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Abstract—Since the rise of deep learning in the past few years,
convolutional neural networks (CNNs) have quickly found their
place within the remote sensing (RS) community. As a result, they
have transitioned away from other machine learning techniques,
achieving unprecedented improvements in many specific RS appli-
cations. This article presents a meta-analysis of 416 peer-reviewed
journal articles, summarizes CNN advancements, and its current
status under RS applications. The review process includes a statis-
tical and descriptive analysis of a database comprised of 23 fields,
including: 1) general characteristics, such as various applications,
study objectives, sensors, and data types, and 2) algorithm specifi-
cations, such as different types of CNN models, parameter settings,
and reported accuracies. This review begins with a comprehensive
survey of the relevant articles without considering any specific cri-
teria to give readers an idea of general trends, and then investigates
CNNs within different RS applications to provide specific directions
for the researchers. Finally, a conclusion summarizes potentialities,
critical issues, and challenges related to the observed trends.

Index Terms—Convolutional neural network (CNN), deep
learning (DL), meta-analysis, remote sensing (RS).

I. INTRODUCTION

MACHINE learning (ML) is a subset of artificial intel-
ligence that has been used in various applications to

train a system using provided data [1]. The ML paradigm
covers numerous areas of study, through which a variety of
algorithms have been introduced [2]. In the past decade, various
ML methods and computational algorithms have been developed
to analyze remote sensing (RS) data [3]. In a survey of the ISI
Web-of-Science (WoS) database, Scheunders et al. [2] report
that between 2004–2015 about 60 000 papers applying ML in
an RS context were published, of which 10 000 applied classi-
fication algorithms and 3000 applied regression models. Given
the recent developments in RS data acquisition technologies and

Manuscript received November 30, 2020; revised January 21, 2021; accepted
March 1, 2021. Date of publication March 11, 2021; date of current version
April 8, 2021. (Corresponding author: Masoud Mahdianpari.)

Hamid Ghanbari is with the Department of Geography, Université Laval,
Québec, QC G1V 0A6, Canada (e-mail: hamid.ghanbari.1@ulaval.ca).

Masoud Mahdianpari is with the C-CORE, St. John’s, NL A1B 3X5, Canada,
and also with the Department of Electrical and Computer Engineering, Memo-
rial University of Newfoundland, St. John’s, NL A1B 3X5, Canada (e-mail:
m.mahdianpari@mun.ca).

Saeid Homayouni is with the Institut National de la Recherche Scientifique,
Centre Eau Terre Environnement, Quebec City, QC G1K 9A9, Canada (e-mail:
saeid.homayouni@ete.inrs.ca).

Fariba Mohammadimanesh is with the C-CORE, St. John’s, NL A1B 3X5,
Canada (e-mail: fm7550@mun.ca).

Digital Object Identifier 10.1109/JSTARS.2021.3065569

the rising diversity of objectives capable of being resolved, the
use of ML in RS applications is expected to increase [4].

ML methods in the context of RS cover a vast range of
applications, including land use and land cover (LULC) clas-
sification, change detection, object detection, feature selection,
and extraction, etc. [2]. LULC, in particular, benefits from
advancements in ML methods [5]. The growing number of
satellite platforms with various revisit times has increased the
ability to capture nature accurately, and human-made changes
to the Earth’s surface [6], and ML methods have increasingly
been used to address related change detection problems [7].
Similarly, the development of high spatial resolution instruments
installed on airborne and spaceborne platforms has resulted in
an increase in applications of ML for special object detection
[8]. ML also plays a vital role in dimensionality reduction [9]
of hyperspectral images composed of many essential features
for several scientific applications [10]. Other roles ML plays in
RS applications include spectral unmixing, regression, image
fusion, etc. [1]. Within each category, several ML algorithms
have been introduced based on sensor type, study objective,
ancillary data, and limitations such as spatial resolution and
training sample size [11]. The applicability and effectiveness of
these algorithms have been demonstrated in many geosciences
and RS tasks [12], [13].

The most commonly used ML algorithms in RS are artificial
neural networks (ANN), support vector machines (SVM), deci-
sion trees (DT), and ensemble methods, such as random forest
(RF) [14]. Each of these methods carries specific advantages. For
example, SVM can best tackle high-dimensionality problems
and limited training data [15], while RF does not require the
fine-tuning of a large number of hyperparameters and can easily
be used for both simple and complex computations [16], [17].
These two methods share the advantage of lower computational
complexity and higher interpretability capabilities [14].

Over the past few years, however, there has been an ongoing
shift toward using deep learning (DL) methods in ML appli-
cations [18]. DL, which is characterized by neural networks
(NN), is the fastest-growing trend in big RS data analysis and is
regarded as a breakthrough technology [19]–[22]. DL has been
used in many areas of research, such as speech recognition [23],
stereo vision [24], biomedicine [25], time-series analysis [26],
agriculture [27], and medical image recognition [28]. Although
DL has the disadvantages of: 1) being a “black box” naturally,
which mitigates its interpretability, and 2) requiring greater
amounts of training samples compared to other ML methods, it
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has become a hotspot in the realm of ML and has been approved
by many researchers in the geoscience and RS community [29].

To date, several DL architectures have been introduced,
of which the stacked autoencoder (SAE), convolutional NN
(CNN), generative adversarial network (GAN), deep belief net-
work (DBN), and recurrent NN (RNN) have become mainstream
[30]. Of these DL networks, CNN is the most popular and
the most published [31]. Along with the development of DL
methods, CNNs have emerged as an incredibly powerful tool by
providing both remarkable performances in image processing
and the ability to work in a wide variety of applications in
the vision community [32]. In the past few years, biologically
inspired CNNs have emerged and proven to be effective in a
diverse range of fields to which image processing is funda-
mental, from social media [33] to precision medicine [34] and
robotics [35].

A particularly beneficial characteristic of CNNs is data pro-
cessing in multiple arrays and automatic feature extraction abil-
ity, which has received acknowledgment in the RS community
[18], [36]. Moreover, the inherent characteristics of CNNs,
such as local connectivity and weight sharing, allow this DL
method to tackle the drawbacks of artificial feature extraction by
considering the 2-D structures and reducing network parameters
using convolutional filters [32]. CNN-based approaches have
benefited from the recent exponential increase in RS technolo-
gies that includes various image types (optical, RADAR, tem-
perature and microwave radiometer, altimeter, etc.) with com-
plex characteristics (high dimensionality, multiple scales, and
nonstationary) [37].

CNNs are composed of a set of blocks that make them
particularly suitable for image analysis. The multiple layers of
operations, such as convolution, pooling, and nonlinear activa-
tion functions, allow for the hierarchical extraction of high-level
abstract features [31], [38], [39]. Therefore, CNNs have been
successfully used in image preprocessing, scene classification,
pixel-based classification and image segmentation, and object
detection [40]–[44]. For example, CNNs have been used in
numerous studies to improve image classification results [36],
[46]–[48], to extract buildings and nonbuilding regions automat-
ically [49], and to detect areas of build-up [50]. Scarpa et al. [51]
proposed and analyzed CNN-based methods to estimate spectral
features when optical data are missing. In another example, a
CNN regression was proposed to develop a model applicable
to hyperspectral imagery for estimation of concentrations of
phycocyanin and chlorophyll-a [52]. CNNs also have been used
in OpenStreetMap data quality assessment [53], oil spill seg-
mentation [54], ship position detection and direction prediction
[55], multimodal RS image registration [56], road extraction
[57], and many other areas of study [58]–[60].

Several related review papers have been published due to
DL methods’ significant performance over other state-of-the-art
methods in RS. For example, a review by Ball et al. [31]
focused on the theories, tools, and challenges of using DL
algorithms in the RS community. In another review, Zhang et al.
[45] and Zhu et al. [19] summarized recent advances in DL
methods and discussed related challenges in RS applications.
Following the explosive growth of new DL methods in different

RS applications and their striking achievements, some review
papers have focused on studying the task-based reports of DL
methods [61]–[65]. Liu et al. [66] presented a systematic review
of the application of DL techniques in the field of pixel-based
image fusion. A recent comprehensive review by Tsagkatakis
et al. [30] was conducted on RS image enhancement, including
super-resolution, denoising, restoration, pan-sharpening, and
fusion.

Most of the existing review manuscripts covering major DL
concepts related to RS applications consider all DL architec-
tures. Early efforts reviewing CNNs generally were performed
by Rawat and Wang [67] in which the authors focused on the
application of CNNs in image classification tasks and debated
their rapid advancement in recent years and the contribution
CNNs had made to DL developments. Many other articles
provide readers with a summary of the CNNs’ basic concepts in
different applications such as radiology [68], biology [69], and
action recognition [70].

The majority of the CNN review papers are descriptive, often
with no quantitative assessment, and tend to focus on applica-
tions other than RS. Accordingly, this study’s main objective
is to describe and discuss the RS-based applications of CNN
through a meta-analysis of published papers and to provide RS
experts with a “big picture” summary of current research in this
field. As a whole, the contributions of this article are: 1) whereas
almost all the review papers in RS applications cover all related
DL network structures, this article reviews the publications
dedicated to the use of CNNs for RS applications alone and
summarizes hotspots based on the paper frequency and accuracy.
Moreover, it discusses trends and specific setups for different
subtasks, and 2) this review defines a complete framework for
professionals and even nonexperts, outlining ongoing research
and the architectures that receive the most attention in each
application.

To fulfill the proposed meta-analysis task and to construct a
database of case studies, more than 400 peer-reviewed articles
are reviewed, and many other papers are cited. To create a context
for what follows, we first summarize the performed systematic
literature search query using the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) in Section II.
After presenting the general characteristics of CNNs in Sec-
tion III, the application of CNNs in different study objective
is discussed in Section IV. Finally, in Section V, concluding
remarks are presented.

II. METHODS

A systematic literature search query was performed using the
WoS to identify relevant articles for this comprehensive review.
The WoS is one of the biggest bibliographic databases covering
scholarly literature from approximately any discipline. Notably,
the PRISMA methodology was followed for study selection
[71]. After some trials, a title/abstract/keyword search was per-
formed in WoS using a search query of: “convolutional neural
network∗” OR “CNN” OR “FCNN” OR “fully convolutional
neural network∗” OR “deep learning” for the title and “Remote
sensing” for abstract/keyword, checking to include papers that
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TABLE I
RS JOURNALS USED TO COLLECT RESEARCH STUDIES FOR THIS LITERATURE REVIEW

used data from the most common RS platforms (search date:
June 12, 2020). This research resulted in 1038 papers, which
served as the basis for further paper surveys.

Of the 1038 initial number of studies, 664 papers were related
to the peer-reviewed journals, and the remaining were majority
proceedings papers. When investigating the 664 Journal papers
in detail and after eligibility assessment, 248 papers were deter-
mined unrelated to this meta-analysis and removed. The journals
with more than five papers are listed in Table I.

The 416 eligible papers were included in the meta-analysis
and described using the following—title, year, journal, citation,
first author’s institution’s country, RS data, study type, appli-
cation, CNN model, processing unit, training sample, area of
the data, spatial resolution, geographical coverage, framework,
learning strategy, number of layers, dataset, CPU/GPU run,
processing time, convolutional kernel dimension, accuracy, and
accuracy metric. A summary of the literature search is demon-
strated in Fig. 1.

III. RESULTS AND DISCUSSION

A. General Characteristics of Studies

There has been a steep upward trend in the use of CNNs
from 2014, the point at which the first RS-related application of
CNNs was introduced [72] (see Fig. 2). The exponential trend of
annual publication frequency peaks in 2019 and includes more
than one-third of the database articles. The expansion in the use
of CNNs continued in the current year (2020). In the first half
of 2020, the number of papers published exceeds the number of
published papers for the equivalent period in 2019.

Studies were conducted in 34 different countries and regions
from six continents, the majority of which are based in Asia
(72%), Europe (15%), and North America (9%). Among the
different countries, most of the contributions were carried out

Fig. 1. PRISMA flowchart demonstrating the selection of studies.

Fig. 2. Annual and cumulative frequency of CNN studies in RS applications.
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Fig. 3. Number of studies per RS application.

Fig. 4. Usage rate of different RS data (the numbers in parenthesis show the
number of studies).

in China, with about 63% of total studies, followed by the USA
(7%) and Germany (4%). Further analysis revealed that only six
countries had published more than ten papers and 13 countries
contributed only one paper.

Fig. 4 demonstrates the usage frequency of CNNs in a vast
range of applications. Of the reviewed 416 articles, LULC was
the most frequented application (with about 155 studies), fol-
lowed by object detection, scene classification, and urban studies
with 68, 32, and 25 studies, respectively. The remaining articles
include specific applications in crop- (25), disaster- (14), cloud-
(12), tree- (10), forestry- (6), and water- (5) related research.
Some other applications also benefited from CNNs, clustered in
Fig. 3 as “other” as the number of associated articles was fewer
than five, including sea ice, agriculture, and wetland mapping
(see Fig. 3).

B. Sensors and Data Types

The first published RS-related work using CNNs occurred in
2014 for vehicle detection using multispectral satellite images
[72]. Since then, CNNs have been applied in research using
numerous RS data types (see Fig. 4). The largest share of

this research has used multispectral satellite images, making
up 51% of the database, mainly Landsat archives, Worldview-
4, and Quickbird-2 imageries. Since early 2016, CNNs have
been used for hyperspectral data analysis in about 12% of the
studies. Through the development of CNN architectures and
their achievements in research using different types of data,
by 2017, CNNs were increasingly used to analyze other data
types, including aerial (16%), unmanned aerial vehicle (UAV)
(6%), RADAR (5%), and light detection and ranging (LiDAR)
(2%). Almost 7% of the studies have also used a combination
of different data types.

C. CNN Frameworks and Models

The DL community’s framework and library development is
highly dynamic and offers different possibilities to speed up
the training process with interactive interfaces [73]. A graphical
representation of the most used frameworks and libraries and
their annual publication frequency in CNN studies is shown in
Fig. 5. The presented libraries provide built-in classes of NNs,
fast numerical computation, and automated gradients for both
CPU and GPU. These libraries include TensorFlow (Google
Brain team), MATLAB (MathWorks), Caffe (Berkeley Artificial
Intelligence Research), Torch (Berkeley Software Distribution),
MXNET (University of Washington), and Theano (Berkeley
Software Distribution). A detailed search through the literature
revealed that TensorFlow is the most significant CNN implemen-
tation source, with about 43% of total usages. TensorFlow is a
free and open-source end-to-end DL framework for numerical
computations using data-flow graphs [74]. It is designed to be
highly portable, running on various platform scales, from a
single CPU to a GPU or GPUs cluster [75].

Built on top of TensorFlow, Keras library has been employed
for CNN implementation as well. Keras, which supports almost
all models of CNNs, was executed on both CPU and GPU. The
second most used framework is Caffe (22% of studies). Caffe
is well suited for machine vision and forecasting applications,
which permits a network with sophisticated configurations [76].
Caffe’s specific properties include suitability for image process-
ing tasks with CNNs, accessibility to pretrained networks, and
easy coding on Python and MATLAB [73], [77]. MATLAB,
the third most used platform for CNN implementation, was
utilized in almost 19% of the studies. MATLAB’s beneficial
characteristics are its simplicity, especially for practitioners,
various visualizing tools, and the capability of deploying models
on a variety of servers and devices [78]. The remaining libraries
include Torch (10%), Theano (5%), and MXNET (1%). A
comparison of the frameworks’ annual usage frequency shows
that TensorFlow and Torch have the steepest growth rates since
they were introduced for CNN-based RS applications, followed
by MATLAB with a lower rate of increase. On the other hand,
Theano reached its peak in 2018, falling in numbers with no
cases thus far in 2020. Caffe, which was used first in 2015,
experienced a steep increasing number of usages in 2017 and
afterward held its position in CNN implementations.

To date, different CNN models have been developed starting
from 1989 with the introduction of the first CNN-based feature
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Fig. 5. Frequency of the used CNN frameworks and libraries.

Fig. 6. Frequency of different CNN models in the article database.

encoder, LeNet [79]. Several factors have contributed to the
development of new CNN models, including efficient training
on modern processing units, introduction of the rectified linear
unit (ReLU) activation function, availability of new datasets, and
innovation related to depth and spatial inclusion [80]–[82]. Fig. 6
shows the CNN models with three or more usage frequency
in different problems as a backbone architecture or a starting
point with the pretrained parameters (i.e., transfer learning).
The most frequently used model, employed in 33% of studies,
was VGG-16 [83], followed by ResNet-50 (19%), ResNet-101
(11%) [84], AlexNet (10%) [81], and Inception-V3 (5%) [85].
The remaining models, comprising about 22% of the case stud-
ies, mainly consist of LeNet-5, CaffeNet [77], SegNet [86],
ResNet-18, VGG-19, and GoogleNet [87].

IV. CNNS FOR DIFFERENT STUDY OBJECTIVES

A survey among RS-related studies revealed that CNNs could
be applied to almost any significant RS task, making them a
promising option for handling various problems. Fig. 7 shows
that 54% of the reviewed papers (225 papers) are devoted to clas-
sification problems, including LULC and scene classification

Fig. 7. Distribution of study objectives.

studies. CNNs have been used in several other study objectives,
including object detection (23%), image segmentation (7%),
data fusion (4%), image super-resolution (3%), image matching
(2%), image correction (2%), and regression (1%). Recently,
CNNs have been applied to other study objectives, such as image
retrieval, prediction, quality assessment, and unmixing, making
up about 4% of the studies.

Following the review of the publications in different research
domains, an in-depth review of different study types and their
respective findings are provided in the following sections. Based
on the proximity of the research domains and their paper fre-
quency, papers were categorized into three distinctive groups
(i.e., image classification, object detection and segmentation,
and others).

A. Classification

The number of classification-based studies focusing on dif-
ferent applications (the number of papers is shown in the paren-
thesis) alongside the statistical analyses reported by overall
accuracy (OA) is shown in Fig. 8. Most of the classification
tasks focused on LULC, scene classification, and crop-, urban-,
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Fig. 8. OA distribution of CNN classification studies based on different
applications.

cloud-, and disaster-classification, with about 52%, 14%, 12%,
5%, 5%, and 4%, respectively. Other classification tasks, includ-
ing agriculture, forestry, wetland, and sea ice, comprise about 8%
of the total cases but are not shown in Fig. 8. The classification
accuracy assessment shows the maximum average accuracy and
the lowest variability for cloud studies, with almost 95.5%, fol-
lowed by scene classification with about 95.2%. Urban studies
have the lowest average accuracy among the applications, with
an average OA of 90%.

As mentioned earlier, many CNN classification studies are de-
voted to LULC applications, potentially because of the extensive
scope of relevant datasets available for training the networks.
The papers in this group mostly focused on hyperspectral image
classification by using benchmark datasets, including Salinas
[airborne visible/infrared imaging spectrometer (AVIRIS) sen-
sor], Pavia University [reflective optics system imaging spec-
trometer (ROSIS-03) sensor], and Indian Pines (AVIRIS sensor)
[88]. The second most studied classification task is scene classi-
fication, which is generally defined as a procedure to categorize
a specific scene theme, e.g., a part of a forest, an agricultural
landscape, a river, etc. [89]. A majority of these studies apply
high-resolution RS images because of the availability of many
large-scale high-resolution datasets in recent years [90], [91].
In scene classification, the most commonly used datasets are
the UC-Merced dataset [92], the aerial image data set (AID)
[93], and NWPU-RESISC 45 (RS image scene classification)
datasets [94].

A detailed survey of the article database shows that about
46% of classification studies used spaceborne multispectral RS
images for classification tasks (see Fig. 9). The most frequent
multispectral satellite data sources are Landsat 8, Gaofen 1-2,
and Sentinel 2. The least used data type is related to LiDAR
datasets, making up about 2% of the whole database. The re-
maining types of RS data are aerial images (18%), hyperspectral
(13%), UAV (7%), multidata (7%), and RADAR (6%). For the
aerial images, the Vaihingen Semantic Labelling dataset [95]
and Potsdam Semantic Labelling dataset [96] were the most
used datasets, and for hyperspectral images, the most used

Fig. 9. Distribution of OA for different data types.

Fig. 10. Frequency and average OA of CNN classification by spatial resolu-
tion.

datasets were the Salinas, Indian Pines, and Pavia University
datasets. In recent years, UAV data have been deployed in some
CNN classification tasks, and it is expected that their usage will
increase because the cost of UAV has lowered in recent years
[97]. The capability of automatic data acquisition using UAV has
made them a convenient tool for some classification tasks such as
geological mapping [97], crop yield prediction [98], and wetland
mapping [99]. Integration of different RS data types (i.e., multi-
data) is beneficial for different tasks such as tree species diversity
mapping using LiDAR and high-resolution multispectral images
[100], soybean yield prediction by fusion of weather data and
MODIS products [101], and coastal land cover classification by
integration of optical and RADAR satellite images [102].

A statistical analysis of different data types showed that
using multidata resulted in maximum average OA (96.2%) and
lower variability. In the case of single-data research, the mean
classification accuracy of hyperspectral datasets is the highest at
96%, followed by UAV (94.20%), multispectral (93.58%), aerial
(93.48%), RADAR (92.75%), and LiDAR (90.67%).

Fig. 10 shows the average obtained accuracy for CNN clas-
sification based on the spatial resolution of the remotely sensed
image dataset and their respective number of published papers
(the number of papers is written in the parenthesis). The papers
were categorized based on the spatial resolution into very high
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(<1 m), high (between 1 and 5 m), and medium and low
resolution (>5 m).

Data with a spatial resolution of <5 m (very high and high)
were used in 63% of the publications, mainly composed of
studies using 1 m resolution. Based on this analysis, it can
be concluded that there is an agreement between the mean
accuracy of the classification and the spatial resolution. The
mean accuracy for very high- and high-resolution datasets is
90.10% and 92.48%, respectively. The maximum mean accuracy
is related to datasets with spatial resolutions > 5 m, with about
93.82% mean OA.

A survey among the usage frequency of different CNN models
for classification tasks revealed that VGG variants were the most
frequented backbones, followed by ResNet-50 and AlexNet. In
about 52% of the studies, stochastic gradient descent (SGD) was
used for parameter optimization of the CNN models [89], [103],
while the remaining studies used adaptive moment estimation
(Adam) optimizer [104]. Moreover, the training process was
conducted over 100 epochs in about 68% of the cases.

B. Object Detection and Image Segmentation

As shown in Fig. 7, about 30% of CNN’s RS studies involve
image segmentation and object detection tasks. A close inspec-
tion of the usage frequency of different sensor types in image
segmentation-based studies shows that the largest share use
multispectral satellite images (60%), aerial (18%), and multidata
(8%). The other articles were devoted to UAV, RADAR, LiDAR,
and panchromatic images with almost 7%, 4%, 2%, and 1%,
respectively. Open datasets and their respective applications
significantly influenced these topics by providing information
related to various land covers. A survey among the article
database showed that two publicly available datasets, including
Potsdam Semantic Labelling [96] and NWPU VHR-10 [105],
established themselves as baseline datasets for CNN-based im-
age segmentation and object detection. They are followed by
DOTA (dataset for object detection in aerial images) [105],
UC-Merced [92], and the Massachusetts buildings and roads
datasets [106]. However, to investigate method development in
large-scale research areas, some studies used custom spaceborne
datasets. Google Earth was the most employed spaceborne data
source, followed by Gaofen 1-2, Quickbird-2, and Worldview-4.
Of all the reviewed papers for object detection and segmentation
tasks, 68% of the CNN models are applied to analyze datasets
with 1 m or finer spatial resolutions. SGD was used as an
optimizer in about 75% of the studies, while Adam optimizer
was used in the remaining 25%. In 72% of the cases, the number
of epochs was set less than 100 iterations, and in the remaining
cases (i.e., 28%), the number of epochs was more than 100.

An overview of the popular designs in the publications showed
a focus on region-based CNN (R-CNN)-inspired architectures
[107] and its series of improvements, including fast R-CNN
[108], faster R-CNN [109], and mask R-CNN [110]. The most
frequently used model, representing 39% of studies, was related
to land cover mapping, with other categorial applications, in-
cluding agriculture (15%), urban (11%), forest (10%), wetland

(12%), disaster (3%), and soil (2%). The remaining applications,
comprising about 8% of the case studies, mainly consist of
mining area classification, water mapping, benthic habitat, rock
types, and geology mapping.

Concerning the different architectures designed for image
segmentation and object detection, the VGG variants have been
the most used backbone models (34%), followed by the ResNet
family (30%). The Inception, SegNet, LeNet, and GoogleNet
backbones were much less commonly used.

C. Other Applications

Along with the above-mentioned conventional applications
in RS, CNNs have also been applied in other research areas,
such as data fusion, super-resolution, change detection, image
registration, etc. Because of their specific capability of fea-
ture extraction and learning, CNNs demonstrate an outstanding
possibility to delineate the relationship between different data,
which has been used in panchromatic/multispectral data fusion
applications [111]–[113]. The first papers that were introduced
in this category were motivated by the impressive performance
of CNNs in a large number of closely related super-resolution
problems [113], [114]. A comprehensive overview of the article
database’s fusion studies shows a trend of using pixel-based
processing units with residual learning strategy with SGD opti-
mizers mostly implemented in MATLAB [115].

Super-resolution, which aims to enhance spatial resolution,
is an ongoing research topic in computer vision and RS [114].
The latest super-resolution trend focused on example (learning)-
based techniques, including a training phase between low-
resolution and high-resolution pairs of images [116]. Example-
based techniques have seen enhanced accuracies by the intro-
duction of CNNs to generic super-resolution problems [117].
However, RS imageries exhibit a different level of complexity
than images in other fields such as computer vision, which
delayed the use of CNNs in RS image super-resolution until 2018
by introducing a specific super-resolution CNN architecture to
adapt with multispectral satellite imagery [116]. An overview
of the related papers shows that all the CNN models were 2-D
structured, in which Adam and SGD equally were used for
parameter optimizations with the epoch numbers ranging from
80 to 600.

In recent years, DL methods have been successfully applied in
natural image change detection-based applications [118]. Previ-
ously, different DL-based methods have been applied to various
change detection tasks, such as urban dynamics [119], LULC
applications [120], or landslides [121]. First, CNN models were
employed for high-resolution remotely sensed image change
detection in 2018 using faster R-CNN [119] and have gained
attention since then. With a review of the database, it is observed
that most of the studies devoted to change detection applications
applied a range of data types, from spaceborne and airborne
optical to RADAR images.

Image registration is a fundamental part of many RS tasks,
such as image fusion and change detection [122], [123]. Like the
first study, in 2018, Ye et al. [122] fine-tuned the VGG-16 model
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using custom RS data to obtain deep CNN features to build
an automatic registration algorithm. CNNs showed powerful
performance in the registration of RGB and infrared [124], SAR
[125], multimodal [56], and aerial RS images [126].

Another active area that uses CNNs is image correction,
which includes categories such as image denoising [127], image
reconstruction [128], and image compensation [129]. CNNs
were introduced to this field in 2017 to build a nonparametric
color-correcting scheme for multispectral images [130] and
the year after that for removing haze from RS images [131].
Overall, eight studies in the article database used CNN models
for correction purposes, of which most of them were applied to
multispectral satellite images.

Besides the above applications of CNNs in RS image analysis,
CNNs have also been applied in other areas, including regression
[52], image retrieval [132], prediction [133], quality assessment
[134], and hyperspectral unmixing [135]. CNN models have
achieved outstanding performances in each of these applications
by presenting a novel way to solve them. Considering the high-
accuracy of CNN, it is expected that they will continue to find
their use in other research areas.

V. CONCLUSION AND PROSPECTS

This review presents a comprehensive review of CNNs in RS
data analysis. It summarizes their progression and advancement
since their emergence in the RS field in terms of general char-
acteristics and technical specifications. Based on the detailed
analysis of the article database, we come to the following con-
clusion.

1) There is an increasing trend of using CNNs in RS appli-
cations beginning in 2014, and since then, their use has
expanded into many new research areas.

2) The use of CNNs in the context of RS started through its
employment to analyze multispectral images. As CNNs
were increasingly used for efficient problem solving based
on different data types and platforms, researchers began to
incorporate CNNs in their projects using other data types
such as LiDAR and RADAR.

3) Advances in new and freely open-source frameworks and
libraries with highly dynamic interfaces allowed the RS
community to research new study objectives. The survey
among different frameworks identifies TensorFlow as the
most used framework. Based on the yearly usage fre-
quency, it is expected to hold its position in the coming
years.

4) A survey among the CNNs’ parameters shows that SGD
and Adam are the most frequented optimizers, and, in
most cases, the number of epochs was set more than 100
iterations.

5) Classification tasks using various data types and sensors
focus on most of the studies (54%) using CNNs. Clas-
sification results have shown to be better when using
multisource data and using images with a spatial resolution
of more than 5 m. As classification tasks require large
quantities of training samples, researchers tackled this

problem by improving their training dataset’s efficiency
using a transfer learning strategy. For this aim, most of the
case studies used VGG variants.

6) We could not further analyze and summarize the process-
ing time because it was neither available nor specified if
the entire time is for optimizing metaparameters or not.
However, in contrast to the general belief, numerous cases
report a training time of less than 1 h. It is generally true
that deep networks need considerably more processing
time for training (though the testing/simulation process
is generally quick). However, with continuous increases
in processing power, deep networks are readily usable,
particularly by incorporating both CPUs and GPUs. It
would be interesting to evaluate the time saved by using
pretrained networks and fine-tuning them, but currently,
there were no statistics reported to extract conclusive
information.

7) CNNs have been typically utilized for data with dimen-
sions up to three which is common for RS data. However,
1-D CNNs have shown promising results in discovering
intricate patterns in high-dimensional data, especially for
sequential data. This capability of extracting meaningful
information from the high-dimensional vector data has
indicated 1-D CNNs as promising alternatives to conven-
tional methods in some regression problems.

8) The majority of studies focused more on the architecture
designs and few studies elaborated on the time efficiency
while training networks. By the growth of big RS data and
their applications in practical productions, which require
much more time to train rather than typical research,
much more attention is required to develop time-efficient
networks that meet the practical projects’ requirements.
However, this problem has been partly solved by using
public online free or commercial cloud computing plat-
forms, such as Google, Amazon, Microsoft, and IBM.
Cloud computing can be used for the development of
computationally intensive CNNs by providing high speed
and flexible facilities that can handle huge amount of data.

Based on the 416 reviewed articles in this survey, it is evident
that CNNs have pervaded every aspect of RS image analysis.
This has happened very fast as over 96% of the contributions,
a total of 400 papers, were published starting from 2017. For
example, the first application of CNNs in object detection studies
happened in 2014, whereas they have been used for image
registration tasks in 2018. However, the growth rate of applying
CNNs to different tasks and data types is challenged by the
lack of large training datasets. Although CNNs can be consid-
ered newly introduced algorithms in RS, they are now clearly
among the top performers in most RS applications. Despite this
progress, the study of CNN-based approaches is currently at
its beginning stages, and there is still much potential for new
developments, particularly in applications such as hyperspec-
tral unmixing, image retrieval, and image quality assessment.
Another striking conclusion is that a few studies are conducted
in new application areas. As a result, there is a gap in examining
different aspects of CNNs. Therefore, in order to get the best
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results, researchers should consider investigating new CNN
architectures. In this perspective, the design of new network
architectures for specific tasks, the generation of large-scale
datasets for network training, the integration of conventional
techniques according to the RS data, the advancement and
analysis of existing networks concerning their architectures,
optimization techniques, and the regularization strategies are
still open topics which are in close relation with each other and
should be jointly considered.
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[17] M. Belgiu and L. Drăguţ, “Random forest in remote sensing: A review of
applications and future directions,” ISPRS J. Photogramm. Remote Sens.,
vol. 114, pp. 24–31, 2016.

[18] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep learning
in remote sensing applications: A meta-analysis and review,” ISPRS J.
Photogramm. Remote Sens., vol. 152, pp. 166–177, 2019.

[19] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5,
no. 4, pp. 8–36, Dec. 2017.

[20] G. Cheng, X. Xie, J. Han, L. Guo, and G.-S. Xia, “Remote sensing
image scene classification meets deep learning: Challenges, methods,
benchmarks, and opportunities,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 13, pp. 3735–3756, 2020.

[21] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based
classification of hyperspectral data,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 6, pp. 2094–2107, Jun. 2014.

[22] P. Ghamisi, B. Höfle, and X. X. Zhu, “Hyperspectral and LiDAR data
fusion using extinction profiles and deep convolutional neural network,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 6,
pp. 3011–3024, Dec. 2016.

[23] G. Hinton et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Signal
Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[24] A. Tonioni, M. Poggi, S. Mattoccia, and L. Di Stefano, “Unsupervised
adaptation for deep stereo,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 1605–1613.

[25] G. Lu and B. Fei, “Medical hyperspectral imaging: A review,” J. Biomed.
Opt., vol. 19, no. 1, 2014, Art. no. 010901.

[26] J. C. B. Gamboa, “Deep learning for time-series analysis,” 2017,
arXiv:1701.01887.

[27] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture:
A survey,” Comput. Electron. Agriculture, vol. 147, pp. 70–90, 2018.

[28] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Med. Image Anal., vol. 42, pp. 60–88, 2017.

[29] P. Liu, K.-K. R. Choo, L. Wang, and F. Huang, “SVM or deep learning? A
comparative study on remote sensing image classification,” Soft Comput.,
vol. 21, no. 23, pp. 7053–7065, 2017.

[30] G. Tsagkatakis, A. Aidini, K. Fotiadou, M. Giannopoulos, A. Pen-
tari, and P. Tsakalides, “Survey of deep-learning approaches for re-
mote sensing observation enhancement,” Sensors, vol. 19, no. 18, 2019,
Art. no. 3929.

[31] J. E. Ball, D. T. Anderson, and C. S. Chan, “Comprehensive survey
of deep learning in remote sensing: Theories, tools, and challenges
for the community,” J. Appl. Remote Sens., vol. 11, no. 4, 2017,
Art. no. 042609.

[32] S. Srinivas, R. K. Sarvadevabhatla, K. R. Mopuri, N. Prabhu, S. S.
Kruthiventi, and R. V. Babu, “An introduction to deep convolutional
neural nets for computer vision,” in Deep Learning for Medical Image
Analysis. Amsterdam, The Netherlands: Elsevier, 2017, pp. 25–52.

[33] M. Ebrahimi, C. Y. Suen, and O. Ormandjieva, “Detecting predatory
conversations in social media by deep convolutional neural networks,”
Digit. Investigation, vol. 18, pp. 33–49, 2016.

[34] V. S. Parekh and M. A. Jacobs, “Deep learning and radiomics in preci-
sion medicine,” Expert Rev. Precis. Med. Drug Develop., vol. 4, no. 2,
pp. 59–72, 2019.

[35] U. C. Allard et al., “A convolutional neural network for robotic arm
guidance using sEMG based frequency-features,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2016, pp. 2464–2470.

[36] Z. Xu, K. Guan, N. Casler, B. Peng, and S. Wang, “A 3D convolutional
neural network method for land cover classification using LiDAR and
multi-temporal Landsat imagery,” ISPRS J. Photogramm. Remote Sens.,
vol. 144, pp. 423–434, 2018.

[37] J. Song, S. Gao, Y. Zhu, and C. Ma, “A survey of remote sensing image
classification based on CNNs,” Big Earth Data, vol. 3, no. 3, pp. 232–254,
2019.

[38] F. Xie, M. Shi, Z. Shi, J. Yin, and D. Zhao, “Multilevel cloud detection in
remote sensing images based on deep learning,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 10, no. 8, pp. 3631–3640, Apr. 2017.

[39] Y. Wang, Z. Li, C. Zeng, G.-S. Xia, and H. Shen, “An urban water extrac-
tion method combining deep learning and Google Earth Engine,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 768–781,
2020.

[40] S. S. Heydari and G. Mountrakis, “Meta-analysis of deep neural networks
in remote sensing: A comparative study of mono-temporal classifica-
tion to support vector machines,” ISPRS J. Photogramm. Remote Sens.,
vol. 152, pp. 192–210, 2019.

[41] W. Zhao, S. Du, and W. J. Emery, “Object-based convolutional neural
network for high-resolution imagery classification,” IEEE J. Sel. Top-
ics Appl. Earth Observ. Remote Sens., vol. 10, no. 7, pp. 3386–3396,
Mar. 2017.



GHANBARI et al.: META-ANALYSIS OF CONVOLUTIONAL NEURAL NETWORKS FOR REMOTE SENSING APPLICATIONS 3611

[42] L. Dong et al., “Very high resolution remote sensing imagery classifi-
cation using a fusion of random forest and deep learning technique—
Subtropical area for example,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 13, pp. 113–128, 2020.

[43] Y. Chen, L. Tang, X. Yang, R. Fan, M. Bilal, and Q. Li, “Thick clouds
removal from multitemporal ZY-3 satellite images using deep learn-
ing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13,
pp. 143–153, 2020.

[44] W. Fang et al., “Recognizing global reservoirs from Landsat 8 images: A
deep learning approach,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 12, no. 9, pp. 3168–3177, Aug. 2019.

[45] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing data:
A technical tutorial on the state-of-the-art,” IEEE Geosci. Remote Sens.
Mag., vol. 4, no. 2, pp. 22–40, Jun. 2016.

[46] X. Lu, H. Sun, and X. Zheng, “A feature aggregation convolutional neural
network for remote sensing scene classification,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 10, pp. 7894–7906, Jun. 2019.

[47] C. Zhang et al., “A hybrid MLP-CNN classifier for very fine resolution
remotely sensed image classification,” ISPRS J. Photogramm. Remote
Sens., vol. 140, pp. 133–144, 2018.

[48] X. Xu, W. Li, Q. Ran, Q. Du, L. Gao, and B. Zhang, “Multisource remote
sensing data classification based on convolutional neural network,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 937–949, Oct. 2017.

[49] F. Alidoost and H. Arefi, “A CNN-based approach for automatic building
detection and recognition of roof types using a single aerial image,” PFG–
J. Photogramm., Remote Sens. Geoinf. Sci., vol. 86, no. 5/6, pp. 235–248,
2018.

[50] Y. Tan, S. Xiong, and Y. Li, “Automatic extraction of built-up areas from
panchromatic and multispectral remote sensing images using double-
stream deep convolutional neural networks,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 11, no. 11, pp. 3988–4004, Oct. 2018.

[51] G. Scarpa, M. Gargiulo, A. Mazza, and R. Gaetano, “A CNN-based fusion
method for feature extraction from sentinel data,” Remote Sens., vol. 10,
no. 2, 2018, Art. no. 236.

[52] J. Pyo et al., “A convolutional neural network regression for quantify-
ing cyanobacteria using hyperspectral imagery,” Remote Sens. Environ.,
vol. 233, 2019, Art. no. 111350.

[53] X. Xie, Y. Zhou, Y. Xu, Y. Hu, and C. Wu, “OpenStreetMap data quality
assessment via deep learning and remote sensing imagery,” IEEE Access,
vol. 7, pp. 176884–176895, 2019.

[54] D. Cantorna, C. Dafonte, A. Iglesias, and B. Arcay, “Oil spill segmenta-
tion in SAR images using convolutional neural networks. A comparative
analysis with clustering and logistic regression algorithms,” Appl. Soft
Comput., vol. 84, 2019, Art. no. 105716.

[55] X. Yang, H. Sun, X. Sun, M. Yan, Z. Guo, and K. Fu, “Position detec-
tion and direction prediction for arbitrary-oriented ships via multitask
rotation region convolutional neural network,” IEEE Access, vol. 6,
pp. 50839–50849, 2018.

[56] H. Zhang et al., “Registration of multimodal remote sensing image based
on deep fully convolutional neural network,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 12, no. 8, pp. 3028–3042, Jun. 2019.

[57] L. Gao, W. Song, J. Dai, and Y. Chen, “Road extraction from high-
resolution remote sensing imagery using refined deep residual convo-
lutional neural network,” Remote Sens., vol. 11, no. 5, 2019, Art. no. 552.

[58] Y. Sun, Q. Xin, J. Huang, B. Huang, and H. Zhang, “Characterizing tree
species of a tropical wetland in Southern China at the individual tree level
based on convolutional neural network,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 12, no. 11, pp. 4415–4425, Nov. 2019.

[59] Y. Guo, H. Cao, J. Bai, and Y. Bai, “High efficient deep feature extraction
and classification of spectral-spatial hyperspectral image using cross
domain convolutional neural networks,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 12, no. 1, pp. 345–356, Jan. 2019.

[60] M. Qin, F. Xie, W. Li, Z. Shi, and H. Zhang, “Dehazing for multispectral
remote sensing images based on a convolutional neural network with the
residual architecture,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 11, no. 5, pp. 1645–1655, Mar. 2018.

[61] M. Paoletti, J. Haut, J. Plaza, and A. Plaza, “Deep learning classifiers for
hyperspectral imaging: A review,” ISPRS J. Photogramm. Remote Sens.,
vol. 158, pp. 279–317, 2019.

[62] H. Parikh, S. Patel, and V. Patel, “Classification of SAR and PolSAR
images using deep learning: A review,” Int. J. Image Data Fusion, vol. 11,
no. 1, pp. 1–32, 2020.

[63] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson,
“Deep learning for hyperspectral image classification: An overview,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9, pp. 6690–6709,
Apr. 2019.

[64] M. Pashaei, H. Kamangir, M. J. Starek, and P. Tissot, “Review and
evaluation of deep learning architectures for efficient land cover mapping
with UAS hyper-spatial imagery: A case study over a wetland,” Remote
Sens., vol. 12, no. 6, 2020, Art. no. 959.

[65] Y. Li, H. Zhang, X. Xue, Y. Jiang, and Q. Shen, “Deep learning for
remote sensing image classification: A survey,” Wiley Interdiscipl. Rev.,
Data Mining Knowl. Discov., vol. 8, no. 6 , 2018, Art. no. e1264.

[66] Y. Liu, X. Chen, Z. Wang, Z. J. Wang, R. K. Ward, and X. Wang,
“Deep learning for pixel-level image fusion: Recent advances and future
prospects,” Inf. Fusion, vol. 42, pp. 158–173, 2018.

[67] W. Rawat and Z. Wang, “Deep convolutional neural networks for image
classification: A comprehensive review,” Neural Comput., vol. 29, no. 9,
pp. 2352–2449, 2017.

[68] M. Mahdianpari, B. Salehi, M. Rezaee, F. Mohammadimanesh, and
Y. Zhang, “Very deep convolutional neural networks for com-
plex land cover mapping using multispectral remote sensing im-
agery,” Remote Sens., vol. 10, no. 7, Jul. 2018, Art. no. 1119,
doi: 10.3390/rs10071119.

[69] C. J. Spoerer, P. McClure, and N. Kriegeskorte, “Recurrent convolutional
neural networks: A better model of biological object recognition,” Fron-
tiers Psychol., vol. 8, pp. 1551, 2017.

[70] G. Yao, T. Lei, and J. Zhong, “A review of convolutional-neural-network-
based action recognition,” Pattern Recognit. Lett., vol. 118, pp. 14–22,
2019.

[71] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and PRISMA
Group, “Preferred reporting items for systematic reviews and meta-
analyses: The PRISMA statement,” PLoS Med., vol. 6, no. 7 , 2009,
Art. no. e1000097.

[72] X. Chen, S. Xiang, C.-L. Liu, and C.-H. Pan, “Vehicle detection in satellite
images by hybrid deep convolutional neural networks,” IEEE Geosci.
Remote Sens. Lett., vol. 11, no. 10, pp. 1797–1801, Mar. 2014.

[73] G. Nguyen et al., “Machine learning and deep learning frameworks and
libraries for large-scale data mining: A survey,” Artif. Intell. Rev., vol. 52,
no. 1, pp. 77–124, 2019.

[74] T. Hope, Y. S. Resheff, and I. Lieder, Learning Tensorflow: A Guide to
Building Deep Learning Systems. Sebastopol, CA, USA: O’Reilly Media,
2017.

[75] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep
learning in tensorflow,” 2018, arXiv:1802.05799.

[76] S. Chetlur et al., “cuDNN: Efficient primitives for deep learning,” 2014,
arXiv: 1410.0759.

[77] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675–678.

[78] P. Kim, MATLAB deep learning: With Machine Learning, Neural Net-
works and Artificial Intelligence, vol. 130. Berkeley, CA, USA: Apress,
2017, pp. 21.

[79] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[80] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the
recent architectures of deep convolutional neural networks,” Artif. Intell.
Rev., vol. 53, pp. 5455–5516, 2020.

[81] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Neural Inf. Process.
Syst. Conf., 2012, pp. 1097–1105.

[82] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248–255.

[83] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learning Representa-
tions, 2015.

[84] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 1492–1500.

[85] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[86] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Jan. 2017.

[87] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[88] P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, “Advanced spectral
classifiers for hyperspectral images: A review,” IEEE Geosci. Remote
Sens. Mag., vol. 5, no. 1, pp. 8–32, Mar. 2017.

https://dx.doi.org/10.3390/rs10071119


3612 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

[89] Q. Zou, L. Ni, T. Zhang, and Q. Wang, “Deep learning based feature
selection for remote sensing scene classification,” IEEE Geosci. Remote
Sens. Lett., vol. 12, no. 11, pp. 2321–2325, Sep. 2015.

[90] Z. Chen, Y. Wang, W. Han, R. Feng, and J. Chen, “An improved pretrain-
ing strategy-based scene classification with deep learning,” IEEE Geosci.
Remote Sens. Lett., vol. 17, no. 5, pp. 844–848, Aug. 2019.

[91] P. Du, E. Li, J. Xia, A. Samat, and X. Bai, “Feature and model level fusion
of pretrained CNN for remote sensing scene classification,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 8, pp. 2600–2611,
Nov. 2018.

[92] M. Rezaee, M. Mahdianpari, Y. Zhang, and B. Salehi, “Deep convo-
lutional neural network for complex wetland classification using optical
remote sensing imagery,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 11, no. 9, pp. 3030–3039, Sep. 2018.

[93] G.-S. Xia et al., “AID: A benchmark data set for performance evaluation
of aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 7, pp. 3965–3981, Apr. 2017.

[94] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classifi-
cation: Benchmark and state-of-the-art,” Proc. IEEE, vol. 105, no. 10,
pp. 1865–1883, Apr. 2017.

[95] ISPRS 2D Semantic Labeling–Vaihingen Data. [Online]. Available:
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
vaihingen.html

[96] ISPRS 2D Semantic Labeling–Potsdam Data. [Online]. Available:
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
potsdam.html

[97] X. Sang, L. Xue, X. Ran, X. Li, J. Liu, and Z. Liu, “Intelligent high-
resolution geological mapping based on SLIC-CNN,” ISPRS Int. J. Geo-
Inf., vol. 9, no. 2, 2020, Art. no. 99.

[98] P. Nevavuori, N. Narra, and T. Lipping, “Crop yield prediction with deep
convolutional neural networks,” Comput. Electron. Agriculture, vol. 163,
2019, Art. no. 104859.

[99] T. Liu, A. Abd-Elrahman, J. Morton, and V. L. Wilhelm, “Comparing
fully convolutional networks, random forest, support vector machine,
and patch-based deep convolutional neural networks for object-based
wetland mapping using images from small unmanned aircraft system,”
GISci. Remote Sens., vol. 55, no. 2, pp. 243–264, 2018.

[100] Y. Sun, J. Huang, Z. Ao, D. Lao, and Q. Xin, “Deep learning approaches
for the mapping of tree species diversity in a tropical wetland using
airborne LiDAR and high-spatial-resolution remote sensing images,”
Forests, vol. 10, no. 11, 2019, Art. no. 1047.

[101] J. Sun, L. Di, Z. Sun, Y. Shen, and Z. Lai, “County-level soybean yield
prediction using deep CNN-LSTM model,” Sensors, vol. 19, no. 20, 2019,
Art. no. 4363.

[102] R. Taghizadeh-Mehrjardi et al., “Multi-task convolutional neural net-
works outperformed random forest for mapping soil particle size frac-
tions in central Iran,” Geoderma, vol. 376, 2020, Art. no. 114552, doi:
10.1016/j.geoderma.2020.114552.

[103] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Netw., vol. 61, pp. 85–117, 2015.

[104] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. Int. Conf. Learning Representations, 2015.

[105] G.-S. Xia et al., “DOTA: A large-scale dataset for object detection in
aerial images,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 3974–3983.

[106] V. Mnih, Machine Learning For Aerial Image Labeling. Ph.D. disserta-
tion, Graduate Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
2013.

[107] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587.

[108] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1440–1448.

[109] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Proc. Neural Inf.
Process. Syst. Conf., 2015, pp. 91–99.

[110] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc.
IEEE Int. Conf. Comput. Vis., 2017, pp. 2961–2969.

[111] H. Shen, M. Jiang, J. Li, Q. Yuan, Y. Wei, and L. Zhang, “Spatial–spectral
fusion by combining deep learning and variational model,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 8, pp. 6169–6181, Aug. 2019.

[112] M. Mahdianpari, B. Salehi, F. Mohammadimanesh, and M. Mo-
tagh, “Random forest wetland classification using ALOS-2 L-band,
RADARSAT-2 C-band, and TerraSAR-X imagery,” ISPRS J. Pho-
togramm. Remote Sens., vol. 130, pp. 13–31, Aug. 2017, doi:
10.1016/j.isprsjprs.2017.05.010.

[113] G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, “Pansharpening
by convolutional neural networks,” Remote Sens., vol. 8, no. 7, 2016,
Art. no. 594.

[114] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Jul. 2015.

[115] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[116] C. Tuna, G. Unal, and E. Sertel, “Single-frame super resolution of remote-
sensing images by convolutional neural networks,” Int. J. Remote Sens.,
vol. 39, no. 8, pp. 2463–2479, 2018.

[117] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in Proc. Eur. Conf. Comput. Vis.,
2014, pp. 184–199.

[118] Q. Wang, X. Zhang, G. Chen, F. Dai, Y. Gong, and K. Zhu, “Change
detection based on Faster R-CNN for high-resolution remote sensing
images,” Remote Sens. Lett., vol. 9, no. 10, pp. 923–932, 2018.

[119] H. Lyu et al., “Long-term annual mapping of four cities on different
continents by applying a deep information learning method to Landsat
data,” Remote Sens., vol. 10, no. 3, 2018, Art. no. 471.

[120] H. Lyu, H. Lu, and L. Mou, “Learning a transferable change rule from a
recurrent neural network for land cover change detection,” Remote Sens.,
vol. 8, no. 6, 2016, Art. no. 506.

[121] Y. Liu and L. Wu, “Geological disaster recognition on optical remote
sensing images using deep learning,” Procedia Comput. Sci., vol. 91,
pp. 566–575, 2016.

[122] F. Ye, Y. Su, H. Xiao, X. Zhao, and W. Min, “Remote sensing image
registration using convolutional neural network features,” IEEE Geosci.
Remote Sens. Lett., vol. 15, no. 2, pp. 232–236, Jan. 2018.

[123] H. He, M. Chen, T. Chen, and D. Li, “Matching of remote sensing images
with complex background variations via Siamese convolutional neural
network,” Remote Sens., vol. 10, no. 2, 2018, Art. no. 355.

[124] E. R. DeLancey, J. F. Simms, M. Mahdianpari, B. Brisco, C. Mahoney,
and J. Kariyeva, “Comparing deep learning and shallow learning for
large-scale wetland classification in Alberta, Canada,” Remote Sens.,
vol. 12, no. 1, Dec. 2019, Art. no. 2, doi: 10.3390/rs12010002.

[125] T. Bürgmann, W. Koppe, and M. Schmitt, “Matching of TerraSAR-
X derived ground control points to optical image patches using deep
learning,” ISPRS J. Photogramm. Remote Sens., vol. 158, pp. 241–248,
2019.

[126] F. Mohammadimanesh, B. Salehi, M. Mahdianpari, E. Gill, and
M. Molinier, “A new fully convolutional neural network for seman-
tic segmentation of polarimetric SAR imagery in complex land cover
ecosystem,” ISPRS J. Photogramm. Remote Sens., vol. 151, pp. 223–236,
May 2019, doi: 10.1016/j.isprsjprs.2019.03.015.

[127] Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral im-
age denoising employing a spatial–spectral deep residual convolutional
neural network,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2,
pp. 1205–1218, Sep. 2018.

[128] Q. Zhang, Q. Yuan, C. Zeng, X. Li, and Y. Wei, “Missing data reconstruc-
tion in remote sensing image with a unified spatial–temporal–spectral
deep convolutional neural network,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 8, pp. 4274–4288, Mar. 2018.

[129] Z. Zhaoxiang, A. Iwasaki, and G. Xu, “Attitude jitter compensa-
tion for remote sensing images using convolutional neural network,”
IEEE Geosci. Remote Sens. Lett., vol. 16, no. 9, pp. 1358–1362,
Mar. 2019.

[130] J. Guo, Z. Pan, B. Lei, and C. Ding, “Automatic color correction for
multisource remote sensing images with Wasserstein CNN,” Remote
Sens., vol. 9, no. 5, 2017, Art. no. 483.

[131] H. Jiang and N. Lu, “Multi-scale residual convolutional neural network
for haze removal of remote sensing images,” Remote Sens., vol. 10, no. 6,
2018, Art. no. 945.

[132] X. Yang, N. Wang, B. Song, and X. Gao, “BoSR: A CNN-based aurora
image retrieval method,” Neural Netw., vol. 116, pp. 188–197, 2019.

[133] M. Han, Y. Feng, X. Zhao, C. Sun, F. Hong, and C. Liu, “A convolu-
tional neural network using surface data to predict subsurface temper-
atures in the Pacific Ocean,” IEEE Access, vol. 7, pp. 172816–172829,
2019.

[134] G. Chen, Q. Pei, and M. Kamruzzaman, “Remote sensing image qual-
ity evaluation based on deep support value learning networks,” Signal
Process., Image Commun., vol. 83, 2020, Art. no. 115783.

[135] X. Zhang, Y. Sun, J. Zhang, P. Wu, and L. Jiao, “Hyperspectral unmixing
via deep convolutional neural networks,” IEEE Geosci. Remote Sens.
Lett., vol. 15, no. 11, pp. 1755–1759, Aug. 2018.

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
https://dx.doi.org/10.1016/j.geoderma.2020.114552
https://dx.doi.org/10.1016/j.isprsjprs.2017.05.010
https://dx.doi.org/10.3390/rs12010002
https://dx.doi.org/10.1016/j.isprsjprs.2019.03.015


GHANBARI et al.: META-ANALYSIS OF CONVOLUTIONAL NEURAL NETWORKS FOR REMOTE SENSING APPLICATIONS 3613

Hamid Ghanbari received the B.Sc. degree in geo-
matics engineering and the master’s degree in remote
sensing from the School of Surveying and Geospatial
Engineering, College of Engineering, University of
Tehran, Tehran, Iran, in 2014 and 2016, respectively.
He is currently working toward the Ph.D. degree
with the Department of Geography, Université Laval,
Québec, QC, Canada.

His research interests include hyperspectral image
classification, multitemporal and multisensor image
analysis, and machine learning.

Masoud Mahdianpari (Member, IEEE) received the
B.S. degree in surveying and geomatics engineering
and the M.Sc. degree in remote sensing engineer-
ing from the School of Surveying and Geomatics
Engineering, College of Engineering, University of
Tehran, Tehran, Iran, in 2010 and 2013, respectively,
and the Ph.D. degree in electrical engineering from
the Department of Engineering and Applied Science,
Memorial University, St. John’s, NL, Canada, in
2019.

In 2019, he was an Ocean Frontier Institute (OFI)
Postdoctoral Fellow with Memorial University and C-CORE. He is currently a
Remote Sensing Technical Lead with C-CORE and a Cross Appointed Professor
with the Faculty of Engineering and Applied Science, Memorial University. His
research interests include remote sensing and image analysis, with a special
focus on PolSAR image processing, multisensor data classification, machine
learning, geo big data, and deep learning.

Dr. Mahdianpari was the recipient of the Top Student Award from the Univer-
sity of Tehran for four consecutive academic years from 2010 to 2013, the Re-
search and Development Corporation Ocean Industries Student Research Award,
organized by the Newfoundland Industry and Innovation Center, amongst more
than 400 submissions, in 2016, the T. David Collett Best Industry Paper Award
organized by IEEE, in 2016, The Com-Adv Devices, Inc., Scholarship for
Innovation, Creativity, and Entrepreneurship from the Memorial University of
Newfoundland, in 2017, the Artificial Intelligence for Earth Grant organized by
Microsoft, in 2018, and the Graduate Academic Excellence Award organized
by Memorial University, in 2019. He is currently an Editorial Team Member for
the journal Remote Sensing and the Canadian Journal of Remote Sensing.

Saeid Homayouni (Senior Member, IEEE) received
the B.Sc. degree in surveying and geomatics engi-
neering from the University of Isfahan, Isfahan, Iran,
in 1996, the M.Sc. degree in remote sensing and ge-
ographic information systems from Tarbiat Modares
University, Tehran, Iran, in 1999, and the Ph.D. degree
in signal and image from Télécom Paris Tech, Paris,
France, in 2005.

From 2006 to 2007, he was a Postdoctoral Fellow
with the Signal and Image Laboratory, University
of Bordeaux Agro-Science, Bordeaux, France. From

2008 to 2011, he was an Assistant Professor with the Department of Surveying
and Geomatics, College of Engineering, University of Tehran, Tehran, Iran.
From 2011 to 2013, through the Natural Sciences and Engineering Research
Council of Canada (NSERC) Visitor Fellowship Program, he worked with the
Earth Observation Group of the Agriculture and Agri-Food Canada (AAFC),
Ottawa Center of Research and Development, Ottawa, ON, Canada. In 2013, he
joined the Department of Geography, Environment, and Geomatics, University
of Ottawa, Ottawa, ON, Canada, as a Replacing Assistant Professor of Remote
Sensing and Geographic Information Systems. Since April 2019, he has been
an Associate Professor of environmental remote sensing and geomatics with the
Centre Eau Terre Environnement, Institut National de la Recherche Scientifique,
Quebec, QC, Canada. His research interests include optical and radar earth
observations analytics for urban and agro-environmental applications.

Fariba Mohammadimanesh received the B.Sc. degree in surveying and geo-
matics engineering and the M.Sc. degree in remote sensing engineering from
the School of Surveying and Geospatial Engineering, College of Engineering,
University of Tehran, Tehran, Iran, in 2010 and 2014, respectively, and the
Ph.D. degree in electrical engineering from the Department of Engineering and
Applied Science, Memorial University, St. John’s, NL, Canada, in 2019.

She is currently a Remote Sensing Scientist with C-CORE’s Earth Observation
Team, St. John’s, NL, Canada. Her research interests include image processing,
machine learning, segmentation, and classification of satellite remote sensing
data, including SAR, PolSAR, and optical, in environmental studies, with a
special interest in wetland mapping and monitoring, as well as geo-hazard
mapping using the interferometric SAR technique (InSAR).

Dr. Mohammadimanesh was the recipient of several awards, including the
Emera Graduate Scholarship (2016–2019), CIG-NL Award (2018), and the IEEE
NECEC Best Industry Paper Award (2016).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


