DBMA. (i) DBDA. (j) HResNet. (k) HResNetAM.

2018 dataset, 100 labeled samples and 50 labeled samples are
used for Water and Unpaved parking lots classes, respectively.

4) Number of Scales and Kernels: In our proposed classifi-
cation model, different number of scales and kernels can also

influence the classification accuracy. For the sake of evaluating
the classification ability of HResNetAM model toward different
numbers of scales and kernels, we evaluate the influence of
these two parameters using cross validation strategy. We set the
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Fig. 10. Classification maps of different methods on the Houston 2013 dataset. (a) Pseudocolor image(bands 70, 30 and 12). (b) Ground-truth map. (c) SVM.
(d) 3DCNN. (e) CDCNN. (f) FDSSC. (g) SSRN. (h) DBMA. (i) DBDA. (j) HResNet. (k) HResNetAM.

number of scales and kernels with {4, 5, 6, 7, 8} and {4, 6, 8},
respectively. The average overall classification accuracies using
different model structures are shown in Fig. 8. Based on the
comparative results, we can learn that the classification accu-
racy is lower when the numbers of scales and kernels are low,
especially for the Dioni and Houston 2018 datasets. Since the
proposed method can extract multiscale features, higher scales
can effectively improve the classification accuracy especially for
more complex images. And the optimal parameter combinations
of four HSI datasets are selected as {6, 8}, {7, 8}, {7, 6}, and
{8, 6}, respectively.

D. Comparative Classification Results With
State-of-The-Art Methods

1) Quantitative Comparisons: The average OAs, AAs,
Kappa coefficients, and corresponding variance as well as av-
erage classification accuracy of every land-cover class with
different classification methods on four benchmark HSI datasets
are listed inTables VII–X. Note that the bold value in these tables
represents the optimal value in the corresponding row. From
the quantitative comparisons, several conclusions can be drawn,
they are listed as follows.

1) First of all, in the case of the same number of training
samples, the deeper the model is, the higher the classifica-
tion accuracy will be. In four classification experiments,
the deeper models (i.e., CDCNN, FDSSC, SSRN, DBMA,
and DBDA) have higher classification accuracies than the
3DCNN.

2) The attention mechanism will improve classification to a
certain degree. In four groups of HSI classification exper-
iments, the DBMA and DBDA with attention mechanism
generally have higher classification accuracies than the
SSRN and FDSSC. Because the HResNet model has the
same network structure with HResNetAM but without
attention blocks, the classification results from HResNet
can also verify the effectiveness of attention mechanism.
And we can see that the HResNetAM has higher clas-
sification accuracies than HResNet in four classification
experiments.

3) Comparing the overall accuracies of four different
datasets, it can be found that the classification performance
of four groups of HSIs is different. Among them, the
Pavia Centre dataset has the highest classification accuracy
and the Houston 2018 dataset has low accuracy. This is
mainly due to the different levels of complexity within the
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Fig. 11. Classification maps of different methods on the Dioni dataset. (a) Pseudocolor image (bands 23, 11, and 6). (b) Ground-truth map. (c) SVM. (d) 3DCNN.
(e) CDCNN. (f) FDSSC. (g) SSRN. (h) DBMA. (i) DBDA. (j) HResNet. (k) HResNetAM.

hyperspectral datasets. However, by introducing the scale
factor into HSI classification model, the classification
performance can be significantly improved. For example,
the average overall classification accuracy of the proposed
HResNetAM model is 83.61%, which is 3.27% higher
than the DBDA models (i.e., 80.34%). Thus, the scale
factor will be helpful for the HSI classification model on
complex datasets.

2) Qualitative Comparisons: Except the quantitative eval-
uation from Tables VII–X, the classification maps obtained
by nine different methods are also exploited for qualitative
evaluation. Figs. 9–12 show the classification maps on the Pavia
Centre dataset, the Houston 2013 dataset, the Dioni dataset,
and the Houston 2018 dataset with different classification meth-
ods, respectively. In these figures, the pseudocolor image and
ground-truth are also displayed, and different land-cover classes
are represented by different colors. When comparing the clas-
sification maps obtained by different methods in (c)–(k) with
the ground-truth map in (b), we can learn that the proposed
HResNetAM model can obtain more reasonable classification
maps, which can prove the superiority of HResNetAM. In
addition, when dealing with more complex images, take the
Houston 2018 dataset, for example, traditional deep learning
methods have more noise pixels in classification maps. Due to
the introduction of scale factor and attention mechanism, the

proposed HResNetAM can generate more homogeneous and
reasonable classification maps.

E. Discussion

When performing the deep learning models for HSI classi-
fication, traditional models often have difficulties in extracting
multiscale information at a granular level, which will affect the
classification accuracy to some degree. To address this problem,
we propose the HResNet with attention mechanism which can
learn spectral and spatial features with different scales, and
these features are fused for joint classification. The designed
HResNetAM model, based on hierarchical residual learning and
attention mechanism, can achieve better classification results
compared with state-of-the-art deep learning models. The main
reasons can be summarized as the following two aspects.

First, the importance of hierarchical features learning ability.
The designed model utilizes HResNet to extract spatial and
spectral features at different scales for the first time, which can
learn characteristics from different receptive fields. And these
global and local features can make contributions to the HSI
classification results, especially for more complex images, such
as the Dioni and Houston 2018 datasets, and the comparative
experiments confirm the effectiveness of the scale factor for HSI
classification.
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Fig. 12. Classification maps of different methods on the Houston 2018 dataset. (a) Pseudocolor image (bands 23, 11, and 6). (b) Ground-truth map. (c) SVM. (d)
3DCNN. (e) CDCNN. (f) FDSSC. (g) SSRN. (h) DBMA. (i) DBDA. (j) HResNet. (k) HResNetAM.

Second, the attention mechanism can further improve the
classification performance to a certain extent. The attention
mechanism is orthogonal to HResNet, so it is feasible to combine
these two learning strategy for HSI classification. And the exper-
imental results also verify the advantages of combing attention
mechanism with HResNet.

IV. CONCLUSION

In this study, we propose a novel HResNet with attention
mechanism model for HSI spectral-spatial classification, which
have three advantages. The first one is that the proposed network
utilizes hierarchical residual block to extract more discriminative
spectral–spatial features of different scales, so as to maintain
multiscale information for classification. The second one is that
the attention mechanism is employed to calibrate the weights
of hierarchical spectral and spatial features, and the third one is
the double branch structure has potential in learning the spectral

and spatial features separately. Therefore, the novel hierarchical
residual network architecture with attention mechanism can
extract more complete and discriminative information of HSI
data by managing spectral–spatial features at a hierarchical level.
And the residual learning structure and batch normalization
can further improve the HSI classification efficiency in training
process. The performance of HResNetAM has been verified on
four benchmark HSIs compared with state-of-the-art models,
and the experimental results have confirmed the superiority of
proposed method.
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