
3462 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Nonlocal Band Attention Network for Hyperspectral
Image Band Selection

Tiancong Li , Yaoming Cai , Zhihua Cai , Xiaobo Liu , and Qiubo Hu

Abstract—Band selection (BS) is a foundational problem for
the analysis of high-dimensional hyperspectral image (HSI) cubes.
Recent developments in the visual attention mechanism allow for
specifically modeling the complex relationship among different
components. Inspired by this, this article proposes a novel band
selection network, termed as nonlocal band attention network
(NBAN), based on using a nonlocal band attention reconstruction
network to adaptively calculate band weights. The framework
consists of a band attention module, which aims to extract the
long-range attention and reweight the original spectral bands, and
a reconstruction network which is used to restore the reweighted
data, resulting in a flexible architecture. The resulting BS network
is able to capture the nonlinear and the long-range dependencies
between spectral bands, making it more effective and robust to
select the informative bands automatically. Finally, we compare the
result of NBAN with six popular existing band selection methods on
three hyperspectral datasets, the result showing that the long-range
relationship is helpful for band selection processing. Besides, the
classification performance shows that the advantage of NBAN is
particularly obvious when the size of the selected band subset is
small. Extensive experiments strongly evidence that the proposed
NBAN method outperforms many current models on three popular
HSI images consistently.

Index Terms—Attention mechanism, band selection, global
relationship, hyperspectral image, spectral reconstruction.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) have been widely ap-
plied in various fields, such as agriculture [1], [2], land

management [3], medical imaging [4], [5], and forensics [6].
Hundreds of bands in hyperspectral images not only contain rich
spectral and spatial information but also bring a great challenge
for hyperspectral data processing. Due to the imaging charac-
teristics of HSIs, there is a high correlation between adjacent
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bands [7], thus leading to huge data redundancy. The high dimen-
sional and redundant HSIs data will result in huge expenditure
and extravagant computing resources. On the other hand, it often
suffers from the so-called curse of dimensionality [8], [9], which
will impair the classification ability of classifiers.

Feature extraction and band selection (BS) are the two most
common methods to transform the high-dimensional HSI data
to a lower one [10]. Feature extraction methods are widely
used in HSIs data processing [11]– [13]. The core idea of these
methods is to find a mapping from high-dimensional space to
low-dimensional space. However, feature extraction changes
the original feature space and causes the loss of the physical
characteristics of HSI data [10]. The basic idea of BS is to select
the most representative band from the original data. Compared
with feature extraction [14], BS preserves the main physical
attributes of the data to a great extent and protects the information
of the original data as much as possible [15].

BS methods can be classed into supervised and unsupervised
methods. Since no prior knowledge is needed and its better
robustness, unsupervised BS methods have attracted a great
deal of attention. Over the past decade, many unsupervised BS
methods have been proposed [16]. Some of BS methods view
Band selection as a combinational optimization problem and
use a heuristic searching method to optimize it, such as multiob-
jective optimization-based band selection (MOBS) [17]–[19].
Some of them are the cluster-based methods which cluster the
spectral bands and select the target bands, such as subspace
clustering (ISSC) [7], [20]. These methods consider the sim-
ilarity between spectral bands and achieved good results in
recent [7], [20]. Other BS methods are based on band-ranking
which assign a rank for each spectral band by assessing their
score, e.g., maximum-variance principal component analysis
(MVPCA) [21], sparse representation (SpaBS) [22], [23], and
geometry-based band selection (OPBS) [24].

Many existing BS methods commonly view every single
spectral band as an independent feature. However, there is a
nonlinear relationship exists between each band [7], [25]. Cai
et al. [25] proposed an end to end framework (BS-net), which
uses a convolution layer and an attention module to reconstruct
the original data and to find the connection of bands. However,
due to the limitation of the convolution kernel BS-Net can not
explore the nonlinear relationship between bands over a long
distance.

Recently, deep neural network (DNN) [26], [27] has attracted
increasing attention in HSI processing. Due to its ability to find
the nonlinear relationship between the features, DNN has been
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widely applied in HSI classification and feature extraction [25].
With the development of the DNN, convolution neural network
(CNN) [28] a variant of DNN, has been proven powerful to
extract spatial relationships between images and it has become
one of the most popular models for HSI processing [29]. CNN is
widely used in many neural network models and architectures.
For example, the auto-encoders of CNN version are always used
to deal with image reconstruction. In addition, attention mecha-
nism [30] have attracted increasing attention for the image classi-
fication problem, due to its ability to make the whole framework
focus on salient information. Many channel weighting methods
are equipped with attention modules, for example, Residual
attention network [31] and spatial transformer networks [32].
Due to the ability of the different version for DNN, it also can
be used in extract the correlation between the spectral, i.e., [25].
BS-net consider the nonlinear correlation between the spectral
bands, that is why BS-net performances better than other exists
BS method. Our proposed framework continues the idea of
BS-net and uses DNN to find the relationship between bands,
which we discussed in detail in Section III.

In this article, we develop a band selection network frame-
work that considers the global relationship of all bands called
nonlocal band attention network (NBAN). Specifically, we as-
sume that there is a long-range relationship that can help an
informative band subset to restore the complete spectral band set.
Instead of evaluating the connection between adjacent bands, our
framework extracts the long-range relationship by an attention
score matrix that is generated with an attention module. Finally,
NBAN is end-to-end trainable which makes it can be viewed as a
unified framework and combined with many popular networks.

To sum up, the main contributions of this work are as follows.
1) By assuming a long-range relationship exists between the

spectral bands, we propose a novel method for HSI band
selection called NBAN. Our proposed method measures
the significance of each band by calculating the restore
contribution of the target band to other bands and an
attention score matrix is used to extract the long-range
relationship between the spectral bands. Finally, the at-
tention score matrix is applied to hyperspectral band se-
lection directly, which attempts to provide a new idea for
unsupervised band selection.

2) We introduce nonlocal attention into the module of BS-
Net [25] by considering long-range relationship which
means that we have a receptive field in the process of band
selection. The long-range relationship makes NBAN have
global metrics rather than only consider a small range of
band relationships. That enables NBAN to achieve a better
performance when select a small size of band subset.

3) We show that the proposed method can better shield
the noise bands and achieves a good result on three HSI
datasets. The final experiment results show that our pro-
posed method achieves the best performance not only on
the classification performance but also on the correlation
between the selected band subset. At the end of the exper-
iment, we analyze why our framework can better avoid
selecting those noise bands and achieve better classifica-
tion performance than other BS methods by combining

with the characteristics of information entropy of three
datasets.

The rest of the article is structured as follows. In Section II, we
first describe motivation and review the related work. Second,
we define the notations and show the details of our proposed
method in Section III. Next, we design experiments to compare
with existing BS methods and discuss their results in Section IV.
Finally, we conclude with a summary and final remarks in
Section V.

II. RELATED WORK AND MOTIVATION

A. Attention Mechanism

The inspiration for attention mechanisms mainly comes from
human beings. The core idea of attention mechanism is to
make the modules ignore extraneous information and focus
on key information. Attention mechanism is widely applied in
natural language processing [33], [34] and image processing
[29], [32], [35], [36]. In this article, we mainly focus on its appli-
cation in image processing. Attention module can be considered
as a function f which measures the significance of the features
and formulates an attention map. The attention map can be taken
as a reference to reweight the raw data. In image processing, the
task of attention module can be defined as follows:

H = Z⊗ a. (1)

Here, a is a score vector of features a ∈ Rb that generated by
attention module, Z denotes a feature map Z ∈ Rmn×b , and
H is the resulted feature map H ∈ Rmn×b . Attention module
f is widely achieved by a neural network, that makes a can
extract the nonlinear relationship from the original feature map.
The network focuses the key information from the whole train-
ing process, and generate an attention map. By combining the
attention map a and original feature map Z, H will focus on
the key information and give less attention to the extraneous
information.

Due to the different objects of concern, attention modules can
be classed into spatial attention, channel attention [35], and joint
attention [37], [38]. The spatial attention is utilized to learn the
relationship between the spatial pixels. In practice, convolution
kernel is widely used in spatial attention modules, due to its
powerful ability to extract the information between adjacent
pixels. Meanwhile, the convolution operation is also applied in
the channel attention mechanism. For example, Hu et al. [35]
proposed a simple network branch that uses an average pooling
layer and convolution layer to squeeze the spatial information
and get channel attention. On the other hand, due to the limitation
of kernel size, most of the spatial attention modules of using
convolution kernels cannot consider the long-range relation-
ship between elements. Although the focus of spatial attention
mechanism and channel attention mechanism is different, the
shortcomings of convolution kernels leads to the limited ability
to extract contextual relations from spatial attention and channel
attention. To solve this problem, Wang et al. [39] proposed a
network that calculates the similarity between pixels and learn
the long-range relationship from the data. They calculated the
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similarity between all the pixels and obtain a more comprehen-
sive relationship between all pixels.

To sum up, attention mechanism has great potential in feature
selection. In this article, we not only use the traditional channel
attention but also use some concepts of spatial to find the long-
range relationship between bands. In the following section, we
will show the attention modules of our proposed framework and
discuss how it works.

B. Auto-Encoder

As a structure of DNN, auto-encoder is widely applied in
neural language processing [40], [41], and image process-
ing [42], [43]. With the development of CNN, an auto-encoder
of convolutional version can better extract the information from
the images than the original one. In this article, we mainly focus
on the auto-encoder of convolutional version. In practice, We
define an auto-encoder as a function f , which takes a tensor X
as input and outputs a resulted tensor Y. Then the auto-encoder
can be defined as follows:

Y = f(X; Θ) (2)

where Θ denotes the trainable parameters in the auto-encoder.
The training process of auto-encoder can be defined as two
stages: feedforward and backward. In the feedforward process,
the auto-encoder transforms the input tensor X into a latent
space by its encoder layer. In order to extract the information, the
encode layer always performs convolution operation in image
processing. Then the decode layer tries to restore the data and
produces a certain output Y. The encode layer and decode layer
are composed of multiple convolution kernels of different sizes
and after convolution operation, there is an elementwise function
between convolution kernels.

The second stage is called backward. After the stage of
feedforward, the auto-encoder needs to update the parameters
by using the method of gradient descent. A cost function is used
to calculate the cost between the original tensor X and the result
tensor Y. Then a method such as mean square error (MSE)
is utilized to minimize the cost. Finally, cost function can be
defined as

L(Θ) = Cost(X−Y; Θ) (3)

where Θ denotes the parameters of the auto-encoder and Θ is
updated by

Θ = Θ− η
∂L

∂Θ
. (4)

Here, η is learning rate and ∂ denotes the partial derivative
operation.

C. Motivation

The purpose of BS is to select some representative bands to
improve computational efficiency. This article purpose based
on the assumption, i.e., select the band set with global charac-
teristics will perform better than those band only consider the
local relationships. However, most of BS methods divide the
whole band set into several categories or just evaluate each band

as an independent feature [21]–[24]. These methods limits the
expression ability of the selected band set, and make the result
fall into a trivial solution. A method to solve this problem is to
enlarge the receptive field of the network, such as extract the
long-range relationship of the whole band set. By assuming a
band can be jointly represented by the others bands, the data
of original band set can be written as XC = X, where C is
a score matrix to reveal the significance of each band to other
bands. Moreover, the score matrix C can be used to select the
most informative bands as an important reference. As a deep
learning method, BS-Net takes convolutional neural networks as
band attention module and reconstruction network which makes
it more advantageous to other BS methods. However, it is also
face some shortcomings such as the following. 1) The expression
ability of the selected band subset is limited, especially when
the size of the subset is small. 2) The score matrix C cannot
extract enough information from the whole band set due to the
limitations of the convolution kernel size. Hence, this article
attempts to establish a new nonlocal evaluation framework
to select the more global bands by extracting the long-range
relationship between the spectral bands.

III. PROPOSED NETWORK

We denote an HSI dataset consisting of b spectral bands and
n×m pixels as U ∈ Rn×m×b. For convenience, we regard U
as B = {Bi}bi=1. Our goal is to find a function ψ : Ω = ψ(B)
which can produce a subset contains the most representative
bands. In this section we lay out an end-to-end trainable frame-
work for BS, then describe how it works. To begin with, we
summarize the structure of the model and then the details of
each module are shown in the following sections.

A. Architecture of NBAN

The core idea of NBAN is to rank the significance of the bands
in the process of sparse band reconstruction with a nonlocal
way. We try to restore the whole band set by only using a few
informative bands. In the process of reconstruction, those bands
that can represent the vast majority of bands should achieve more
attention. To this end, in order to select the most influential bands
we proposed a framework consists of a band attention module
and a reconstruction network.

The schema of NBAN is shown in Fig. 1. Aiming to rank
the significance of the bands, we first consider the long-rage
relationship between the bands and design a band attention
module. The input data is first extracted the correlation by
the attention module, and generate an attention score matrix.
The band attention module is a branch network that contains
the characteristics of spatial attention and channel attention.
In this module, we use a matrix C called the attention score
matrix to collect the long-range relationship between bands.
Then C will help to reweight the original data. The original
data are reweighted by matrix operation with reference to C.
The details of the attention module are shown in part B. Next, a
reconstruction network is to restore the original spectral bands
from the reweighted bands. The reweighted data are restored by
the reconstruction module. The details of the reconstruction net
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Fig. 1. Schema of NBAN. An attention score matrix is to compute the similar-
ity between the spectral bands during the process of spectral reconstruction and
the representative bands are selected by the final attention score matrix. The final
selected spectral bands is selected by the attention score matrix after training.

are shown in part C. In the process of the reconstruction, the at-
tention module adjusts the weight of bands to reconstruction and
measure the significance of each band. After training, the final
attention score matrix can be utilized to select the representative
bands.

B. Nonlocal Attention Module

A nonlocal attention module is an embedded unit which can
reweight the original data to a new feature map O. To make
the selected spectral bands more global, a reweight operation
is to calculate the correlation between each spectral band in a
nonlocal way. This allows us to measure the relationship with
a bigger receptive field. In Fig. 2, we show the details of the
nonlocal channel attention module. A feature map X ∈ I which
consists of d× d pixels and b spectral bands is given as an input.
The reweighted dataset O can be defined as

O = X⊗C (5)

where X ∈ Rd2×b, and ⊗ denotes reweight operation. C is
an attention score matrix that used to extract the relationships
between the spectral bands.

1) Attention Score Matrix: Comparing with the attention
module in BS-net, we employ an attention score matrix to record
the relationship we extract from the spectral bands so that the
framework can learn more information from the original feature
map.

We obtain the attention score matrix by attending to all pixels
in each band and taking their weighted average in embedding
space, this follows the design of [39], [30] and the nonlocal
operation can be written as (6). We simplify the embedded
Gaussian nonlocal module [39] and use the improved version
on band attention. The similarity between each spectral band
is calculated in a embedded Gaussian way and the attention
score matrix measure the significance of each spectral band to
others. Specifically, two (1× 1) kernels with a stride of (1× 1)
are to learn the correlation between the spectral bands. Then to
standardize the data, we follow it with a sigmoid function. The

similarity function f(xi, xj) can be defined as (7)

Ci =
1

H(X)

∑

∀j
f(xi, xj). (6)

f(xi, xj) = eσ(X)Tφ(X). (7)

where 1
H(X) denotes a normalization function, and i is the index

of the target position, and j is the index of enumerates all other
positions. f denotes the similarity between two pixels.

In order to reweight the band set, we view each band as
a combination of all bands and calculate the restore weights
of bands to each other. Specifically, the greater the similarity
between the bands, the greater the reconstruction weight. To
ensure the standardization of the generated data, we set the sum
of bands weight to 1 by calculating with a softmax function along
with the column of the attention score matrix, which means that
we can regard each column of the matrix as the reconstruction
cost of the corresponding band and each line can represent the
reconstruction weight of the corresponding band to other bands.
The last attention score matrix can be written as

C = softmax(XTWT
σWφX) s .t .

b∑

i=1

Cij = 1. (8)

Here, σ(Xi) = WσX and φ(X) = WφX. Wσ and Wφ are
the learning parameter of the convolution layer. The attention
score matrix represents the relationship between pixels and the
values in the matrix are all positive.

2) Band Reweighting: Next we describe the reweight opera-
tion. To reweight the data, we take ⊗ as a reweight operator and
use the attention score matrix as a reference. Each element of
the reweighted data is a combination of the elements of the same
position in other bands, and use Cij to denote the constituent
weight, where Cij refers to the element of the ith row and jth
column in the attention score matrix. Then we can write the
outputs element Oij as (9). Finally, the reweighted data O can
be calculated by (10)

Oij =
b∑

j=1

XijCji. (9)

O = Xsoftmax(XTWT
σWφX). (10)

Here, Oij is the element of ith row and jth column on the
reconstructed dataset.

C. Reconstruction Net

Following the attention operation, we employ a reconstruction
net (RN) to restore the reweighted spectral bands. The RN can
be defined as a function f which takes the reweighted dataO as
input data and outputs a restored dataset X̂ as

X̂ = f(O; Θc). (11)

Here, Θc is the trainable parameters involved in RN.
The MSE is used as the cost function to help recover the data.

We define the cost function L as follows:

L =
1

2

S∑

i=1

‖Xi − X̂i‖22 (12)
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Fig. 2. Overall network structure of NBAN. The framework consists of a nonlocal attention module and a reconstruction network. ⊗ is an operator, which denotes
the operation of matrix multiplication. O is the data that reweighted by the attention score matrix and has the same shape as X . The differences between X and
X̂ are calculated to feedback the framework and update the parameters.

where X denotes the original feature map and S is the number
of training samples. Equation (12) can be optimized by using
a gradient descent method, such as stochastic gradient descent
(SGD) and adaptive moment estimation (Adam). The details of
RN can be seen in Fig. 1. First, the reweighted data O processed
by a (1× 1) convolution kernel with a strids of (1× 1). In
order to restore the data, we consider the vanishing gradient
and simplify the auto-encoder by only using one convolutional
encoder(Conv1) and one deconvolutional decoder(Deconv1) to
up-samples feature maps. We employ the reconstruction error
between the prediction results and the original data to feedback
adjustment and form the final attention score matrix C, then C
is a reference to select the bands.

D. Informative Band Subset Selection

In this step, our goal is to measure the significance of each
spectral bands. In order to select the informative band subset,
we evaluate the importance of each band by a vector ω =
[ω1, ω2, . . ., ωi], where ωi refers to the importance of the ith
band. As we mentioned in part A, we view each line in C as
the reconstruction weight of the corresponding band to other
bands. In other words, the greater the reconstruction weight, the
more important the band is to other bands. With this solution,

we assess ωi as

ωi =

b∑

j=1

Cij (13)

where ωi denotes the evaluation weight vector of all bands, i is
the line number and j is the column number of the attention score
matrix. And then we sort ω and select the informative band set.
The pseudocodes of NBAN are shown in Algorithm 1.

IV. EXPERIMENT AND DISCUSSION

In this section, we explore the use of NBAN and discuss
how it works on real three datasets. In part A, we begin with
introduce three datasets, training details and evaluation criteria.
Then, we test NBAN with a classifier, analysis the convergence
of the framework, and compare the performance with six popular
BS methods in part B. Finally, we investigate the reasons why
NBAN performs better from the selected band subsets in part C.

A. Dataset and Training Details

To evaluate the influence of NBAN, we employ Indian Pines,
Pavia University, and Salinas as testbed for exploring the per-
formance of NBAN. Indian Pines consists of 145× 145 pixels
and 200 spectral bands. The dataset includes 16 kinds of differ-
ent categories and in the wavelength range 0.4− 2.5(×10−6)
meters. Pavia University consists of 610× 340 pixels and 103
spectral bands. The dataset is divided into nine classes and
in the wavelength range of 430− 860 nm. Salinas consists of
512× 217 pixels with 204 spectral bands in the wavelength
range of 0.36− 2.5(×10−6) meters and contains 16 classes.

For better evaluating the performance of the selected band
subsets, support vector machine (SVM) is utilized [44]–[46] as
the classifier. We randomly select 5% labeled samples from three
datasets as the training set and set the optimal window size as
7× 7 for each dataset. We train the network for 80 epochs on
Pavia University, and 100 epochs on Indian Pines and Salinas.
The kernel size of Conv1 and Deconv1 are 3× 3× 128. The
optimum learning rate used for three datasets is 0.00001. Overall
accuracy (OA), average accuracy (AA), and Kappa coefficient
(Kappa) are calculated by NBAN for 20 independent runs.

To analyze the selected band set, information entropy and
mean spectral angle (MSA) [15], [47], [48] are calculated as an
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TABLE I
HYPERPARAMETERS OF THE BS METHODS

important evaluation criteria. Entropy is calculated to represent
the amount of information in one band about another band. The
entropy can be defined as follows:

H(Bi) = −
∑

y

P (y)logP (y) (14)

where P (i) denotes the grey level of histogram bins of Bi.
The larger entropy is, the greater the amount of information
exists.

MSA is an average unit of measurement to indicate the degree
of data matching for a band set. The MSA for band subset B
can be written as

MSA(B) =
2

k(k − 1)

n∑

i=1

n∑

j=1

α(i, j) (15)

where α(i, j) denotes the spectral angle between the ith band
and jth band. α(i, j) can be calculated as

α(i, j) = arccos(
BT

i Bj

||Bi|| ||Bj || ). (16)

The larger MSA is, the less redundancy is contained between
the band subset. The methods are evaluated with Python 3.5
running on an Intel Xeon E5-2620 2.10 GHz CPU with 32 GB
RAM [25]. We implement all methods with TensorFlow-GPU
1.6.1 and accelerate them on an NVIDIA RTX-2080TI GPU
with 11 GB graphic memory and the hyperparameters of the
contrast methods are listed in Table I.

B. Experiment Results

In this part, we design the experiments to prove the effec-
tiveness of NBAN. We employ ISSC, SpaBS, MVPCA, MOBS,
OPB, and BS-Net-Conv as our comparative methods. After that,
the performance of using all bands is also compared with our
method as an important reference.

1) Analysis of Convergence of NBAN: In this part, we discuss
the convergence of NBAN on different HSIs, with visualize the
loss curves and the classification accuracy. For Indian Pines,
the curves of loss and classification are shown in Fig. 3(a).
It can be seen that when we train NBAN on Indian Pines
the reconstruction errors decrease and the accuracy of SVM
increases at the same time. The loss values of NBAN close to
0.002 after 20 iterations, and there has been a huge improvement
in accuracy at the same time. Finally, the value of accuracy
stabilizes around 73% after 40 interactions when we train our
method on Indian Pines. There is nearly a 13% improvement in
accuracy, which means that our method has a good effect on the

band selection. The use of long-range attention mechanism will
make loss converge faster than other BS methods, it is another
advantage of our method. Similar to Indian Pines, the loss curves
of Pavia University and Salinas are shown in Figs. 4(a) and 5(a).
Fig. 3(b) represents the selection process of NBAN on Indian
Pines. For convenience, we scale the bands’ weight into range
[0,1] and find that the importance of the band changed with
the training iteration. Almost all the spectral bands’ weights are
same at first, but with the increase of the training iterations, we
can observe that some of them become prominent compared with
other bands which means that we can view this phenomenon as a
process of band selection. Furthermore, to explore the relation-
ship between the correlation matrix and the selected bands, we
further visualize the correlation matrix of the trained network on
Indian Pines. As we can see in Fig. 3(c), the informative bands
and the trivial bands are distinguished by the lines in the matrix.
The horizontal lines in the graph of the attention score matrix
mean our method enhanced the weight of some specific bands
successfully instead of randomly increasing the weight of the
matrix. In Fig. 4(b) and Fig. 5(b) and (c), we can see the selection
process and the final attention score matrix of Pavia University
and Salinas. For Pavia University, the selected bands mainly
concentrated before the 80th band. However, the selected bands
are evenly distributed on Salinas. The specific band distribution
will be discussed in detail in part C.

2) Performance Comparison: To show the classification per-
formance of our method, we compare the classification results
of different BS methods under different sizes of band subset.
For Indian Pines, we can see from Fig. 8 that NBAN achieves
the best OA when the band subset size is over 5, followed by
BS-Net-Conv, MOBS, and others BS methods. It is observed that
two deep learning methods NBAN and BS-Net-Conv perform
better than other BS methods in most cases and the OA of NBAN
increases larger than 70% when the subset size is only 15. Then
we find a counter-intuitive phenomenon from these curves. The
classification performance is not always increased by selecting
more bands in some BS methods. We find that the OA curve
of SpaBS shows a downward trend when the subset size larger
than 17 and the classification performance of BS-Net-Conv start
decrease when the subset size larger than 23, it is the so-called
Hughes phenomenon [9], [8]. Furthermore, we can observe that
the OA curve of NBAN rises continuously throughout the whole
curve which means that NBAN can select more informative
bands on Indian Pines. For Pavia University, it can be seen
from Fig. 8 that NBAN achieves better OA than other methods
when the subsets are smaller than 15. When the subset size
larger than 20, NBAN, MOBS, BS-Net-Conv, and ISSC achieve
close OA. Although MOBS achieves a better performance when
the size of the subsets larger than 17, our proposed method
is still comparable to it. Because of the Huges phenomenon,
the classification accuracy of NBAN increases first and then
decreases with the selected bands. Then for Salinas, we can see
from Fig. 8(c) that NBAN achieves the best OA when the size
of the subset larger than 20. The OA of most BS methods no
longer increases unless NBAN when the subset size larger than
21, which means that our method can choose more informative
bands. Moreover, when the subset size larger than 19, two deep
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Fig. 3. Analysis of the convergence of NBAN on Indian Pines. (a) Curve of the loss and accuracy under different iterations. (b) Band weights under varying
iterations. (c) Final attention score matrix.

Fig. 4. Analysis of the convergence of NBAN on Salinas. (a) Curve of the loss and accuracy under different iterations. (b) Band weights under varying iterations.
(c) Final attention score matrix.

Fig. 5. Analysis of the convergence of NBAN on Salinas. (a) Curve of the loss and accuracy under different iterations. (b) Band weights under varying iterations.
(c) Final attention score matrix.
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS USING 25 BANDS ON INDIAN PINES DATASET

The significance of bold entities means that the best performing parts of each category.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS USING 13 BANDS ON PAVIA UNIVERSITY AND 25 BANDS ON SALINAS DATASET

The significance of bold entities means that the best performing parts of each category.

learning methods achieve better classification performance than
the performance of using all bands.

In order to observe the performance of each BS method, we
show the details of performance for Indian Pines in Table II and
the results of Pavia University and Salinas in Table III. For Indian
Pines, it is observed that NBAN achieves the best OA(73.34%),
AA(75.21%), and Kappa(0.718). NBAN achieves the best score
in 10 classes and the method of using all bands wins in No.8,
No.11, and No.14 class. BS-Net-Conv gets better performance
in No.2, No.10, and No.12 class. Then for Pavia University, we
can see that the method of using all bands achieves the best
result, NBAN is worse than the method of using all bands but
better than other methods when the subset size is set to 13. For
Salinas, NBAN achieves the best performance on this dataset
when the subset size is set to 21. MOBS and BS-net-Conv
achieve very close results, in this subset size. The performances
for the three dataset show that NBAN performs better than other
BS methods, followed by BS-Net-Conv. BS-Net-Conv takes
into account the nonlinear relationship between the spectral
bands and achieves good results. Compared with BS-net, NBAN
calculates the long-range relationship on this basis so that it gets
the best performances.

In the process of comparison, we find that two deep learning
methods perform more stable than other BS methods and the
Hughes phenomenon always appears later. For Indian Pines and
Salinas, NBAN and BS-Net-Conv achieve better OA than the

OA of using all bands which means that the data redundancy
between all bands affects the accuracy of the classification and
prove BS methods is beneficial to data processing. Comparing
with NBAN and BS-Net-Conv, we notice from the curves that
NBAN is more advantageous when the subset size is smaller
than 11 and two methods achieve close OA when the subset
size larger than 13. This occurs because NBAN considers the
long-range relationship between the whole band set. However,
the size of convolution kernel limits the receptive field range
of BS-Net-Conv. Therefore when we only choose a few bands
from the subset of BS-Net-Conv, the bands with the highest score
only can represent the bands within a limited area. Compared
with convolution operation in BS-Net-Conv, nonlocal attention
extracts more relationships from the global band set. When the
subset size is small, the bands in the subset which contains long-
range relationship can better represent the whole band set.

C. Analysis of the Selected Band Subset

To verify the selected band subset by NBAN is more informa-
tive, we visualize the selected band subset and the informative
entropy. The subsets of selected bands for three dataset are
shown in Table V. For the sake of fairness, we avoid the Hughes
phenomenon and size of the band subsets for three datasets are
15, 15, and 20.

1) Indian Pines: The distribution of selected bands for Indian
Pines is shown in Fig. 6. To observe the characteristics of the
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Fig. 6. Band distributions of the best 15 bands selected by different BS methods and the entropy value for Indian Pines.

TABLE IV
MSA OF THE BEST 15 BANDS FOR INDIAN PINES AND PAVIA UNIVERSITY. THE

MSA OF THE BEST 20 BANDS FOR SALINAS

bands, we visualized the information entropy of each band. For
Indian Pines, we can see that there are some bands with low
entropy in the band set from Fig. 6. These bands are called noise
bands which lead to a negative impact on data processing and
BS methods should avoid selecting these bands. As shown in
Fig. 6, the band distribution selected by our proposed method is
relatively uniform. The band subset selected by NBAN avoids
those bands with low information entropy such as 0-3103-112
and 217-220. As we know that there are huge differences be-
tween the noise bands and the normal bands, NBAN has a
long-range receptive field when selecting the band subset so
that our method can better avoid the noise bands. In Table IV,
we find OPBS and MVPCA achieve better MSA than other
BS methods. However, our method does not perform very well.
This happens because the band subsets of OPBS and MVPCA
exist some noise bands. The noise band may cause an increase
in MSA [15] because of its difference from other bands. We
also find that the band distributions of OPBS and MVPCA are
concentrated. However, the information gap between adjacent
bands is always small which means that noise bands have a
great influence on MSA. Compared with other BS methods, the
classification performance of OPBS and MVPCA is poor due to
selecting the noise bands.

2) Pavia University: Fig. 7 show the distributions of selected
bands for Pavia university. The entropy curve of Pavia University
is smoother than the curve of Indian Pines and shows an upward
trend. According to the information entropy, we can divide
the band set into three parts. The first part is consists of the

bands before 20th with low entropy. The second one has the
largest number of bands, distributes between bands 20th–80th.
The last part distributes after the 80th which has the highest
entropy and there is a drop near the 70th band. We can see that
the selected bands of NBAN mainly distribute in the middle
position and there are two bands distribute after the 80th bands.
That happened because we consider the long-range relationship
so that NBAN can choose a subset of bands that match the
overall band as much as possible. So the selected bands of
NBAN mainly distribute between 20th and 60th. Meanwhile,
NBAN also avoids selecting those bands with very low en-
tropy. Specifically, as shown in Fig. 8(b) when the subset is
small NBAN has an advantage because the selected bands are
more representative of most bands. However, when the size of
subset getting bigger the bands with higher entropy may have
more advantages, but NBAN is still comparable because there
are some bands also distribute in the part of high information
entropy. To further analyze the correlation between the selected
bands, we show their MSA for Pavia University in Table IV.
MVPCA achieves the best MSA in this part, but NBAN is
still comparable. Although the MSA of MVPCA is high, it
ignores the bands with higher information entropy in the process
of selection. So the classification performance of MVPCA is
worse than other BS methods. To sum up, the selected subset of
NBAN achieves good results on classification performance and
correlation performance when the subset size is small.

3) Salinas: We show the distributions of selected bands for
Salinas in Fig. 9. From the entropy curve we observe that there
are some sharply decreasing regions, i.e., 105–107, 146–147,
and 200–203. Different with Pavia University, the value of
entropy for Salinas is stable at about 4.5. As we can see from the
bands distribution, NBAN avoid the sharply decreasing regions
and distribute in the conventional bands. Meanwhile, NBAN also
ignores the bands in 0–25 with the low entropy. The MSA of each
BS methods are given in Table IV. ISSC achieves the best result
and NBAN is in the second place. However, as shown in Fig. 8,
ISSC achieve worse classification performance than most other
BS methods. That happens because ISSC chooses too many con-
tinuous bands and cause information redundancy. In addition,
ISSC also choose too many noise bands which lead to a negative
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TABLE V
BEST 15 BANDS SELECTED BY DIFFERENT BS METHODS FOR INDIAN PINES AND PAVIA UNIVERSITY. THE BEST 20 BANDS SELECTED BY DIFFERENT BS

METHODS FOR SALINAS

Fig. 7. Band distributions of the best 15 bands selected by different BS methods and the entropy value for Pavia University.

Fig. 8. Classification performance of using different band subset size on three dataset. (a) Performance on Indian Pines. (b) Performance on Pavia University. (c)
Result of Salinas.
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Fig. 9. Band distributions of the best 20 bands selected by different BS methods and the entropy value for Salinas.

impact. The distribution of MOBS is similar to that of NBAN, so
it also achieves a good performance on classification. However,
the bands in the position of 0–20 with low entropy make the
classification performance of MOBS worse than NBAN. There
are some noise bands in the selected band subset of BS-NET-
Conv lead to a negative impact on classification performance. In
a nutshell, NBAN can select the representative bands with low
correlation and avoids the noise bands.

4) Discussion: From observing the distribution of selected
band subset we find that the value of entropy has an effect on clas-
sification performance. However, the classification performance
of selecting all the bands with high information entropy without
considering the whole band classification will not achieve the
best result. In addition, noise band has a negative effect on the
classification performance, but it will reduce the correlation of
the band subset. Since the similarity between the noise bands
and the normal bands is always low and our method measures
the significance of each band by considering the reconstruction
contribution for the whole band set, NBAN can better avoid
selecting those noise bands than other BS methods. Meanwhile,
both from the classification performance and the distribution of
the selected spectral bands we can observe that BS-Net-Conv
and NBAN achieve better result than other BS methods. This
phenomenon proves that it is important for BS to capture non-
linear relationships. For BS-Net-Conv, the use of CNN and fully
connected neural network enables the framework to find a more
comprehensive relationship between the spectral bands [25].
However, the antinoise ability and the interpretability of BS-
Net-Conv is also limited. Compared with BS-Net, the attention
module of NBAN uses matrix operations so that we can more
easily interpret the effects of NBAN. Meanwhile, by calculating
the global relationship, the selection result of NBAN can better
avoid the interference of noise.

V. CONCLUSION

In this article, we propose a framework called NBAN with a
no-local attention module to consider the long-range relationship
from the whole dataset. The main idea of the framework is to
restore the HSI data by using the correlation between the whole

band set so that we can extract the long-range relationship and in-
crease the receptive field of the network. The framework consists
of two modules, nonlocal attention module and reconstruction
network, making the whole network is end-to-end trainable. The
attention module of NBAN is also a lightweight block makes
our framework can be plugged into many network architectures.
We conduct extensive experiments on three real datasets and
prove our method is significantly better than many compared
BS methods on classification performance. NBAN makes sure
the selected bands are representative for the whole band set, so
our method has more advantages when the subset size is small.
Specifically, the use of attention score matrix makes the process
of the band selection more explanatory. Meanwhile, we also
summarize the relationship between some band noise and the
degree of the correlation between the spectral bands.

Besides, in the process of the experiment we summarize the
effects of noise band and information entropy on band correla-
tion and classification performance. Then we find NBAN has a
powerful ability to avoid noise bands due to its nonocal attention
module. However, there may be some information that we ignore
in the attention score matrix. In the future work, we will pay more
attention to improving the interpretability of the framework and
reducing the complexity of the model. The above-mentioned
will be our future works.
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