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A Gaussian Kernel-Based Spatiotemporal Fusion
Model for Agricultural Remote Sensing Monitoring
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Abstract—Time series normalized difference vegetation index
(NDVI) is the primary data for agricultural remote sensing moni-
toring. Due to the tradeoff between a single sensor’s spatial and tem-
poral resolutions and the impacts of cloud coverage, the time series
NDVI data cannot serve well for precision agriculture. In this study,
a Gaussian kernel-based spatiotemporal fusion model (GKSFM)
was developed to fuse high-resolution NDVI (Landsat) and low-
resolution NDVI (MODIS) to produce a daily NDVI product at a
30-m spatial resolution. Considering that the NDVI curve of crop
in each growing season can be characterized by Gaussian function,
GKSFM used the Gaussian kernel to fit the nonlinear relationship
between the high-resolution NDVI and the low-resolution NDVI, to
obtain a more reasonable temporal increment. The experimental
results show that GKSFM outperformed the comparative models in
different proportions of cropland/noncropland and different crop
phenology. In addition, GKSFM was also applied for crop mapping
of Mishan County by fusing the NDVI images during the crop
growing season. This study demonstrates that the accuracy of the
proposed method can be improved in the midseason of crops.

Index Terms—Gaussian kernel, normalized difference
vegetation index (NDVI), spatiotemporal fusion, time series.

I. INTRODUCTION

T IME series normalized difference vegetation index
(NDVI), which can effectively reflect the vegetation cover,

crop growth [1], [2], and crop health status [3], [4], has been
widely used for crop field extraction [5], [6], crop growth moni-
toring [7], and yield prediction [8]–[12]. NDVI is usually derived
from optical multispectral remote sensing data. However, there is
a prominent tradeoff between the spatial resolution and temporal
resolution of a single sensor. For example, many satellite sensors
are with a high temporal resolution of one day or several days,
e.g., moderate resolution imaging spectroradiometer (MODIS).
Its spatial resolution ranges from 250 m to several kilometers,
which is rough and cannot meet the observation requirements
of precision agricultural monitoring. On the contrary, sensors,
such as Landsat TM/ETM+/OLI, Sentinel 2 MSI, have a high
spatial resolution of 30 or 10 m, providing more spatial details,
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while the single sensor mentioned above has a revisit cycle of
ten or more days. What is worse, the optical satellite images
are inevitably influenced by the severe cloud coverage, which
further degrades the temporal resolution and quality of the NDVI
data. The previous study shows that around 35% of the Landsat
and Sentinel 2A/B images are covered by the cloud [13]. As a
result, NDVI with high spatial and temporal resolutions is often
unavailable, which limits the implementations of large-scale and
full-coverage agricultural monitoring. At this point, spatiotem-
poral fusion is one of the effective techniques to overcome these
obstacles, by integrating the high spatial resolution and high
temporal resolution of different sensors feasibly and at low cost
[12], [14], [15].

In recent years, many spatiotemporal fusion methods have
been developed under different assumptions and application pur-
poses [16]–[21]. The spatial and temporal adaptive reflectance
fusion model (STARFM) [22] was the first proposed and most
widely used spatiotemporal fusion method [23]. It utilizes a slid-
ing window to perform temporal, spatial, and spectral weighting
operations on similar pixels in the neighborhood to avoid the un-
certainty caused by single-pixel prediction. STARFM performs
well in homogeneous regions with stable land cover during the
period of prediction. To increase the accuracy of heterogeneous
regions, the enhanced spatial and temporal adaptive reflectance
fusion model (ESTARFM) was proposed by Zhu et al. [14] to
enhance the prediction by adding a pair of images and adopting
a linear conversion coefficient to characterize the relationship
between the high-resolution and low-resolution images. That
is, ESTARFM is based on two pairs of high-resolution and
low-resolution images obtained on two dates to predict the
target high-resolution image. It can reduce the system biases
of different sensors and reserve more spatial details. Xie et al.
[24] improved the STARFM in aid of the unmixing method,
which performs better in the heterogeneous region but is still
sensitive to the change of land cover [12]. Qing et al. [25]
introduced the idea of nonlocal filtering to predict the target
image more accurately and robustly, especially for both het-
erogeneous regions and temporal dynamic regions, although
it is based on a linear assumption, which is not accurate over
a long period. Zhu et al. [15] integrated the STARFM, the
spatial interpolation and the unmixing method into a framework,
which performs better in predicting abrupt land cover changes
compared with other methods. However, the prediction accuracy
largely depends on the degree of land cover changes between
the two dates of the input images. Luo et al. [26] developed an
efficient method named STAIR, which includes filling and fusion
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Fig. 1. Flowchart of the algorithm’s implementation.

steps to generate a daily 30 m image. In addition to fused-based
methods, time series-based methods, such as harmonic analysis
of time series (HANTS), was used to generate a continuous
time series NDVI based on high spatial resolution NDVI alone
[7]. This kind of method can generate time series NDVI flexibly
since they do not need information from other sensors. However,
such methods are limited in areas with long periods of cloud
coverage.

To sum up, most of the existing methods are based on the
assumption that there is a linear relationship between the low-
resolution and high-resolution image pairs [27], which ignores
the nonlinear changes of NDVI as the crop progress. In this
study, a Gaussian kernel-based spatiotemporal fusion model
(GKSFM) was proposed to fuse high-resolution NDVI (Landsat)
and low-resolution NDVI (MODIS) during the crop growing
season to produce a daily NDVI product at a 30-m spatial
resolution. This study verified the performance of the GKSFM
for different phenological stages and different proportions of
cropland/noncropland. The proposed method was also applied
to produce a time series NDVI with a high spatiotemporal reso-
lution for the crop mapping in Mishan County of Heilongjiang,
China, to validate the effectiveness of the proposed method in
practical application.

II. GAUSSIAN KERNEL-BASED SPATIOTEMPORAL

FUSION MODEL

There are four main steps for the implementation of GKSFM
as follows (see Fig. 1).

1) Reconstruct the low-resolution time series NDVI and ex-
tract the linear parameters.

2) Search pixels that are similar to the central pixel in a local
window by two high-resolution NDVI images acquired at
different dates.

3) Calculate the weights and parameters of the nonlinear
conversion of cropland pixels and the linear conversion
of noncropland pixels.

4) Estimate the NDVI value of the center pixel on the pre-
diction date for its cropland and noncropland.

A. Basic Principle

The NDVI of cropland changes gradually with crop growth.
Existing literature and tools [28] reported the functional rep-
resentations of the NDVI curve of the crop growing season,
e.g., Gaussian function [29], asymmetric Gaussian function [30],
double logistic method [31], etc. With the tradeoff between
the number of parameters that each function needs to solve
and the number of input image pairs, the Gaussian function
is used to characterize the temporal changes of NDVI of crop
growing season in this study, and a fusion model of GKSFM is
proposed.

Due to the discrepancies of the sensor system, such as orbit
pass, viewing angle, and spatial scale [32], the NDVI curves
from different satellite sensors are inconsistent, mainly reflected
in the inconsistency of mean and variance of Gaussian functions.
Therefore, this study adopts the Gaussian function to represent
two kinds of NDVI data with different spatial resolutions. The
high-resolution and low-resolution NDVI data can be formulated
by

F (i, j, tk) = MF × g (i, j, tk, θF ) +NF (1)

C (i, j, tk) = MC × g (i, j, tk, θC) +NC (2)

whereF represents the high-resolution NDVI data; C represents
the low-resolution NDVI data; i and j are the coordinates of the
image; tk is the time; MC , NC , MF , and NF represent the
linear parameters of the Gaussian function of the low-resolution
NDVI data and the high-resolution NDVI data, respectively;
g(i, j, tk, θF ) and g(i, j, tk, θC) are the Gaussian kernel func-
tions, with the mean and variance reflecting the corresponding
crop phenological changes; g(i, j, tk, θF ) and g(i, j, tk, θC) can
be written as

g (x, y, tk, θF ) = exp

{
−
(
tk − aF

bF

)2
}

(3)

g (x, y, tk, θC) = exp

{
−
(
tk − aC

bC

)2
}

(4)

where aF and aC are the mean of the Gaussian functions, and
bF and bC are the variance of the Gaussian functions.

For noncropland pixels, we assume that the NDVI is stable
with approximately linear changes over the prediction date.
The Gaussian kernel functions g(x, y, tk, θF ) and g(x, y, tk, θC)
can be regarded as the same constant because the intraseason
changes in NDVI of noncropland pixels, such as buildings
and water bodies, are relatively few. From (1) and (2), the
relationship of noncropland pixels between the high-resolution
and low-resolution NDVI data can be deduced by

F (i, j, tk) =
MF

MC
· C (i, j, tk)−NC · MF

MC
+NF . (5)

The relationship between the high-resolution and low-
resolution NDVI data of noncropland pixels is linear. Therefore,
we characterized the NDVI of cropland pixels by (1) and (2),
and represented the NDVI of noncropland pixels by (5).
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B. Spatiotemporal Fusion for Cropland

According to the growth stage of crops, the time variable tk in
(3) and (4) can be eliminated through logarithmic transformation√

− ln g (x, y, tk, θF ) =
bC
bF

√
− ln g (x, y, tk, θC)

+
aC − aF

bF
. (6)

We set α = bC /bF and β = (aC − aF )/bF . Then, (6) can
be written as√

− ln g (x, y, tk, θF ) = α
√
− ln g (x, y, tk, θC) + β. (7)

The nonlinear relationship of cropland pixels between the
high-resolution and low-resolution NDVI data can be trans-
formed into a linear relationship through logarithmic transfor-
mation. The coefficients α and β can be obtained by regressing
two pairs of pixels at tm and tn from the high-resolution and the
low-resolution NDVI data. To make the regression coefficient
more robust, the sliding window is used to select similar pixels
within the window for regression [14]. Information of similar
pixels is then integrated into high-resolution NDVI calculation
as described in

F (xω
2
, yω

2
, tp) = F (xω

2
, yω

2
, tk) +

N∑
i = 1

Wi · (F ′(xi, yi, tp))

(8)

where N is the number of similar pixels; Wi is the weight of ith
similar pixel; tk (k – n, or n) is the time of the input image; tp
is the time of the predicted image; ω is the size of the window;
and (xω

2
, yω

2
) is the center pixel of the window. F ′(xi, yi, tp) in

(8) can be formulated by

F ′ (xi, yi, tp)

= MF · exp
⎧⎨
⎩−

(
α ·
√

− ln

(
C (xi, yi, tp)−Nc

Mc

)
− β

)2
⎫⎬
⎭

+MF · exp
⎧⎨
⎩−

(
α ·
√

− ln

(
C (xi, yi, tk)−Nc

Mc

)
− β

)2
⎫⎬
⎭ .

(9)

Equation (8) means that the high-resolution NDVI of the
predicted date (tp) equals the high-resolution NDVI obtained
at one time (tn or tm) added to the weighted sum of all similar
pixel changes within the window in the low-resoution NDVI.
According to (8), the high-resolution NDVI at either tn or tm can
be used as the NDVI at a base date to estimate the high-resolution
NDVI at tp, the results are marked as Fm(xω

2
, yω

2
, tp) and

Fn(xω
2
, yω

2
, tp), respectively. In the heterogeneous region, the

local land cover change may lead to significant uncertainty. A
reliable predicted result could be obtained by combining the two
predicted results by weighting, as in

F
(
xω

2
, yω

2
, tp
)
= Tm · Fm

(
xω

2
, yω

2
, tp
)

+ Tn · Fn

(
xω

2
, yω

2
, tp
)

(10)

where Tm and Tn are weights of the two predicted results.
Equation (19), which follows, is used to calculate the time weight
Tm and Tn.

C. Spatiotemporal Fusion for Noncropland

The low-resolution and high-resolution NDVI for noncrop-
land pixels can be written as (5). We assume that the land covers
and other conditions do not change at the time of tm, tn, and
tp , thus the relationship between the high-resolution and low-
resolution NDVI is stable and linear. For convenience, we set a
=MF

MC
and b =NF −NC · MF

MC
. Furthermore, the relationship

of NDVI in the two phases can be written by

F (x, y, tk) = a · C (x, y, tk) + b (11)

F (x, y, tp) = a · C (x, y, tp) + b (12)

where tk (tm or tn) is the date of the input image; tp is the
predicted date. Thus, (11) and (12) can be deduced to

F (x, y, tp) = F (x, y, tk) + a · (C (x, y, tp)− C (x, y, tk)) .
(13)

The coefficient a can be obtained by regressing a pixel at tm
and tn. Theoretically, the high-resolution NDVI at tp can be
predicted by the high-resolution NDVI at tm or tn. However,
only a single pair of pixels is used for fusion, which will
cause part of the spatiotemporal details to be lost and great
uncertainty. For noncropland pixels, the sliding window is used
again to search neighboring pixels with similar NDVI values for
robust regression. Then, (13) with neighboring regression can
be written by

F
(
xω

2
, yω

2
, tp
)
= F

(
xω

2
, yω

2
, tk
)
+

N∑
i = 1

Wi · a·

(C (xi, yi, tp)− C (xi, yi, tk)) (14)

where ω is the size of the sliding window; Wi is the weight of
the ith pixel in the sliding window.

D. Weight and Linear Parameter Calculation

In order to compare the prediction effect of Gaussian, the
same weighting method as ESTARFM was used. First, we need
to select similar pixels in the sliding window. The discriminant
criterion of similar pixels can be judged by∣∣F (xi, yi, tk)− F

(
xω

2
, yω

2
, tk
)∣∣ ≤ σ · 2/z (15)

where σ is the variance of the whole image; z is the number
of landcover types. When a pixel of tm and tn in the slide
window meets this condition, it is marked as a similar pixel.
The weight of the similar pixel determines its contribution to the
predicted result, which is determined by the similarity between
the NDVI of the similar pixel and the central pixel, and the
distance between them. The weight Wi can be defined as

Wi = (1/Di) /
N∑

i = 1

(1/Di) (16)

Di = (1−Ri) · di (17)
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TABLE I
INTRODUCTION OF MODIS AND LANDSAT-8 OLI DATA

DOY represents day of year.

di = 1 +

√(
xi − xw/2

)2
+
(
yi − yw/2

)2
/ (w/2) (18)

where di is defined as the Euclidean distance between the similar
pixel and the central pixel; Ri is the correlation coefficient
between the low-resolution and high-resolution pixels for the
ith similar pixel. The smaller di is, the larger Ri is, and the
larger the weight is. Finally, the weight is normalized according
to (16). The temporal weight can be calculated according to the
change magnitude detected by the low-resolution NDVI between
the date tk (k =m or n) and the prediction date tp, (19) shown
at bottom of this page.

There are four unknown variables in (9), i.e., MC , MF ,
Nc, and NF , which need additional information. Due to the
high temporal resolution of the low-resolution NDVI, the least
square fitting was used for the low-resolution time series NDVI
reconstructed by maximum value composition (MVC) [33] and
harmonic analysis [34] to eliminate noise according to (2),
thus Mc and Nc can be obtained. According to (5), all stable
noncropland pixels (e.g., buildings) at tm and tn are regressed.
According to the regression coefficient, MF and NF can be
estimated.

III. EXPERIMENTS

A. Test Sites

There are three test sites in China, i.e., the southern Junggar
Basin [see Fig. 2(a)], central Jianghan plain [see Fig. 2(b)–(d)],
and Mishan County [see Fig. 2(e)]. The corresponding data are
listed in Table I. The first study area is mainly utilized to test the
effectiveness of GKSFM for crops in different growth stages;
the second study area is primarily for the validation in different
proportions of cropland/noncropland; and the third study area is

Fig. 2. Study areas. (a) Southern Junggar basin. (b)–(d) central Jianghan plain,
which correspond to cropland-dominated area, noncropland-dominated area,
and cropland/ noncropland equivalent area. (e) Mishan County.

for crop mapping in practical applications. The details are stated
in the following.

1) The first study area locates in the southern Junggar basin
(44°14’29“N, 87°8’9”E), with an area of 30 × 30 km.

Tk =

1
/∣∣∣∑w

i=1

∑w
j=1 C (xi, yj , tk)−

∑w
i=1

∑w
j=1 C (xi, yj , tp)

∣∣∣
∑

k=m,n

(
1
/∣∣∣∑w

i=1

∑w
j=1 C (xi, yj , tk)−

∑w
i=1

∑w
j=1 C (xi, yj , tp)

∣∣∣
) (19)
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Fig. 3. Cropland maps of the study areas. (a) Junggar basin. (b)–(d) Central
Jianghan plain, which correspond to cropland-dominated area, noncropland-
dominated area, and cropland/ noncropland equivalent area. (e) Mishan County.

This region belongs to a temperate continental climate,
with rare rainfall, large temperature difference between
day and night, long and cold winter, and short and hot
summer. This area is mainly consisted of croplands, with
the major crop being cotton, which accounts for 76% of the
total area, as shown in Fig. 3(a). Cotton is sown in middle
April and harvested in October. It lasts about 185–200
days. This area also includes some other land covers, such
as grassland and artificial surface.

2) The second study area locates in the center of Jianghan
plain. We select three subregions that have different land
cover characteristics, with each region having an area of 9
× 9 km. These three regions are the cropland-dominated
area (30°40′45′′N, 112°41′18′′E), the noncropland-
dominated area (30°38′16′′N, 113°8′13′′E), and the
cropland/noncropland equivalent area (33°19′29′′N,
112°24′40′′E), as shown in Fig. 2(b)–(d); Fig. 3(b)–(d)
is the corresponding cropland maps. The Jianghan plain
is a plain alluvial deposit of the Yangtze River and the
Han River, which is one of the major producing areas
for grains and oilseed crops in China. It belongs to

subtropical monsoon climate, with abundant rainfall,
sufficient sunshine, and four distinct seasons. The major
crop is rice. Its growing period is 130–140 days. Due to
the cloud coverage, few optical remote sensing data are
available for this area in 2017, as listed in Table I.

3) The third study area locates in Mishan County
(45°31′47′′N, 132°1′51′′E) in the southeast of Hei-
longjiang. This area belongs to a temperate monsoon
climate, with the seasons of different climate conditions.
It has 257.4 km2, with the cropland area being 143.3 km2,
as shown in Fig. 3(e). The three main crops in this study
area are rice, soybeans, and corn. The crops are cultivated
during a single growing season, which is mainly from
April to October. The general sowing date of rice is in
middle April, and the mature stage is in late September,
with the average growth period being about 150–180 days.
The general sowing date of soybeans is in late May, and
the mature stage is in late September, with the average
growth period lasting about 120–150 days. The general
sowing date of corn is in middle May, and the mature stage
is in middle September, with the average growth period
lasting about 120–150 days. Crop calendar is derived from
the Chinese National Meteorological Information Center
[35]. During the crop growth period, only three Landsat 8
OLI images of different dates are available for this area in
2017, as shown in Table I.

B. Datasets and Data Preprocessing

In this study, three different kinds of data were used, in-
cluding Landsat 8 OLI, MODIS surface reflectance products
(MOD09GQ), and GlobeLand30. The Landsat 8 OLI image
has nine bands, with a 16-day temporal frequency and a spatial
resolution of 30 m for multispectral bands, which were obtained
from the U.S. Geological Survey (USGS).1 MOD09GQ is a daily
reflectance product, which can be obtained from the National
Aeronautics and Space Administration (NASA).2 It has red and
near-red bands, with a spatial resolution of 250 m. We selected
the available Landsat OLI images of good quality under cloud-
less conditions (cloud cover less than 5%), and the MOD09GQ
images from early April to the end of October as the data source
for all study areas in 2017 (see Table I).

The MODIS images were reprojected and resampled to have
the same coordinate system and spatial resolution with the
Landsat 8 images. The NDVI was calculated from Landsat
images and MODIS images. The Landsat NDVI was used as
the high-resolution NDVI, and MODIS NDVI was used as the
low-resolution NDVI. GlobeLand30 is the first global compre-
hensive high-resolution land cover dataset [36], with a spatial
resolution of 30 m and ten different land cover types, including
cultivated land, water, artificial surface, and so on, which can be
downloaded from the website.3 In this study, we took the Glo-
beLand30 data as the basis and determined the cultivated land
as cropland area, with the other regions as noncropland areas.

1[Online]. Available: https://landsat.usgs.gov
2[Online]. Available: https://ladsweb.modaps.eosdis.nasa.gov
3[Online]. Available: http://www.globallandcover.com

https://landsat.usgs.gov
https://ladsweb.modaps.eosdis.nasa.gov
http://www.globallandcover.com
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TABLE II
FUSION ACCURACY (RMSE) OF DIFFERENT ALGORITHMS IN THE JUNGGAR BASIN

For convenience, we refer to the cropland area and noncropland
area as cropland data.

C. Evaluation Criteria

1) Evaluation of Different Phenological Periods: NDVI im-
ages of Landsat and MODIS in Jungar basin, with a total of
nine pairs, were selected to test GKSFM. Meanwhile, STAIR,
STARFM, and ESTARFM were utilized as the comparative
algorithms. Root-mean-square error (RMSE) was used as the
evaluation indicator, which can be calculated as follows:

RMSE =

√√√√∑n
i = 1

(
NDVIi − ̂NDVIi

)2
n

(20)

where NDVIi represents the original Landsat NDVI; ̂NDVIi is
the predicted NDVI value; and n is the total number of pixels.

The time series NDVI of Landsat and MODIS are shown in
Table I, and the real images of the predicted date were used
as the verification data, with a total of seven predicted images
obtained (see Table II. Besides, because STARFM requires only
a pair of high–low resolution NDVI images as input, for the sake
of fairness, STARFM in this experiment also uses two pairs of

TABLE III
FUSION ACCURACY (RMSE) OF DIFFERENT ALGORITHMS FOR DIFFERENT

PROPORTIONS OF CROPLAND/NONCROPLAND IN CENTRAL JIANGHAN PLAIN

images. The same weighting method as ESTARFM is adopted
to obtain the predicted NDVI image.

2) Evaluation of Different Proportions of Crop-
land/Noncropland: NDVI images of Landsat and MODIS
in central Jianghan plain, with a total of three pairs,
were selected to test GKSFM. To verify the algorithm’s
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performance on different proportions of cropland/noncropland,
three typical proportions with apparent differences in the
central Jianghan plain were selected, which were the
cropland-dominated region, noncropland-dominated region,
and cropland/noncropland-equivalent proportion. Quantitative
evaluation, regression analysis, and visual analysis were utilized
to compare the algorithms’ performance.

3) Evaluation by Crop Mapping: NDVI images of Landsat
and MODIS in Mishan County, with a total of three pairs,
were selected to fuse continuous time series NDVI for crop
mapping. STARFM, ESTARFM, STAIR, and GKSFM were
used for fusion to obtain continuous time series NDVI. Also,
HANTS was used for generating continuous time series NDVI.
Since there are only three Landsat NDVI, HANTS can only have
one harmonic. These methods predicted the whole phenological
period images of the time series NDVI with a 30-m resolution,
from DOY 60 to DOY 300. The temporal resolution of the
fused NDVI is daily. Thus, there are 240 days of NDVI in the
growing season. Cloud noise interference in the original MODIS
NDVI will be introduced into the fused result. Therefore, time
series reconstruction on fused NDVI should be conducted. The
MVC was adopted to eliminate low-value noise first. Then the
Savitzky–Golay (S-G) filter was performed on it. To improve
the crop mapping accuracy, fused NDVI was first masked by the
existing cropland product [37]. Because most corn and soybeans
were cultivated at the mountain’s foot, the planting structure is
scattered. Therefore, it is necessary to use the existing cropland
product to carry out a priori constraint on the crop classification
result. Many classifiers have been reported in previous literature
[38]–[40]. In this study, the SVM classifier was utilized, with
two-thirds of samples used for training, with the rest for testing.
Meanwhile, multitemporal Landsat NDVI images were also
used for crop classification. By comparing the classification
accuracy, the reconstruction degree of the missing phenological
information can be evaluated.

IV. RESULTS AND DISCUSSIONS

A. Performance for Crop Phenology

By analyzing the fusion accuracy for cropland in Table II,
the RMSEs of GKSFM in the four dates of DOY123, 155, 219,
and 235 are close to that of ESTARFM. While in the midseason
of crops, i.e., DOY 171, 187 and 203, RMSEs are significantly
lower than that of ESTARFM, STARFM, and STAIR. That is,
the performance of GKSFM is outstanding in the midseason
of crops. For example, in DOY 203, the RMSE of GKSFM in
cropland is 0.1649, which is the lowest among that of ESTARFM
(RMSE is 0.1711), STARFM (RMSE is 0.2901), and STAIR
(RMSE is 0.3128), indicating that the accuracy of GKSFM in
cropland area is higher than that of the other three algorithms.

For noncropland, the RMSE of GKSFM is close to that of
ESTARFM and is generally lower than that of STARFM and
STAIR. RMSEs of all four algorithms increase first and then
decrease. This is because the pixel of MODIS was usually mixed,
which transmitted the phenological information of nearby veg-
etation to the predicted pixel and led to a certain deviation of
the predicted NDVI from the real situation. For example, the

Fig. 4. NDVI curves of MODIS cropland and Landsat cropland. The grey
shading denotes the NDVI standard deviation of MODIS cropland.

RMSEs of GKSFM and ESTARFM for noncropland in DOY
187 are higher than that of DOY 123.

The overall fusion accuracy is a combination of both accura-
cies from cropland and noncropland areas. Because GKSFM has
a significant improvement in cropland, and is close to ESTARFM
in noncropland, the overall accuracy will be higher than the other
linear methods, especially in the midseason of crops. Moreover,
since cropland in this study area accounts for 76%, GKSFM has
a significant improvement in overall fusion accuracy due to the
accuracy improvement in cropland.

Fig. 4 shows the mean curve of time series NDVI of MODIS
for cropland and the error bar of Landsat NDVI for cropland.
The basic assumption of ESTARFM, STARFM, and STAIR is
that there is a linear relationship between the high-resolution and
low-resolution data. Because the change rate of cropland NDVI
curve during the rising and falling phases is relatively small,
the relationship between the high-resolution and low-resolution
NDVI can be approximately regarded as linear (see Fig. 4). How-
ever, when the NDVI curve approaches the peak (midseason),
the change rate of both high-resolution and low-resolution NDVI
data is drastic, and the rate turns from positive to negative. In
Fig. 4, the average NDVI change rates of Landsat cropland in
the first three dates and the last three dates were relatively stable,
which resulted in the performance of GKSFM being similar to
that of ESTARFM, but did not affect the fusion accuracy of
GKSFM for the whole growing seasons of crops. For example,
RMSEs of GKSFM in DOY 123 and 235 for cropland are slightly
different from that of ESTARFM, but the difference is no more
than 0.003. Meanwhile, the accuracy of GKSFM in DOY 187 for
cropland has a significant improvement, since the change rate
of both high-resolution and low-resolution NDVI data is drastic
during the midseason.

According to Fig. 4, DOY 187 is close to the peak of NDVI
curve. To facilitate the analysis, we selected the local cropland
area and marked it with a red box (see Fig. 5). There is a
significant difference among Fig. 5(b)–(e), especially in the red
circle, GKSFM [see Fig. 5(e)] performed better than the others.
The absolute value of the difference between real NDVI and the
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Fig. 5. Real NDVI and fused NDVI in DOY 187. (a) Real NDVI in DOY
187. (b)–(e) Corresponding local details of the absolute value of the difference
between real NDVI and the predicted NDVI by STAIR, STARFM, ESTARFM,
and GKSFM, respectively.

predicted NDVI by GKSFM tends to zero. The fused results near
the peak of the NDVI curve are quite different from each other.
Thus, the advantage of the nonlinear method (e.g., GKSFM)
can be reflected. The time interval from DOY 91 to DOY 251
is the period from the planting to the harvesting of crops in this
region. The NDVI curve of cropland pixels generally shows a
trend of increasing first and then decreasing, which corresponds
to a growth cycle of crops. Therefore, RMSEs of cropland pixels
fused by ESTARFM, STARFM, and STAIR show an increasing
first and then decreasing trend. Because the GKSFM algorithm
assumes the nonlinear change of NDVI during the crop growing
season and characterizes crop phenology more reasonably, the
fusion accuracy for cropland is higher than that of ESTARFM,
STARFM, and STAIR.

Because the theoretical basis of GKSFM for fusing noncrop-
land is similar to ESTARFM, the fusion accuracy of GKSFM is
close to ESTARFM and has been dramatically improved com-
pared with STARFM. Since most of the MODIS pixels labeled
as noncropland are mixed pixels, which contain information of
many adjacent cropland pixels, the NDVI value of noncropland
pixels will be higher than the expected value. Therefore, the

noncropland pixels will transmit part phenological information,
causing certain fluctuations of RMSE over time and certain
errors.

B. Performance for Different Proportions of
Cropland/Noncropland

To test the performance of GKSFM in different proportions
of cropland/noncropland, the experiment selected three typical
proportions with apparent differences in central Jianghan plain,
which are cropland-dominant area, noncropland-dominant area,
and cropland/noncropland equivalent area, respectively. This
study used the three proportions of cropland/noncropland image
pairs on DOY 118 and 230 as reference image pairs, and then,
inputted MODIS NDVI on DOY 198 to predict Landsat NDVI
on DOY 198. The absolute image of the difference between the
predicted NDVI and the real NDVI is shown in Fig. 6.

In the cropland-dominated region, most of the land cover
types are crops, such as rice. The predicted date is DOY 198,
which is near the peak of the NDVI curve. In Fig. 7(a)–(d),
the scatter plots of GKSFM fusion results and real image are
more concentrated in the diagonal region, and R2 (0.711) is
also the highest, which indicates that the predicted result of
GKSFM is closer to the real images. RMSEs of GKSFM for
both cropland and the whole image are the lowest, as shown in
Table III with values of 0.1073 and 0.1053, respectively. The
prediction accuracy of GKSFM for noncropland pixels is very
close to that of ESTARFM, only 0.8% lower.

In the noncropland-dominant region, most areas are noncrop-
land pixels (buildings, roads, etc.), and cropland pixels only
account for a few parts. As there is no phenological change
for buildings and roads, the NDVI values of such types do
not change much with time. Therefore, the fusion accuracies
of all methods are high. Fig. 7(e)–(h) shows the scatter plots
among the predicted results of STAIR, STARFM, ESTARFM,
and GKSFM and the real image, in which the scatter plot of
GKSFM is more concentrated in the diagonal area, and its
R2 (0.807) reaches the optimal level. GKSFM had the lowest
RMSEs for cropland pixels and the whole image, as shown in
Table III which are 0.1154 and 0.1097, respectively. Its RMSE
(0.0916) for noncropland pixels is closed to that of STARFM
(0.0915).

In the cropland/noncropland equivalent proportion, as shown
in Fig. 6(k)–(o), the STARFM, ESTARFM, and GKSFM can
achieve acceptable prediction results for buildings and roads,
while the NDVI value is underestimated for cropland pixels.
Because the cropland is too fragmented, MODIS cannot capture
the subtle changes and is also affected by the adjacent buildings,
roads, and other land covers, resulting in a low predicted value of
some fragmented cropland. The scatter plots of Fig. 7(i)–(l) also
show that NDVI is underestimated in all results, but the scatter
plot of GKSFM is more concentrated in the diagonal region, and
R2 (0.797) is the highest of the four methods. In terms of RMSE,
GKSFM is superior to the other three methods for both cropland
pixels and noncropland pixels.

Based on the above quantitative and qualitative evaluations,
it is shown that under the same weighted framework, the fusion
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Fig. 6. Comparison of fusion results of different methods on different proportions of cropland/noncropland. (a)–(e) Real NDVI of the cropland-dominant area
and the corresponding absolute NDVI of the difference between the real NDVI and fusion result of STAIR, STARFM, ESTARFM, and GKSFM, respectively.
(f)–(j) Real NDVI of the noncropland-dominant area and the corresponding absolute NDVI of the difference between the real NDVI and fusion result of STAIR,
STARFM, ESTARFM, and GKSFM respectively. (k)–(o) Real NDVI of cropland and noncropland equivalent area and the corresponding absolute NDVI of the
difference between the real NDVI and fusion result of STAIR, STARFM, ESTARFM, and GKSFM, respectively.

Fig. 7. Scatter plots of real and fused results in different proportions of cropland/noncropland. (a)–(d) STAIR, STARFM, ESTARFM, and GKSFM in the
cropland-dominant area, respectively. (e)–(h) STAIR, STARFM, ESTARFM, and GKSFM in the noncropland-dominant area, respectively. (i)–(l) STAIR, STARFM,
ESTARFM, and GKSFM in cropland and noncropland equivalent area, respectively.
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accuracy of GKSFM optimized with the Gaussian kernel is
higher than that of ESTARFM in cropland pixels, which proves
the feasibility of the Gaussian kernel optimization method. In
Fig. 7, GKSFM’s scatter plot is more concentrated in the diago-
nal region, and R2 reaches the highest among the four methods.

The accuracy of spatiotemporal fusion is different in differ-
ent proportions of cropland/noncropland. Cropland-dominated
region and noncropland-dominated region are relatively more
homogeneous, the contribution of neighborhood similar pix-
els to the central pixels is consistent during the fusion. The
cropland/noncropland equivalent proportions have considerable
heterogeneity. A low-resolution pixel might contain building,
water, cropland, etc. It is inevitable that information from other
local land covers will be introduced into the central pixel
during the fusion process, resulting in the underestimation on
cropland NDVI. As shown in Fig. 7(i)–(l), the high-value area
gathered some point below the diagonal. Therefore, it can be
concluded that GKSFM performs better than STAIR, STARFM,
and ESTARFM in both homogeneous and heterogeneous
cropland.

C. Application for Crop Mapping

In this section, the characteristics of time series NDVI of
different crops will be discussed, and the fused NDVI will be
used to improve the accuracy of crop classification for crop
mapping in Mishan County.

In Mishan County, rice, soybeans, and corn are all single-
cropping crops. For rice, roughly DOY 110 to DOY 140 is the
transplanting period. During this period, the surface is a mixture
of rice and water so that NDVI will show a downward trend [41].
Then, with the growth of rice, NDVI will gradually increase.
This is a unique feature of rice, at about DOY 225, NDVI of
rice changes from rising to declining because rice gradually
matures from milk stage. Meanwhile, rice husk and japonica
gradually changed from green to yellow, leading to a decline
in NDVI. For soybeans, the sowing stage is about DOY 120 to
DOY 150, and then, NDVI gradually increased. At about DOY
225, NDVI is at the turning point from rising to falling, which
is in late August, when soybeans begin to form pod and grain,
green leaves gradually turn yellow, when NDVI is not obviously
different from rice. For corn, the planted stage is similar to that
of soybeans. NDVI turns from rising to declining trend at about
DOY 240, and the dates of maturing and harvesting are later than
that of soybeans and rice. For corn, the planted stage is similar
to that of soybeans. Because leaves of corn are luxuriant, NDVI
is relatively high in the corn growing season, and NDVI changes
from rising to declining trends at about DOY 240, and the dates
of maturing and harvesting are later than that of soybeans and
rice.

Fig. 8 shows the time series NDVI of rice, soybeans, and
corn fused by different methods. We can evaluate and analyze
the results from two perspectives. One is the curve consistency
with high temporal profile of MODIS NDVI. Although MODIS
pixels are inevitably affected by cloud coverage, the NDVI
curve after time series reconstruction (e.g., MVC and S-G filter)
can reflect the overall trend to a certain extent. Another is the

Fig. 8. 30 m Landsat NDVI, 250 m MODIS time series NDVI, and 30 m time
series NDVI generated by STAIR, STARFM, ESTARFM, HANTS, and GKSFM
of crop samples in Mishan. (a) Rice. (b) Soybeans. (c) Corn.

peak number. Because crops during the select time period are
single-cropping, only one peak of the NDVI curve is reasonable.
In Fig. 8(b) and (c), the result of HANTS is significantly un-
derestimated because of the limited Landsat observations. The
feature of peak of time series NDVI generated by ESTAFM
and STAIR is not reasonable in Fig. 8, which has more than
one peak. In the early and late growing seasons, the trend of
NDVI generated by different methods is similar. However, there
are significant differences in NDVI between different methods
around midseason.

Table IV presents the classification results of the time series
NDVI fused by different methods and the original Landsat
NDVI, respectively. Overall accuracy (OA) of the NDVI fused
by GKSFM is the highest 88.29%, and the Kappa coefficient
is 0.7823. Compared with the original multitemporal Landsat
NDVI and time series NDVI generated by other methods, the
OA is improved from 6.09% to 23.28%. The temporal span
of fused NDVI covers the whole crop growing season, which
can fully reflect the growth characteristics of crops, such as the
NDVI decrease first and then increase in the rice transplanting
period. The time series NDVI of corn and rice has its own unique
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TABLE IV
CLASSIFICATION ACCURACY OF DIFFERENT DATA IN MISHAN COUNTY

Fig. 9. Classification result. (a) Result of classifying with origin Landsat NDVI. (b)–(f) Result of classifying with NDVI fused by HANTS, STAIR, STARFM,
ESTARFM, and GKSFM, respectively.

characteristics to achieve better classification results. However,
due to some late sowing date of soybeans, the planted stage
of soybeans is similar to that of the rice transplanting period,
which is also in the low NDVI period. Therefore, the time series
characteristics of soybeans and rice are relatively close, leading
to the misclassification of some soybeans as rice.

According to the classification result in Fig. 9(f), most rice
was planted in the middle and east of Mishan County with a
large area, while corn and soybeans were mainly planted in the
middle and west with a fragment planting structure. The main
reason is that rice planting income is better than that of corn and
soybeans, and rice planting requires much water resource from

the perspective of comprehensive planting income. To reduce the
cost, rice is basically planted in contiguous areas. However, in
the fragment region, rice cannot be grown due to the limitation of
water, soil environment, electric power, and other factors. Only
corn, soybeans, and other crops can be planted.

The experiment results show that the time series NDVI fused
by GKSFM guarantees the spatial resolution of NDVI, ensures
the temporal variation of NDVI of crops, and restores the NDVI
in crop progress stages. Classification using the time series
NDVI fused by GKSFM can fully characterize the growth of
crops, and achieve an OA improvement. Meanwhile, the classi-
fication result shows the cultivation structure of Mishan County,
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where rice is planted in concentrated contiguous areas, soybeans
and corn are grown in fragment fields due to the high profit of
rice planting in the local area.

V. CONCLUSION

In this study, GKSFM, which employs Gaussian kernel model
to characterize the temporal variation of NDVI in agricultural
area, was proposed to produce NDVI data with both high spatial
resolution and high temporal resolution. Compared with the
linear hypothesis of ESTARFM, GKSFM supposes the crop
growing season as nonlinear change, which is closer to re-
ality. The experiments verified the performance of GKSFM
for different phenological stages and different proportions of
cropland/noncropland, compared with STARFM, ESTARFM,
and STAIR. GKSFM has an accuracy improvement in the crop-
land area, especially during the midseason of crops. And the
accuracy of GKSFM in noncropland pixels is comparable to
that of ESTARFM. These results show that GKSFM has better
fusion accuracy for time series NDVI of crops, which is of
great significance for predicting the missing NDVI. GKSFM
was also adopted to fuse the time series NDVI in Mishan County
for crop mapping. The classification accuracy measured by OA
is 88.29%, which is improved from 6.09% to 23.28% for the
original Landsat NDVI and time series NDVI generated by
other methods. It demonstrates that the fused time series NDVI
can make up the critical missing information. More efforts are
needed in the future for the improvement of the computational
efficiency and for integrating other high-resolution sensors (e.g.,
Sentinel 2), for agricultural remote sensing monitoring.
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