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Abstract—The estimation of biophysical variables from remote
sensing data raises important challenges in terms of the acquisi-
tion technology and its limitations. In this way, some vegetation
parameters, such as chlorophyll fluorescence, require sensors with
a high spectral resolution that constrains the spatial resolution
while significantly increasing the subpixel land-cover heterogene-
ity. Precisely, this spatial variability often makes that rather differ-
ent canopy structures are aggregated together, which eventually
generates important deviations in the corresponding parameter
quantification. In the context of the Copernicus program (and other
related Earth Explorer missions), this article proposes a new sta-
tistical methodology to manage the subpixel spatial heterogeneity
problem in Sentinel-3 (S3) and FLuorescence EXplorer (FLEX) by
taking advantage of the higher spatial resolution of Sentinel-2 (S2).
Specifically, the proposed approach first characterizes the subpixel
spatial patterns of S3/FLEX using inter-sensor data from S2. Then,
a multivariate analysis is conducted to model the influence of these
spatial patterns in the errors of the estimated biophysical vari-
ables related to chlorophyll which are used as fluorescence proxies.
Finally, these modeled distributions are employed to predict the
confidence of S3/FLEX products on demand. Our experiments,
conducted using multiple operational S2 and simulated S3 data
products, reveal the advantages of the proposed methodology to
effectively measure the confidence and expected deviations of dif-
ferent vegetation parameters with respect to standard regression
algorithms. The source codes of this work will be available at
https://github.com/rufernan/PixelS3.

Index Terms—Biophysical products, fluorescence EXplorer
(FLEX), Sentinel-2 (S2), Sentinel-3 (S3), spatial distributions.

I. INTRODUCTION

SUPPORTED by the increasing availability of data from dif-
ferent Earth observation (EO) missions and programs [1],
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remote sensing (RS) data currently play a fundamental role
in many important application domains, e.g., [2]–[4]. Being
one of the most important European initiatives, the Copernicus
program [5] works for providing global monitoring data from
space that are useful for environmental and security applications.
Additionally, the European Space Agency (ESA) also devel-
ops the so-called Earth Explorer missions that are focused on
addressing specific scientific challenges to advance the under-
standing of Earth systems and novel EO capabilities. As a result,
different Sentinel concepts and Earth Explorer missions have
been designed to guarantee the operational provision of RS data
for dealing with current and future challenges, as well as societal
needs [6].

Among the available Copernicus resources, Sentinel-2 (S2)
and Sentinel-3 (S3) capitalize on important synergies, because
both missions are focused on the continuous monitoring of the
Earth surface using multispectral (MS) imagery. On the one
hand, S2 [7] comprises two twin satellites (S2A and S2B) that
carry the multispectral instrument (MSI), which provides 13
spectral bands (B01–B12) containing the wavelength region
from 443 to 2190 nm, with a spatial resolution from 10 to
60 m. On the other hand, S3 [8] includes two identical satellites
(S3A and S3B) that are equipped with the Ocean and Land
Color Instrument (OLCI), which captures the Earth surface
using 21 bands (Oa01–Oa21) in the spectral range from 390 to
1040 nm, with a spatial resolution of 300 m. In general, S2 and
S3 missions provide operational products of vegetation, soil,
and water cover. Nonetheless, the spatial-spectral differences
between both instruments make their products more appropriate
for specific RS applications [9]. The OLCI sensor is optimized
to capture features related to oceans, inland waterways, and
coastal areas [10], whereas the higher spatial resolution of MSI
makes this sensor more effective for land-cover characterization
applications [11].

At the same time, the Fluorescence EXplorer (FLEX) mis-
sion [12] is being developed as an ESA Earth Explorer mission
for quantifying the photosynthetic activity and how this process
affects the carbon and water cycles. Specifically, FLEX is en-
visaged to fly a satellite in 2024 that will be orbiting in tandem
with one of the S3 constellation satellites to provide an integrated
package of measurements for exploiting the terrestrial vegeta-
tion fluorescence from space. The solar-induced chlorophyll flu-
orescence [13] has shown to be a reliable indicator of the actual
photosynthetic activity of plants, since it measures the emission
of red and near-infrared light from green vegetation tissues in
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response to the absorption of photosynthetic active radiation.
However, measuring such emissions from space is challenging
because they represent a small fraction of the total radiance
acquired by the sensor, which eventually hinders the task of
decoupling the fluorescence signal from the light reflected by the
vegetation [14]. To overcome this limitation, FLEX incorporates
the fluorescence imaging spectrometer (FLORIS) which has
been specially designed to measure the fluorescence using an
ultra-fine spectral sampling interval (SSI) of 0.1 nm (focused
on the O2-B and the O2-A absorption bands, i.e., 500–780 nm
spectral range) and a spatial resolution of 300 m. Despite the
fact that this spectral configuration is adequate to extract the
fluorescence signal from a technical perspective [15], it may be
insufficient to characterize other important features related to
the atmosphere while also generating some undesirable effects
when dealing with the intrinsic land-cover heterogeneity [16]. In
the case of the atmospheric information, FLORIS is supported
by the OLCI instrument to perform an accurate atmospheric
correction since FLEX will fly in tandem with one of the S3
satellites. Nonetheless, the pixel heterogeneity still remains as
an open-ended issue because both sensors share the same coarse
spatial resolution of 300 m.

In general, a spatial resolution of hundreds of meters per
pixel may have a negative impact on the retrieval of certain
biophysical parameters and also on their interpretation, based on
a main consideration. The quantification of the fluorescence and
other related variables at coarse spatial resolutions aggregates
rather different canopy structures that make the percentages of
soil, shadows, and background highly variable within the same
pixel. Hence, some changes in the fluorescence amplitude can be
masked by these highly variable scene components, which may
eventually affect the link between the chlorophyll fluorescence
sensed by the instrument and the actual vegetation physiol-
ogy [17]. As a result, modeling such heterogeneity has become
an important facet within the RS research community [18]
and different strategies have been developed to account for the
spatial heterogeneity when modeling biophysical variables [19],
including multidimensional radiative transfer models [20], [21]
or unmixing methods [22], [23]. However, this work explores a
different research line based on exploiting inter-sensor synergies
in order to model such spatial heterogeneity in S3/FLEX from
a Level-4 data processing perspective.

The open availability of S2 data, together with the higher
spatial resolution of the MSI sensor, provides widespread op-
portunities to characterize, at a subpixel level, the spatial hetero-
geneity of the pixels sensed by FLORIS and OLCI which can
give us important insights about the reliability of the biophys-
ical products generated within the S3/FLEX tandem mission
context. On the one hand, the fluorescence signal (and other
related parameters) has been proven to be highly affected by
the variability of the spatial components contained in a ground
pixel of the instrument [24], [25]. In this way, modeling the
subpixel spatial heterogeneity of S3/FLEX throughout the S2
instrument can be very useful to relieve the gap between spatially
coarse variable measurements and plant physiology [26]. On
the other hand, the existing synergies among the Copernicus

program and other missions (like FLEX) also motivate the
development of high-level data products that take advantage
of different instruments to refine, without additional costs, the
operational products generated by the corresponding mission
ground segments. Precisely, the growing development of ad-
vanced products for different Sentinel missions exemplifies this
emerging trend [27]–[31]. Nevertheless, these and other relevant
works available in the literature are mainly focused on the fusion
of the data without considering the reliability of the distributed
operational products among their objectives.

In this scenario, this article proposes a new methodology
to study and quantify the confidence of different vegetation
indicators, that serve as chlorophyll fluorescence proxies within
the S3/FLEX tandem missions, using the high spatial resolution
of S2 for this goal. Unlike other existing works, the proposed
approach has been specifically designed for generating con-
fidence maps of S3/FLEX vegetation products by exploiting
unexplored inter-sensor relationships. More specifically, this
work has a two-fold objective. On the one hand, we intend
to highlight the advantages of developing confidence maps
for operational data products from an inter-sensor perspective
in the context of Sentinel and FLEX missions. On the other
hand, we pretend to use the high spatial resolution of S2 to
characterize the land-cover distribution of S3/FLEX pixels with
the target of uncovering subpixel information and modeling the
confidence of their corresponding biophysical indicators. With
these objectives in mind, we design and develop a new statistical
methodology to estimate the confidence levels of S3/FLEX
fluorescence proxy variables while analyzing and identifying
the situations where these confidence levels are applicable. In
particular, we first characterize the subpixel spatial patterns
of S3/FLEX using S2 data. Then, we model the influence of
the uncovered spatial patterns and the OLCI/FLORIS product
values in the errors of different vegetation indicators, via a
multivariate analysis. Finally, we make use of these modeled
distributions to infer the confidence and expected deviations for
new test products under demand. The experimental part of the
work, which considers multiple operational MSI products and
their corresponding simulated OLCI counterparts, reveals the
advantages of our contribution when focusing on chlorophyll
estimations and also assesses the extension of the proposed
methodology to other S3/FLEX biophysical parameters. In sum,
the main contributions of this article can be summarized as
follows.

1) We develop a new methodological framework to measure
the confidence and expected deviations of S3/FLEX bio-
physical products by taking advantage of the higher spatial
resolution of S2.

2) Focused on the chlorophyll biophysical parameter as a
fluorescence proxy, we show the advantages of obtaining
the confidence of such data products from an inter-sensor
perspective over traditional regression algorithms. Be-
sides, we also analyze the applicability of the proposed
framework to other related parameters.

3) We build several confidence maps for simulated OLCI
products to validate the performance of the proposed
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framework. The codes of this article will be available for
reproducible research.1

The rest of the article is organized as follows. Section II
reviews some of the most important related works and highlights
the novelty of this article. Section III presents the proposed
methodology while detailing its main constituent parts and
its adaptation to the FLEX mission. Section IV contains the
experimental part of the work, conducted with operational MSI
and simulated OLCI products for validation. Finally, Section V
concludes the work and provides some hints at plausible future
research directions.

II. RELATED WORK

The spatial heterogeneity of the Earth’s surface constitutes
a fundamental part of the biodiversity research [32] while also
having important implications on the estimation of biophysical
parameters from RS data [17]. In general, the aggregation of
very different canopy structures when computing vegetation
variables which are intrinsically influenced by nonlinear factors
generates a negative effect on their corresponding retrieval tasks
since small changes on the biophysical parameters can be easily
masked by highly variable scene components [25], [33].

To relieve these limitations, the development of integral re-
trieval techniques to effectively model the pixel heterogeneity
has become an important issue and two main trends can be
identified within the RS literature [19], [34]: i) physical models
and ii) empirical/statistical models. On the one hand, physical
approaches are based on the so-called radiative transfer models
(RTM) which describe, using the physical laws, how the re-
motely sensed radiation is detected by the acquisition instrument
after considering certain atmospheric and surface parameters,
such as atmospheric absorption, aerosol/cloud scattering and
surface emissions among others [35]. In this way, these methods
provide the solver of RTM equations according to a given scene
representation, which may include different complexities of
spatial structures and radiative transfer processes to embed the
corresponding pixel heterogeneity [36]. For instance, it is the
case of the lookup table approach [37] which has shown to
be one of the most efficient schemes for managing complex
models [38].

On the other hand, empirical/statistical methods aim at ob-
taining the correlation between the spectral signal captured
by the sensor and the ground-truth measurements in order to
model the corresponding biophysical parameters [35]. In this
case, the pixel heterogeneity could be handled via some sort
of disaggregation techniques, such as unmixing [22], which is
able to decompose pixels into a collection of constituent spec-
tral signatures (endmembers) and their fractional proportions
(abundances). In more details, one of the most popular statistical
alternatives is the nonparametric regression framework [34],
where different regression algorithms are initially trained (over a
specific training set) and subsequently used to make predictions
under demand. For instance, Coops et al. propose in [39] using
a linear regression algorithm, named the partial least squares, to

1Online. [Available]: https://github.com/rufernan/PixelS3

estimate the content of foliage nitrogen from hyperspectral data.
Addink et al. [40] also make use of another linear technique, i.e.
the Ridge regression, to effectively map the biomass and leaf
area index (LAI). In spite of the positive results achieved by
the linear scheme, other authors advocate the use of non-linear
methods instead. It is the case of Karimi et al. who propose
in [41] applying the support vector regression (SVR) to estimate
different types of crop variables (leaf nitrogen content, leaf
chlorophyll content, etc.) from hyperspectral imagery, obtaining
better performance than linear algorithms. Verrelst et al. [42]
make use of the Gaussian processes regression (GPR) to accu-
rately retrieve different biophysical parameters from simulated
Sentinel-2 and Sentinel-3 images. Other authors also consider
regression models based on decision trees. For instance, Im et al.
[43] investigate the usability of regression trees to characterize
the vegetation of hazardous waste sites.

Although these and other relevant methods have shown pos-
itive results in estimating different biophysical variables within
the Copernicus program context [42], the inherent errors of
heterogeneous surfaces still motivates the development of new
algorithmic tools to accurately quantify the confidence of the
biophysical products provided by the S3/FLEX tandem mis-
sions. Note that many of the existing works are focused on
the retrieval task itself [35], but they often overlook the need
of modeling the expected errors associated to the operational
retrieval chains. Precisely, this work aims at relieving this op-
erational need from a Level-4 data perspective by developing a
novel statistical methodology that is able to provide performance
improvements with respect to state-of-the-art machine learning
regression techniques when modeling S3/FLEX errors of proxy
chlorophyll fluorescence parameters.

III. PROPOSED FRAMEWORK

This section details the proposed methodology to quantify
the confidence of S3/FLEX biophysical products using S2 data.
Specifically, the presented framework is composed of the three
following sequential steps (Fig. 1): (A) subpixel spatial patterns
extraction, where S3/FLEX subpixel variabilities are character-
ized according to S2 spatial information (Section III-A), (B)
multivariate error distributions, where the relations among MSI
spatial patterns, OLCI/FLORIS biophysical values, and their
corresponding errors are uncovered via a multivariate analysis
(Section III-B), and (C) product deviation estimates, where the
expected deviations for test OLCI/FLORIS products are esti-
mated (Section III-C). In addition, Section III-D provides some
extra remarks about the application of the proposed framework
to the future FLEX mission. The following subsections describe
all these elements in detail; however, let us start by defining the
notation considered in this work and the parameters of interest.

Let X = {X1, . . . ,XN} be a collection with N MSI
bottom-of-atmosphere (BOA) reflectance products and Y =
{Y1, . . . ,YN} their corresponding OLCI/FLORIS counter-
parts at the same data processing level, where Xi ∈ Rx1×x2×x3

and Yi ∈ Ry1×y2×y3∀i ∈ [1, N ]. Note that x3 and y3 are the
spectral dimensions of the MSI and OLCI/FLORIS instruments,
respectively. Let R be the spatial scaling ratio between both

https://github.com/rufernan/PixelS3
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Fig. 1. Proposed framework to characterize S3/FLEX biophysical product confidence through S2 spatial patterns. (A) Spatial patterns. (B) Error distributions.
(C) Product deviations.

image collections, such that x1 = Ry1 and x2 = Ry2. Since
the proposed approach pursues to exploit S2 spatial informa-
tion, let S represent the maximum entropy band of X to ef-
ficiently extract MSI structural components with this simple
band selection criteria. Equation (1) shows the expression re-
quired to compute the entropy measure over the jth band of
the ith product (i.e., Xij). Let F be a biophysical product
estimator to calculate the corresponding product feature maps
as XF = {XF1 , . . . ,XFN} and YF = {YF1 , . . . ,YFN}, where
XFi = F(Xi) ∈ Rx1×x2 and YFi = F(Yi) ∈ Ry1×y2 . Let us
define TF = {TF1 , . . . ,TFN} as the ground-truth biophysical
maps of YF , where Ti ∈ Ry1×y2∀i ∈ [1, N ]. Given an external
test image pair Xq and Yq , the objective is to produce a quality
estimate for the intrinsic error of YFq , which is identified by
εYFq ∈ Ry1×y2 , to characterize the confidence of the biophysical
indicator F in OLCI/FLORIS using the high-resolution spatial
information of MSI.

H(Xij) = −
x1∑
r=1

x2∑
c=1

Xi[r, c, j] log (Xi[r, c, j]). (1)

Regarding the considered biophysical estimators, this work
is focused on the chlorophyll biophysical variable since it is a
vegetation parameter that can estimated from actual S2/S3 data
and it can also be used as proxy measurements for vegetation
fluorescence in the context of the S3/FLEX tandem mission.

In this work, we make use of two different non-linear veg-
etation indices as chlorophyll indicators for the sake of sim-
plicity. Specifically, the normalized difference vegetation index
(NDVI) [44] and the plant senescence reflectance index with
near-infrared (PSRI-NIR) [45] are considered in this article.
Equations (2) and (3) show their mathematical expressions,
where NIR, Red, and Blue represent the corresponding instru-
ment bands centered at near-infrared, red and blue wavelengths,
respectively. On the one hand, NDVI is an effective indicator of
the biomass greenness which is closely related to the fraction
of solar radiation absorbed by live plants during photosynthesis.
On the other hand, PSRI-NIR is focused on the ratio between
carotenoid pigments and chlorophyll which becomes particu-
larly useful to monitor vegetation physiological states. Note
that these two indicators are just used to produce chlorophyll
estimations that serve as vegetation fluorescence proxies in the

context of this work.

FNDVI =
NIR− Red

NIR + Red
(2)

FPSRI−NIR =
Red− Blue

NIR
. (3)

A. Subpixel Spatial Patterns

The first step aims at characterizing the spatial patterns of
the MSI sensor in order to represent Y according to the sub-
pixel variability of X. Due to their significant spatial resolution
differences, we initially propose conducting an inter-sensor
registration procedure to relieve some possible spatial devia-
tions between OLCI/FLORIS and MSI operational data. More
specifically, we up-scale each Yi a factor of R with a bi-cubic
kernel as Ỹi. Then, we register both first principal components
(considering Ỹi as master andXi as slave) using an affine trans-
formation model together with the mutual information metric
and the One Plus One Evolutionary Optimizer [28]. Finally,
the obtained transformations are applied to X in order to make
sure that each OLCI/FLORIS pixel better fits into a R×R MSI
patch. Once this inter-sensor registration has been conducted,
we extract patches from S (maximum entropy band of X)
as P = {P1, . . . ,PN}, where Pi ∈ RM×R2

contains the M
nonoverlapping image patches of aR×R size that are extracted
from X. Note that, after this procedure, the mth pixel of the ith
OLCI/FLORIS product, i.e. Yi(m), matches with the mth patch
of the ith MSI product, i.e.,Pi(m). It is important to highlight that
we make use of the maximum entropy band to isolate the spatial
information of MSI in an efficient way. Besides, the spatial
relationships between OLCI/FLORIS pixels and MSI patches
are intrinsically given by their corresponding image positions
since each pixel-patch pair represents the same area on the Earth
surface.

With the purpose of modeling K representative types of
patches (each one with a certain spatial distribution), we cluster
P intoK groups. In this work, we make use of the Gaussian mix-
ture model (GMM) clustering algorithm [46] due to its proven
capabilities to account for the spatial variability of RS data [47],
[48]. Under GMM assumptions, each cluster is modeled as a
Gaussian distribution and the corresponding cluster assignments
are statistically distributed in a fuzzy fashion. In this case, our
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GMM can be formulated as

p(P|Θ) =
K∑

k=1

αk N (P | μk,Σk) (4)

where μk and Σk are the mean and co-variance parameters of
the kth Gaussian component and αk represent the mixture coef-
ficients that lie on the corresponding K-dimensional probability
simplex. All these parameters completely characterize the GMM
and they are collectively expressed by Θ. It is important to note
that each Pi(m) MSI spatial patch in P is associated to a Yi(m)

OLCI/FLORIS pixel in Y since both elements cover the same
region on the Earth surface. Hence, the mixture coefficients that
are computed over P are inherently connected to Y according
to their corresponding geolocations. Given a training set of
OLCI/FLORIS products (Y) and their associated MSI patches
(P), we formulate the estimation of the GMM parameters as
a maximum likelihood problem via the expectation maximiza-
tion (EM) algorithm [49]. As a result, each mth pixel of the
ith OLCI/FLORIS product can be characterized by the cluster
posterior probabilities of their corresponding inter-sensor MSI
spatial patches as

Yc
i(m) =

⎛
⎜⎜⎜⎝

α1 N (Pi(m)|μ1,Σ1)
∑K

k=1 αk N (Pi(m)|μk,Σk)

...
αK N (Pi(m)|μK ,ΣK)

∑K
k=1 αk N (Pi(m)|μk,Σk)

⎞
⎟⎟⎟⎠ (5)

being Yc
i(m)[k] the posterior of Pi(m) for the kth cluster. This

process allows us to efficiently detect characteristic subpixel
spatial distributions in OLCI/FLORIS from the higher resolution
information of MSI. That is, Y pixels can be efficiently char-
acterized at a subpixel level using the uncovered representative
Gaussian components with the objective of identifying subtly
spatial differences among potentially ambiguous product values
in OLCI/FLORIS.

B. Multivariate Error Distributions

The objective of this step consists of modeling the influence
of the uncovered subpixel spatial patterns (i.e., Yc) and the
corresponding OLCI/FLORIS product values (i.e., YF ) in the
intrinsic errors of the biophysical product estimates. In this
way, these relationships can be employed for quantifying the
confidence of biophysical OLCI/FLORIS products using their
MSI counterpart image products. To meet this goal, we conduct
a multivariate probabilistic analysis to learn a joint probability
distribution of the form p(k, f, e), where k, f , and e represent
the stochastic variables for MSI spatial patterns, biophysical
OLCI/FLORIS values, and their corresponding product errors,
respectively. For the sake of compactness, we overload k, f , and
e notations to act as natural iterators in summations and as their
corresponding random variables in probability arguments. Char-
acterizing the joint probability distribution provides us complete
information about the problem since it allows estimating any
marginal or conditional probability distribution over the random
variables of interest. More specifically, the p(k, f, e) probability
distribution can be empirically approximated by normalizing the

Fig. 2. Example of OLCI’s multivariate error distributions withK = 4, where
each cluster gathers specific biophysical product values and error ranges.

mass function of the data as follows:

p(k, f, e) =
H(k, f, e)∑K

k=1

∑Bf

f=1

∑Be

e=1 H(k, f, e)
(6)

where H(·) represents the data frequency histogram which can
be obtained using the following procedure. Initially, the empiri-
cal errors εTF = {εTF1 , . . . , εTFN} are calculated as the absolute

deviations between YF and TF , where εTFi = |YFi −TFi |.
Then, YF and εTF are discretized into Bf and Be uniform bins
as YB and εTB in order to frame the data into the following
nonparametric density estimators:

YB
i(m) =

⌊
YFi(m)Bf

max(YF )−min(YF )

⌋
(7)

εTB
i(m)

=

⌊ εTF
i(m)

Be

max(εTF )−min(εTF )

⌋
(8)

where �·�, max(·) and min(·) are the floor, maximum, and min-
imum functions. Finally, the multivariate frequency histogram
can be computed as shown in (9)

H(k, f, e) =
N∑
i=1

M∑
m=1

Yc
i(m)[k] δ(f,Y

B
i(m)) δ(e, εTB

i(m)
). (9)

Note that Yc
i(m)[k] is the kth component of Yc

i(m), δ rep-
resents the Dirac delta function, and H(k, f, e) contains the
number of times the spatial pattern k has a biophysical product
value f with an error e. To build H , we make use of a 3-D
array that contains in its x-axis YB , in its y-axis εTB , and
in its z-axis the number of Gaussian components (i.e., K). In
this way, for each x – y plane of each Gaussian component,
we have a grid defined by Bf and Be cells. Then, for each
discrete Gaussian component, we accumulate on each grid cell
the mixture coefficients of the samples laying on this specific
grid. As an illustration, Fig. 2 shows an example of OLCI’s
multivariate error distributions for PSRI-NIR when considering
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K = 4. For better visualization, we use a hard-clustering as-
signment based on the most likely Gaussian components. As
it is possible to see, each cluster tends to concentrate specific
biophysical product ranges (horizontal axis) and error values
(vertical axis), which indicates that MSI supporting data can
provide important insights about the confidence of biophysical
OLCI/FLORIS products.

The joint distribution computed by (6) provides us the proba-
bility that each k, f , and e falls in any particular range of discrete
product and error values for each spatial pattern. Nonetheless, we
are specifically interested in modeling the resulting confidence
through thep(e|f) conditional probability, that is, the probability
of error (e) for a given set of biophysical OLCI/FLORIS product
values (f ). Therefore, marginalizing (6) over k, we obtain the
following expressions:

p(e|f) =
K∑

k=1

p(e, k|f) =
K∑

k=1

(a)︷ ︸︸ ︷
p(k|f)

(b)︷ ︸︸ ︷
p(e|k, f) (10)

where (a) represents the probability of the MSI spatial patterns
given the OLCI/FLORIS values and (b) the corresponding error
probability distribution given both k and f stochastic variables.
In the case (a), we efficiently approximate this probability
by taking advantage of the previously computed pixel-cluster
assignments as

p(k|f = YB
i(m)) ≈ p(k|Pi(m)) = Yc

i(m)[k]. (11)

Note that this expression indicates that we fix the cluster
probabilities of a given discretized OLCI/FLORIS biophysical
value to the posterior probability of its corresponding inter-
sensor MSI spatial patch. Even though the absolute values of the
same biophysical parameter can logically be different depending
on the instrument, the spatial variability captured by MSI can
be used to characterize the uncertainty in OLCI/FLORIS as a
measure of the natural variability in biophysical phenomena. As
a result, (11) allows a direct estimation of p(k|f) by means of
Yc. In the case of (b), this conditional probability distribution
can be estimated by applying the Bayes’ rule and marginalizing
as follows:

p(e|k, f) = p(k, f, e)

p(k, f)
=

p(k, f, e)∑Be

e=1 p(k, f, e)
. (12)

Inserting (11) and (12) into (10), we are able to character-
ize the p(e|f) probability distribution from Yc, YF , and TF

training data.

C. Product Deviation Estimates

The last step of the proposed framework is focused on
estimating the expected deviations for a query biophysical
OLCI/FLORIS product. That is, given an external image pair
Xq andYq , the final objective consists in estimating εYFq , which

quantifies the deviations of the YFq biophysical test product. In
order to reach this goal, we initially conduct the inter-sensor
registration procedure described in Section III-A but, in this case,
between Xq and Yq . Then, we extract R×R nonoverlapping
patches from the S band in Xq as Pq , corresponding to every

pixel in Yq . Subsequently, we model test cluster assignments
as Yc

q by computing the corresponding posterior probabilities
to each one of the previously estimated Gaussian components.
Note that we use the q subindex to refer to the test data and their
distributions. As a result, we define the following expression:

Yc
q(m) =

⎛
⎜⎜⎜⎝

α1 N (Pq(m)|μ1,Σ1)
∑K

k=1 αk N (Pq(m)|μk,Σk)

...
αK N (Pq(m)|μK ,ΣK)

∑K
k=1 αk N (Pq(m)|μk,Σk)

⎞
⎟⎟⎟⎠ (13)

where μk, Σk, and αk represent the mean, co-variance matrix,
and mixture coefficients of the kth Gaussian component calcu-
lated in Section III-A. Accordingly, we can also redefine p(k|f)
and p(e|f) conditional distributions for the test data as

pq(k|f = YB
q(m)) ≈ Yc

q(m)[k] (14)

pq(e|f) =
K∑

k=1

pq(k|f) p(e|k, f). (15)

In contrast to (10), pq(e|f) represents that the knowledge
is transferred from training to exploitation scenarios since it
connects the p(e|k, f) distribution computed over the training
set with pq(k|f) that contains the cluster probabilities for the
test data. Once Yc

q and pq(e|f) have been characterized, it is
necessary to discretize the test biophysical product values using
the data range considered in Section III-B. Hence, we define

YB
q =

⌊
YFq Bf

max(YF )−min(YF )

⌋
(16)

where YFq = F(Yq). Finally, we propose using the expectation
of the error as general confidence metric for the corresponding
test products. Specifically, we estimate the final expected error
for a given test biophysical value as follows:

εY
F
q(m) = E[e|YB

q(m)]

=

Be∑
e=1

e pq(e|f = YB
q(m))

=

Be∑
e=1

e
K∑

k=1

pq(k|f = YB
q(m)) p(e|k, f = YB

q(m))

=

Be∑
e=1

K∑
k=1

e Yc
q(m)[k] p(e|k, f = YB

q(m)) (17)

where, according to the aforementioned notation, e, k, and f
are overloaded to act as natural iterators in summations (and
their corresponding random variable values otherwise). Note
that variable e represents the discretized error value associated
to the eth error bin, and it serves to translate the conditional error
probabilities into error value estimates that can be compared to
the ground-truth data. In this work, we use the expected value
as confidence figure; however, alternative statistics computed
from pq(e|f) (such as variance or mode) could be also used
instead. Eventually, the proposed approach training and test
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Algorithm 1: Proposed Approach Training: (A) and (B)
Steps.

Input: X, Y, F , TF , K, Bf , Be

Output: μk, Σk, p(e|k, f)
1 XF ← F(X)
2 YF ← F(Y)
3 (A) Subpixel spatial patches (Section III-A):
4 P← Extract R×R patches from X
5 αY

k , μk, Σk ← GMM via EM [49]
6 Yc ← (4)
7 (B) Multivariate error distributions (Section III-B):
8 εTF ← |YF −TF |
9 YB , εTB ← (7) and (8)

10 H(k, f, e)← (9)
11 p(k, f, e)← (6)
12 p(e|k, f)← (12)

Algorithm 2: Proposed Approach Test: (C) Step.

Input: Xq , Yq , F , μk, Σk, p(e|k, f)
Output: εYFq

1 XFq ←F(Xq)

2 YFq ←F(Yq)
3 (C) Product deviation estimates (Section III-C):
4 Pq ← Extract R×R patches from Xq

5 pq(k|f)← (14)
6 Yc

q , YB
q ← (13) and (16)

7 εY
F
q ← (17)

computations are summarized in Algorithms 1 and 2 to clarify
both steps and their implementation details.

D. FLEX Peculiarities

Although the proposed methodology has been designed for
managing OLCI/FLORIS products, it is important to highlight
some important peculiarities of the fluorescence sensed by
FLEX when compared to other chlorophyll-related variables.
More specifically, the chlorophyll concentration and other veg-
etation products that can be computed from S3 tend to be stable in
short time periods of hours or even days, which eventually makes
the local observation time negligible from a practical perspec-
tive. In this way, the operational biophysical products provided
by OLCI can be directly used within the proposed framework
since they are able to globally reflect the seasonal vegetation
state. However, the dynamic nature of the fluorescence makes it
necessary to take additional considerations into account.

In the case of FLEX, the local solar time along its orbit highly
affects the fluorescence captured by FLORIS due to the intraday
variations in the vegetation biochemical constituents, canopy
structures, and even sun-observer geometry that finally cause
important physical interferences in the fluorescence retrieval
process [50]. Consequently, it becomes necessary to consider
some sort of auxiliary model to alleviate these fluorescence
variations which are not related to the vegetation physiology

TABLE I
SID DATASET: TRAINING AND TEST MSI PRODUCT DESCRIPTIONS

itself. In this work, we emphasize the need of generating, when
FLEX data will be available, an empirical function based on real
measurements to model how the orbit point and local time affect
the sensed fluorescence. Then, each FLORIS product could be
preprocessed according to its acquisition conditions to make
the fluorescence values globally consistent with respect to the
inter-sensor spatial information.

IV. EXPERIMENTS

In this section, the experimental part of the work is detailed,
including the considered datasets (Section IV-A), the experimen-
tal configuration (Section IV-B), as well as the corresponding
results and discussion (Section IV-C).

A. Datasets

In this work, we consider two different data collections of
S3 OLCI and S2 MSI products, which comprise different Eu-
ropean regions of interest, covering natural parks, urban areas,
countryside, and coastal regions, among others. The first archive
(Section IV-A1) is used for training and testing purposes with
operational MSI imagery and synthetic OLCI products in order
to relieve the lack of actual ground-truth information. The second
collection (Section IV-A2) serves as external testing archive with
real coupled OLCI and MSI data.

1) Synthetic Inter-Sensor Dataset (SID): This collection in-
cludes a total of 22 real MSI images and their corresponding
simulated OLCI counterparts in order to sort out the lack of
actual ground-truth biophysical measurements. Table I summa-
rizes the selected scenes where 11 images have been employed
for training and the other ones for testing. Additionally, Fig. 3
displays the geographic location of the considered training (in
blue) and test (in red) products. All the images are cloud-free
operational MSI Level-1 C data products which have been
downloaded from the Copernicus Open Access Hub platform2

and processed using the Sentinel Application Platform (SNAP)
software. In detail, they have been resampled to 20-m spatial
resolution and atmospherically corrected using the Sen2Cor
processor. For quantitative validation purposes, we simulate
S3/FLEX and ground-truth data from these S2 images. Specif-
ically, we employ the simulation procedure utilized in [51] to
synthesize OLCI data from MSI. First, a Gaussian-like point
spread function (PSF) with a full-width at half-maximum fixed

2Online. [Available]: https://scihub.copernicus.eu/

https://scihub.copernicus.eu/
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Fig. 3. SID dataset: training (in blue) and test (in red) product locations.

TABLE II
RID DATASET: COUPLED TEST OLCI/MSI PRODUCT DESCRIPTIONS

to OLCI/FLORIS spatial resolution (300 m) is defined. Then,
this function is applied over the MSI data products. Finally,
the resulting images are resampled to a 300-m spatial resolution
using an average interpolation kernel. Additionally, we calculate
the S3/FLEX ground-truth values by computing the vegetation
indicators at S2 spatial resolution and then averaging those
values at 300 m. Note that, the simulation of S3/FLEX data
and their corresponding ground-truth information allow us to
avoid inter-sensor spectral differences in the index computations
due to the lack of actual field biophysical measurements for
S3/FLEX over the considered regions. After all these steps,
the corresponding spatial image sizes are 5490× 5490 pixels
in S2 and 366× 366 in S3/FLEX. Note that the spatial scaling
factor between the two considered types of images is R = 15×.
Besides, according to the aforementioned notation, S2 and S3
training products are identified byX andY, whereas the coupled
test images are Xq and Yq , respectively.

2) Real Inter-Sensor Dataset (RID): This archive is made of
four coupled S2 MSI and S3 OLCI operational data products in
order to validate the proposed approach performance with actual
inter-senor data. That is, the objective of using this collection is
to assess the transfer of knowledge from simulated to real sce-
narios. Table II describes the selected OLCI/MSI test scenes that
have been downloaded from the Copernicus Open Access Hub
platform. Fig. 4 shows in yellow their corresponding geographic
locations. Note that MSI products are fully considered whereas
OLCI data have to be processed to crop the overlapping area be-
tween both sensors. In the case of MSI, we follow the same data

Fig. 4. RID dataset: test product locations in yellow.

processing pipeline described in Section IV-A1. In the case of
OLCI, we make use of the SNAP software to correct the products
via the radiance to reflectance processor. Besides, we reproject
each OLCI image to its associated S2 tile in order to obtain
the intersection between both images. Since OLCI ground-truth
information is logically unavailable when considering real inter-
sensor data, we approximate S3 ground-truth biophysical values
by calculating the vegetation indicators at S2 spatial resolution
and then averaging those values at 300 m. After these steps, the
corresponding spatial image sizes also are 5490× 5490 pixels
in S2 and 366× 366 in S3. Note that, unlike SID, this dataset
may contain some inter-sensor spatial misalignments which will
be taken into account by the inter-sensor registration procedure
integrated within the proposed framework.

B. Experimental Settings

The experiments conducted in this work pursue to validate
the proposed approach performance to estimate the confidence
of S3/FLEX products using S2 spatial information. Since the
presented method deals with the problem from an inter-sensor
perspective, regression algorithms can also be applied to gener-
ate such confidence estimations in a straightforward way. Conse-
quently, the experimental part of the work is aimed at providing
evidence that the proposed approach is able to improve gen-
eral regression techniques when modeling intrinsic S3/FLEX
biophysical product errors. To achieve this goal, the presented
framework is compared to five different regression algorithms,
i.e., linear regression [52], ridge regression [52], SVR with radial
basis function [53], Gaussian process regression with squared
exponential [54], and binary decision tree for regression [55].
Additionally, we consider the NDVI and PSRI-NIR vegetation
indicators to evaluate the considered methods. Specifically, we
make use of these two indexes because both can be computed
from real S2/S3 imaging data and they also allow us to approx-
imate the chlorophyll content as proxy measurements for the
vegetation fluorescence framed in the S3/FLEX tandem mission
context. Under this scheme, we conduct the two following
experiments.

1) Experiment 1: In this experiment, we employ the SID
collection for fully training and testing the proposed approach
and all the considered competitors. More specifically, all the
regression techniques have been trained using the simulated
biophysical products of S3/FLEX (YF ) and their corresponding
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spatial MSI characterizations (Yc) to predict the associated
ground-truth errors, that is, εTF = |YF −TF |. Note that these
ground-truth errors are also required for training any supervised
model (likewise the proposed approach and regression models)
or even validating unsupervised ones. Additionally, empirical
ground-truth measurements acquired over specific regions of
interest could be used for computing these ground-truth errors
from real data instead of simulated. In all cases, we make
use of the MATLAB R2019a implementations with automatic
scale, data standardization, and the default settings for the other
available parameters. For the sake of efficiency, we train the
regressors with a random subset of 5× 104 samples using a
1% percentile threshold for outlier removal. In addition, we
consider an extended subset of 5× 105 samples for computing
the spatial characterizations used by the proposed approach
and the considered competitors. Once the training phase is
completed, each test product is raised as an external image pair
(YFq and Yc

q) to estimate its expected deviations (εYFq ). Then,
we quantify the effectiveness of the methods by computing the
mean squared error (MSE) between the ground-truth deviations
εTFq and εYFq . Specifically, we employ this figure of merit due
to its quadratic error computation that penalizes highly differing
predictions. To generate the ground-truth biophysical maps in
S3/FLEX, i.e., TF and TFq , we downscale XF and XFq using an
averageR×R kernel. In the case of the proposed approach, it is
important to highlight that the two first stages are considered for
training and the last one for testing. Besides, we also analyze the
following parameter settings Bf , Be = [64 128 256, 512] and
K = [4, 8, 12], for the number of discrete product values and
the number of spatial patterns in the clustering, respectively.

2) Experiment 2: This experiment makes use of the RID
collection as an external test collection to assess the proposed
approach performance with real inter-senor data. In more de-
tails, we evaluate how the models trained in Section IV-B1
perform over RID for investigating the transfer of knowledge
from simulated to real scenarios. For the sake of simplicity,
we use the same testing experimental settings described in
Section IV-B1, but only considering the best number of clusters.
Note that, in this experiment, there may appear some inter-sensor
spatial misalignments that the proposed approach relieves with
the incorporated inter-sensor registration procedure. In order to
conduct an experimental comparison as fair as possible, we also
use this registration mechanism (Section III-C) for all the tested
competitors.

C. Results and Discussion

1) Experiment 1: Tables III–V provide the quantitative as-
sessment of the PSRI-NIR error estimates when considering
different number of clusters: 4, 8, and 12, respectively. Specifi-
cally, each table shows the MSE metric between the estimated
errors and their corresponding ground-truth values of the PSRI-
NIR product to evaluate the tested methods from a quantita-
tive perspective. In rows, the results obtained for test products
are shown, being the last row the corresponding average. In
columns, all the considered regression algorithms together with
the proposed approach are displayed. Note that, in the case of

TABLE III
EXPERIMENT 1: MSE (×10−4) RESULTS FOR PSRI-NIR WHEN K = 4

TABLE IV
EXPERIMENT 1: MSE (×10−4) RESULTS FOR PSRI-NIR WHEN K = 8

TABLE V
EXPERIMENT 1: MSE (×10−4) RESULTS FOR PSRI-NIR WHEN K = 12

the proposed approach, different values for the Bf,e parameters
are tested in the last four columns. It should also be mentioned
that the best metric result for each test product is highlighted
in italic font to facilitate analysis. Analogously, Tables VI–VIII
present the MSE results of the NDVI vegetation index using the
same format.

In addition to the quantitative evaluation provided by the MSE
metric, some visual results of the corresponding product error
estimates are also presented to evaluate the methods from a
qualitative perspective. In particular, Fig. 5 shows the estimated
product errors for the 32ULB test tile when considering the
PSRI-NIR biophysical parameter and K = 8. As it can be
observed, Fig. 5(a) shows the simulated OLCI/FLORIS PSRI-
NIR product, Fig. 5(b) contains the corresponding ground-truth
errors, and from Fig. 5(c)–5(h), the error maps generated by
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Fig. 5. Experiment 1: Qualitative results for the 32ULB test tile considering the PSRI-NIR index and K = 8. (a) PSRI-NIR product. (b) ground-truth errors. (c)
LIN. (d) RID. (e) SVR. (f) GPR. (g) BRT. (h) Proposed approach with Bf,e = 128.

TABLE VI
EXPERIMENT 1: MSE (×10−4) RESULTS FOR NDVI WHEN K = 4

TABLE VII
EXPERIMENT 1: MSE (×10−4) RESULTS FOR NDVI WHEN K = 8

all the considered methods are displayed, i.e., LIN, RID, SVR,
GPR, BRT, and the proposed approach (with Bf,e = 128). Note
that the color palette used for the biophysical product visu-
alization has been fitted into the PSRI-NIR parameter range,

TABLE VIII
EXPERIMENT 1: MSE (×10−4) RESULTS FOR NDVI WHEN K = 12

i.e., [−1,1]. Additionally, all the error maps make use of the
same color codes, ranged between the minimum and maximum
global values in order to easy the comparison. In all the visual
results, a small image detail has been also magnified to better
show even small performance deviations among the methods
with homogeneous and heterogeneous pixel areas. Following the
same configuration, Fig. 6 presents the visual results obtained
over the 32TQR test product with K = 8 when considering the
NDVI biophysical parameter. In this case, we show the proposed
approach estimated errors whenBf,e = 512 since it provides the
best quantitative performance.

According to the results presented in Tables III–V, there are
several aspects which deserve to be mentioned regarding to the
PSRI-NIR error estimates. The first remarkable point is related
to the general performance of the considered methods. Note that
the proposed approach obtains the best MSE-based quantitative
result followed by GPR, RID, SVR, LIN, and BRT in the
corresponding performance order. In the case of the proposed
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Fig. 6. Experiment 1: Qualitative results for the 32TQR test tile considering the NDVI index and K = 8. (a) NDVI product. (b) Ground-truth errors. (c) LIN.
(d) RID. (e) SVR. (f) GPR. (g) BRT. (h) Proposed approach with Bf,e = 512.

approach, the best performance is achieved when considering
Bf,e = 128; nonetheless, the existing differences are certainly
small, which indicates its robustness to the discretization pa-
rameter. When focusing on the other methods, the proposed
approach is able to significantly reduce the average MSE index
by a 13% with respect to GPR, 19% for RID/SVR, 23% for LIN,
and a 47% for BRT. Another important aspect can be observed
when analyzing the experiments in more details based on the
number of clusters, i.e.,K = [4, 8, 12]. Specifically, the obtained
results show that considering a higher number of clusters seems
to provide some performance advantages when estimating the
errors; however, such improvements tend to be unsteady while
being reduced. As an example, RID, SVR, and BRT obtain the
best results with K = 8, whereas LIN, GPR, and the proposed
approach generate the most accurate error estimations with
K = 12. In many of the cases, the performance variations are
generally small, which indicates that from a certain number of
clusters, they rather affect the final error estimations with the
exception of GPR. From an intuitive perspective, this behavior
could be justified by the type of clustering we carry out in this
work. Note that we use GMM with soft-clustering assignments
and, in this situation, using many mixture components may lead
to a higher variance in the resulting estimates [56].

When considering the NDVI error estimations (Tables VI–
VIII), a similar trend can be observed but with some differences.
Although the global average results are quite similar to the
PSRI-NIR case, we can observe that the proposed approach
improvements with respect to RID, SVR, and GPR are reduced
for the NDVI parameter. Specifically, the presented method is
able to decrease the average MSE metric by a 49% for BRT, a
21% for LIN, a 12% for RID, a 12% for RID, 4% for SVR, and
3% for GPR. These variations can be generated by the different
nature of the NDVI index since the corresponding ground-truth

errors are more than twice smaller than those of PSRI-NIR. Pre-
cisely, an evidence of this fact can be found in the discretization
parameters. According to the PSRI-NIR results, the proposed
approach consistently achieves the best performance when con-
sidering Bf,e = 128. However, the optimal value for NDVI is
Bf,e = 512, which reveals that the corresponding multivariate
error distribution [i.e.,H(k, f, e)] requires a higher precision for
the discretization because the objective errors are significantly
smaller. Regarding the number of clusters, it is also possible to
see that the NDVI index has a slightly different trend. In this
case, the best results are always achieved with K = 12 but the
performance differences with respect to K = 8 are very small
(except for LIN).

With all these considerations in mind, the proposed approach
achieves the best global quantitative error estimation followed by
GPR, SVR, RID, LIN, and BRT. However, in order to complete
the experimental comparison, an additional qualitative analysis
has been conducted with a particular focus on those methods
with similar performances. From the visual results displayed in
Fig. 5, it is possible to observe some interesting points regarding
the PSRI-NIR biophysical parameter. First, LIN [Fig. 5(c)],
RID [Fig. 5(d)], and SVR [Fig. 5(e)] tend to underestimate
the PSRI-NIR errors. Note that some of these error maps seem
uniform because they mainly contain small error predictions that
are not properly captured by the global color palette. Second,
BRT [Fig. 5(g)] certainly provides a better qualitative result.
Nonetheless, the high amount of output noise often makes this
method overestimate product errors. When comparing the details
of Fig. 5(b) and (g), we can see that BRT is able to correctly
predict many errors along the river shape but it also introduces
important inaccuracies that eventually penalize the final result.
Third, GPR [Fig. 5(f)] and the proposed approach [Fig. 5(h)]
obtain the two best results but there are important differences
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TABLE IX
EXPERIMENT 2: MSE (×10−1) RESULTS FOR PSRI-NIR WHEN K = 12

TABLE X
EXPERIMENT 2: MSE (×10−1) RESULTS FOR NDVI WHEN K = 12

that also make the proposed approach generally better from a
qualitative perspective. It is worthwhile noting that the proposed
approach is able to estimate the errors along the river in a more
accurate way while generating the same limited amount of noise.
In the case of the NDVI index (Fig. 6), a similar trend can be
observed. Specifically, BTR [Fig. 6(g)] clearly generates the
worse prediction with several error overestimations, followed
by LIN [Fig. 6(c)], RID [Fig. 6(d)], and SVR [Fig. 6(e)] that
generally introduce visual artifacts in the resulting maps. When
considering the error estimates of GPR [Fig. 6(f)] and the pro-
posed approach [Fig. 6(h)], we can see that these methods obtain
the two best visual results since they produce the most similar
outputs to the corresponding ground-truth error map [Fig. 6(b)].
However, the proposed approach results are certainly the best
ones since the errors predicted in the coastal area definitely have
a more accurate shape than the GPR ones.

D. Experiment 2

Tables IX and X contain the quantitative assessment of the
PSRI-NIR and NDVI error estimates when consideringK = 12.
Likewise, in the previous experiment, test data products are
shown in rows whereas columns display the considered methods.
According to the reported results, it is possible to make some
important observations. From a general perspective, we can
see a global quantitative performance decrease produced by
the use of actual OLCI products for testing the biophysical
indices. Note that, we use the computation of PSRI-NIR and
NDVI over MSI as OLCI’s ground-truth (since we do not
have actual ground-truth information for OLCI). However, the
existing spectral differences between both sensors make these
vegetation indicators do not obtain the same result across the
instruments, which logically affects the quantitative evaluation.
When analyzing the results in more details, we can observe that
the proposed approach obtains the best average performance
followed by BRT, GPR, SVR, LIN, and RID. Despite the fact
that some of the considered regression algorithms show some
deviations with respect to the use of synthetic test data, the

proposed approach is able to obtain the best quantitative results,
which reveals its ability to manage real inter-sensor data.

In general, the conducted experiments reveal that the proposed
approach provides competitive advantages when estimating
OLCI biophysical product errors from a Level-4 data processing
perspective. Precisely, these improvements are based on two
main aspects: the inter-sensor scheme and its probabilistic na-
ture. On the one hand, the presented inter-sensor scheme allows
taking advantage of the higher spatial resolution of S2 to uncover
S3/FLEX subpixel information that becomes very useful to
characterize the biophysical product errors generated by the
lack of spatial resolution. Under the context of the Copernicus
program and other missions like FLEX, inter-satellite synergies
can play a fundamental role to relieve sensing limitations by
exploiting the strengths of each individual instrument. In this
sense, the proposed inter-sensor scheme takes and implements
these ideas to fulfill the inherent requirements of estimating
OLCI/FLORIS biophysical product errors in a novel way using
inter-sensor MSI data. On the other hand, the proposed method-
ology is able to produce more accurate uncertainty estimates
than traditional regression algorithms because it deals with the
problem from a multivariate analysis perspective which has
been specially designed to exploit S3/FLEX and S2 properties.
That is, jointly modeling biophysical product values, errors,
and subpixel spatial patterns as empirical distributions allows
us to better relate all these components based on the richer
spatial information provided by S2 while also accounting for
the statistical significance of the data that eventually becomes
essential to reduce noisy error predictions as displayed in the
qualitative results.

Traditional regression algorithms pursue to project sample
points from an initial feature space made of the concatenation of
MSI spatial patterns (k) and OLCI/FLORIS biophysical values
(f ) onto a target domain with their corresponding errors (e).
Although each method logically follows its own intuitions for
conducting such projection, all of them share a common aspect:
the inter-sensor information provided by MSI and the intra-
sensor data of OLCI/FLORIS are integrated into a single charac-
terization by means of concatenation. That is, both information
sources are jointly considered as a single observable entity.
However, the proposed framework provides a more powerful
scheme since two different random variables are considered in
this regard. More specifically, the proposed approach defines a
probabilistic model where the corresponding errors (e) depend
on k and f random variables in a way that the conditional proba-
bility distributionp(e|k, f) is able to control the balance between
MSI spatial patterns (k) and OLCI/FLORIS biophysical values
(f ). In other words, both k and f are considered observable
variables that affect the error but this influence is controlled for
each observed pair, which eventually becomes more suitable
for managing the inter-sensor spatial variability than using the
standard feature concatenation of regular regression algorithms.

V. CONCLUSION

This work has proposed a novel statistical approach to study
and quantify the variability of the biophysical products provided
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by the S3/FLEX tandem missions by taking advantage of the
higher spatial resolution of S2. Specifically, OLCI/FLORIS
subpixel spatial patterns are initially characterized using
inter-sensor MSI data. Then, the influence of these patterns
and biophysical values in the operational product errors is mod-
eled using a multivariate analysis perspective. Finally, the un-
covered distributions are employed to infer the confidence level
and expected deviations for new test products. A comprehensive
experimental comparison, including multiple operational MSI
products and their simulated OLCI counterparts, has been con-
ducted to validate the proposed approach with respect to several
regression methods using different biophysical parameters.

One of the first conclusions that arises from this work is the im-
portance of the inter-sensor data within the S3/FLEX context and
how complementary S2 information can support managing the
spatial heterogeneity problem of biophysical parameters. That
is, this work shows that considering a Level-4 data processing
perspective allows for the exploitation of inter-sensor synergies
that may contribute to relieve some important sensing limitations
without additional costs.

Another relevant aspect is related to the operational reliability
of S3/FLEX biophysical parameters. The presented methodol-
ogy has been designed to improve the certainty of operational
S3/FLEX products by using a new statistical approach that
is able to model the relationships between biophysical errors
and inter-sensor patterns. In this regard, the proposed approach
is able to outperform traditional regression algorithms, with
both synthetic and real imagery, by considering two indepen-
dent inter-sensor observable variables unlike standard feature
concatenation. Precisely, such improvements may become very
useful in operational environments to produce more relevant
S3/FLEX biophysical products for different downstream RS ap-
plications. In our future work, we will investigate the extension
of the proposed framework to manage multimodal data from
other missions while developing additional models to better
characterize subpixel information by means of spatial-spectral
patterns. The study of RS data processing techniques to deal
with inter-sensor cloud contamination will be also examined as
future work.
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