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Abstract—A critical obstacle to achieve semantic segmentation
of remote sensing images by the deep convolutional neural net-
work is the requirement of huge pixel-level labels. Taking building
extraction as an example, this study focuses on how to effectively
apply weakly supervised semantic segmentation (WSSS) to high-
resolution remote sensing (HR) images with image-level labels,
which is a prominent solution for the huge labeling challenge.
The widely used two-step WSSS framework is adopted, in which
the pseudo-masks are first produced from image-level labels and
followed by a segmentation network trained by the pseudo-masks.
In addition, the fully connected conditional random field (CRF) is
utilized to explore spatial context in both training and prediction
stages. Detailed analyzes are implemented on applying WSSS on
HR images in terms of producing pseudo-masks, training segmen-
tation network, and optimizing predictions. We show that the trade-
off between precision and recall of pseudo-masks, as well as the
boundary accuracy and the background, needs to be carefully con-
sidered. The benefits of the segmentation network in the two-step
framework are demonstrated in comparison to using classification
network only for WSSS, and the effects of CRF-loss are identified
to be powerful for improving the segmentation network while it is
not appropriate for dense buildings. An overlapping strategy and
CRF postprocessing are further demonstrated to be effective for
optimizing the segmentation results during inferencing. Through
deliberate settings, we can generate results comparable to fully
supervised on the ISPRS Potsdam and Vaihingen dataset, which
is meaningful for promoting WSSS applications for extracting
geographic information from HR images.

Index Terms—Building extraction, fully convolutional network,
high-resolution remote sensing imagery, weakly supervised
semantic segmentation (WSSS).

I. INTRODUCTION

W ITH the rapid progress of high-spatial resolution satel-
lites, an increasing amount of high-resolution remote
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sensing (HR) images are getting available. It is crucial to au-
tomatically and accurately extract geographic information from
HR images for applications. Semantic segmentation of HR im-
ages aims at assigning a geographic label to every pixel through
an end-to-end mechanism, which was significantly promoted
by deep convolutional neural networks (DCNNs) [1]–[3], espe-
cially by the progress of fully convolutional network [4]. It has
been widely used for many geographic applications, e.g., cloud
detection [5], [6], land cover mapping [7], [8], and urban target
localization [9].

Under the supervision of rich pixel-level label dataset, e.g., the
ISPRS 2-D benchmark [10], the Gaofen Image Dataset [11], and
the Zurich Summer Dataset [12], fully convolutional networks
were reported to be able to make use of the spatial context in
images and to extract multiple-level features with escalating
receptive field, which greatly pushed forward the performance
of semantic segmentation for remote sensing images [13]–[15].

However, obtaining the huge amount of pixel-level labels
that are required for training fully convolutional network is
time-consuming, laborious, and expensive and even demands
expertize and fieldwork. According to statistics, it takes 10.1
minutes on average to label a natural image in pixel-level, which
is nearly 150 times than the time needed for labeling in image-
level [16]. Additionally, it is more challenging to label remote
sensing images, which possess a great variety of geographic
objects, not only because of the large data size, but also due to the
conceptual difficulty [17]. Consequently, it is urgent to develop
methods which can perform impressively on remote sensing
images with easily labeled datasets. To cope with the difficulty,
several studies adopted transfer learning method [18], [19],
which still needs a small quantity of pixel-level labeled data to
fine-tune the network trained by other datasets. In the other way,
semantic segmentation with weak supervision shed new light
on overcoming the labeling difficulty for remote sensing images
[20]–[22]. Instead of pixel-level label, segmentation network
can be effectively trained by leveraging weak annotations such
as image-level label, point supervision, scribble annotation, and
bounding box, which are easily obtained because of the low
annotation costs [23].

Among various types of weak annotations, the image-level
annotation (image tag), which only indicates presence or absence
of objects in an image, is the cheapest yet the most difficult
type for weakly supervised semantic segmentation (WSSS) [23].
Compared with pixel-level label, image-level label does not
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provide any spatial prior information of geographic objects that
is necessary for training segmentation network, such as the
location, extent, boundary, and shape of objects.

Semantic segmentation trained by image-level labels has
achieved rapid progress in computer vision field, in which
the two-step training strategy is widely exploited to solve the
problem of lacking spatial prior information. Specifically, the
pseudo-masks of segmentation are first produced by image tags,
and the segmentation network, such as FCN [4], U-Net [24],
DeepLab [25], is then trained with the pseudo-masks [26]–[29].
When producing pseudo-masks, the location cues (seeds) of
objects are first obtained by image tags and then expanded to
the whole object extents. With the benefit of indicating object
location by classification network (trained from image tags),
there are several visualization methods to obtain the location
cues, including deconvolution [30], back-propagation [31], and
global average pooling (GAP) [32]. The obtained seeds are
always ineffective to be directly used for training a segmentation
network because they only cover a small range of the whole
object extents. Hence, much attention has been paid to further
augmenting the seeds to the whole object extents, e.g., by ad-
versarial erasing [29], seed region growing [26], and expanding
the seeds themselves [28].

In remote sensing community, image-level label has attracted
increasing attention for weakly supervised geographical in-
formation extraction. For example, several weakly supervised
object detection (WSOD) methods for remote sensing images
have been proposed, e.g., the progressive contextual instance
refinement method [33], and the dynamic curriculum learning
method [34]. As to image-level WSSS for remote sensing im-
ages, it needs more spatial prior information for training a seg-
mentation model compared with WSOD, and several pioneering
works have also been proposed [20]. On one hand, based on the
two-step training strategy, Fu et al. [35] and Chen et al. [36]
achieved binary segmentation of water, cloud, and building with
fully convolutional network trained by image tags, where they
focused on improving the quality of pseudo-masks, and thus,
increasing segmentation accuracies. However, what a suitable
pseudo-mask should be remains unclear when applying two-step
WSSS on remote sensing images. It is always difficult to produce
pseudo-masks with both high completeness and high accuracy.
In this case, we need to understand what is the influence of
the completeness and accuracy of pseudo-masks on WSSS for
HR images and whether other impact factors exist, which can
illustrate the direction of improving WSSS performance. On
the other hand, the location cues from classification network
trained with image tags were directly explored for geographic
information extraction, in which case the advantage of training
a powerful segmentation network was ignored. For example,
Wang et al. [37] performed cropland segmentation with two
types of weak annotation: single point label and image tag. Ali
et al. [38] used an attention-based method to detect destruction
regions. Li et al. [39] proposed a new global convolutional pool-
ing operation and the local pooling pruning strategy to improve
the quality of CAM for cloud detection. Accordingly, another
question is raised—what is the benefit of the segmentation

Fig. 1. Example of an HR image for illustrating the challenges of building
extraction with fully convolutional network supervised by image-level labels.

network within the two-step training framework? It will help
demonstrate the effectiveness of the two-step training framework
for weakly supervised segmentation of HR images by answering
this question.

Automatically extracting building information from HR im-
ages is of great significance to urban planning, population
modeling, and environmental improvement, etc. Geographic
object-based image analysis (GEOBIA) is the main method for
extracting buildings from HR images [40], but it is difficult
to determine an optimal image segmentation scale [41]–[43]
and always requires a strong domain-specific knowledge for
feature extraction [44]. Nowadays, fully convolutional network
has received a lot of attention for this task because of its ability
to extract features at multiple semantic levels from HR images
[44]–[46]. However, the fully supervised model was mostly
adopted, which relies on a wealth of pixel-level labels. When su-
pervised by image-level labels, as shown in Fig. 1, the following
challenges of extracting buildings from HR images need to be
overcome by exploring fully convolutional network: 1) the large
size HR images tend to cover multiple buildings, which makes
it difficult to identify all the buildings by an image-level label;
2) buildings are distributed as multiple scales in HR images;
3) the high intraclass heterogeneity in HR images makes it
difficult to extract the robust features; and 4) the low interclass
heterogeneity will bring difficulty for discriminating buildings
from backgrounds.

The focus of this study is on how to effectively achieve
segmentation of buildings from HR images with the supervision
of image-level labels, aiming at providing a technical reference
for alleviating the difficulty of collecting pixel-level annotations
for training the fully convolutional network. Elaborate analyzes
are carried out in order to illustrate the key impactors of applying
two-step WSSS to HR images. The main contributions of this
study can be summarized as follows.

1) We demonstrate how the quality of pseudo-masks influ-
ences the successive training of segmentation network. To
produce appropriate pseudo-masks, the contradiction be-
tween completeness and accuracy, as well as the boundary
accuracy should be taken good care of.
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Fig. 2. Pipeline of the WSSS framework.

2) We show the benefits of training a segmentation network
on improving WSSS performance for HR images by com-
paring with using only classification network.

3) We demonstrate that although the CRF-loss is able to
taking advantage of the spatial context information in HR
images for training the segmentation network, it may not
be appropriate for images with dense buildings.

4) Through deliberate settings, outstanding results can be
generated within our two-step WSSS framework whose
F-score accounts for 95.3% and 91.3% performance of
fully supervised model on the ISPRS Potsdam and Vai-
hingen dataset, respectively.

II. METHODOLOGY

A. Overview

In this study, we implement detailed analyzes on the procedure
of two-step WSSS, including producing pseudo-masks, training
segmentation network, and optimizing predictions. The work-
flow of our two-step image-level WSSS method is illustrated
in Fig. 2. In terms of weakly supervised training, HR images
are cropped into patches as training samples together with their

image-level labels. A classification network is first trained by im-
age tags to produce pseudo-masks, the precision and boundaries
of which are improved by applying CRF. The pseudo-masks
are then used to train a segmentation network with CRF-loss.
When inferencing, the image patches are predicted by the trained
segmentation network and the results are further optimized with
CRF. An overlapping strategy is adopted to fuse result patches
which can prevent context limitations and give full play to the
network.

B. Training Procedure

The weakly supervised training procedure is shown in Fig. 3,
which is roughly divided into two steps: generating pseudo-
masks and training a segmentation network. Image tags are
used to train a classification network to produce location cues
of buildings, which are then optimized by CRF to generate
pseudo-masks. The pseudo-masks consist of three forms of
pixels: foreground (building), background (nonbuilding), and
ignored pixels (unlabeled). The segmentation network is trained
using the pseudo-masks, which is the final semantic segmenta-
tion model in the WSSS framework. The training procedure of
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Fig. 3. Two-step weakly supervised training procedure of our method with image-level labels. The upper part is to produce pseudo-masks by training a classification
network with image tags (Section II-B1). The lower part is to train a segmentation network with pseudo-masks under a joint loss (Section II-B2).

the segmentation network exploits a joint loss function, which
combines the cross entropy loss on foreground and background
pixels in the pseudo-mask and the CRF-loss considering all the
pixels in the image patch to utilize spatial context information.

1) Generating Pseudo-Masks: Pseudo-masks can provide
partial spatial prior information and thus be used to train
a segmentation network. Hence, it is necessary to generate
high-quality pseudo-masks [47] and to know how the quality
of pseudo-masks affects the successive segmentation network
training. Although image-level labels provide no spatial prior
information, it has been proved that DCNN for classification
trained from image tags is capable of retrieving object location
cues according to the contribution of different positions to final
classification score [31], [32].

In our framework, we adopt the method of class activation
map (CAM) [32] to retrieve location cues of buildings, which
denotes the probability of every pixel belonging to the target
category of building. To improve the completeness of CAM,
the classification network is replaced as a modified ResNet-101
[48] in which we import dilated convolution into the latter
convolutional layers to perceive larger receptive field [49]. To
be specific, dilated rate is set as two for conv4_x in ResNet-101
and four for conv5_x [25]. GAP is applied on the last feature
map to connect the 3-D feature map and a fully-connected layer
(FC). Then, the fully connected layer outputs one classification
(CLS) score to compute CLS loss as follows:

l (y, ŷ) = − [ylogσ (ŷ) + (1− y) log (1− σ (ŷ))] (1)

where σ is the sigmoid function, ŷ is the CLS score, and y is the
image tag.

After training the classification network, the fully connected
layer weights are applied to the final feature map to generate a
heatmap (CAM) for buildings.

To alleviate the problem caused by various scales of buildings
in HR images, the multiscale aggregation strategy [50] is used
to generate CAM with higher generality. Specifically, given an

image and scale ratio, multiscale CAM is generated by taking
average of CAMs from different scaled images as shown as
follows:

Mms =

n∑
i=0

(Mc (si) / (n+ 1)) (2)

where Mc(si) is the CAM of the scaled image with scale ratio
si, si ∈ {s0, s1, . . . , sn}.

Usually, the foreground region is obtained by applying a hard
foreground-threshold (fg-thre) on CAM to extract pixels with
scores greater than the threshold [27]. To further improve the
quality of the foreground region and explore the direction of
optimizing pseudo-mask, we utilize CRF to realize optimization
of CAM, which could result in two kinds of results: 1) producing
foreground region that closely adheres to ground-truth for rela-
tively regular buildings, as shown in Fig. 4(a); and 2) covering
most or even the entire image patch for complex buildings or
very large buildings, as shown in Fig. 4(b). For the first case, the
foreground region can work similarly as fully supervised labels,
which can help improve network capabilities. For the second
case, the CRF result would bring additional errors, which need
to be prevented. Hence, we make an intersection of the fg-thre
result and the CRF result to obtain foreground region, which can
balance the above two cases.

The CAM is a score map with single channel indicating the
probabilities of pixels belonging to building. When applying
CRF on CAM, it requires another score map that indicates the
nonbuilding probabilities. We refer to the method [51] as shown
as follows:

Mnb (x, y) = {1−Mb (x, y)}∝ (3)

where Mb is the normalized result of CAM so that the maximum
value equals to 1 and the minimum value equals to 0, and ∝≥ 1
represents the decay parameter.
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Fig. 4. Procedure of producing foreground region from CAM. (a) Case of
obtaining accurate foreground region for regular building. (b) Case of producing
numerous error pixels after applying CRF on CAM. The color ranging from blue
to red in CAM indicates the increasing probability of foreground.

Fig. 5. Procedure of generating pseudo-mask for training segmentation
network.

In addition to obtaining foreground region, we apply a back-
ground threshold (bg-thre) to CAM and extract the pixels with
scores lower than the bg-thre. Finally, a pseudo-mask is gener-
ated by combining the foreground and the background regions.
To sum up, the procedure of generating pseudo-mask is shown
in Fig. 5. We will make a discussion about the quality of pseudo-
masks by setting different thresholds as well as ingredient study,
aiming at illustrating the influence of pseudo-masks on WSSS
in terms of precision, completeness, background, and boundary
accuracy.

2) Training Segmentation Network With CRF-Loss: For two-
step weakly supervised segmentation, the segmentation network
training procedure is of great importance because it is the final
segmentation model. In this study, we set our sights on the
benefits of the segmentation network itself and the effects of
the loss function for training the segmentation network within
the two-step workflow.

Since the generated pseudo-masks are inevitably incomplete
and inaccurate, the segmentation network directly trained by

this kind of labels would thus output errors in addition the
network itself. Accordingly, we adopt CRF-loss [52], [53] into
our loss function to prompt the network observing implicitly
boundary and spectral consistency by taking advantage of the
spatial context information in HR images during the training
procedure.

Specifically, the standard Potts/CRF model could be ex-
pressed as follows [53]:

E (i, j) =
∑
i,j∈Ω

G (i, j) [Si �= Sj ] (4)

where Ω represents all the pixels in the image, Si, Sj ∈ {0, 1}
indicates the binary class label assigned to pixel i and j, [•]
means the Iverson bracket, and G(i, j) is a matrix of pairwise
discontinuity costs, for which we use the appearance kernel by
[54]

G (i, j) = w · exp
(
−|pi − pj |2

2θ2α
− |Ii − Ij |2

2θ2β

)
(5)

where p is the pixel position and I is the pixel spectral value,
θα and θβ are hyper parameters controlling the “scale” of the
Gaussian kernels, and w is the normalized term which can be
found efficiently by a combination of expectation maximization
and high-dimensional filtering [54]. This function penalizes the
nearby similar pixels with different labels assigned.

In order to adapt the above function to the segmentation
network, a quadratic relaxation is proposed in [53] as follows:

E (i, j) =
∑
i,j∈Ω

G (i, j)Pc (i) (1− Pc (j)) (6)

where P is the softmax output of the segmentation network
and c�{“building”, “nonbuilding”}. Besides, to mitigate the
negative effects caused by inaccurate pseudo-masks, we add the
constraint term [50] to our binary CRF-loss as in (8). Note that
the labeled pixels refer to the produced foreground and back-
ground pixels as illustrated in Section II-B1, and the unlabeled
pixels refer to the ignored pixels which are neither foreground
nor background. The final CRF-loss is calculated as follows, and
the fast computation of the gradient for CRF-loss with dense
Gaussian kernel is described in [54]:

LCRF =
∑

i, j ∈ Ω
i �= j

R (i)E (i, j) (7)

R (i) =

{
1−max

c∈C
(Pc (i)) , i ∈ labeled

1, i ∈ unlabeled
. (8)

The segmentation network is trained under a joint loss, as
shown in (9), which consists of the CRF-loss in (8) calculated
on all the pixels and the cross entropy loss (CE-loss) calculated
only on labeled pixels.

Ljoint = LCRF + LCE . (9)
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C. Inference Considering Spatial Context From
Different Perspectives

The inference procedure is illustrated in the “inferencing”
part of Fig. 2. The large HR images also need to be cropped
into patches for inference. CRF is used for postprocessing the
segmentation network output [54], [55].

It is noted that the cropped patches risk to split buildings, and
thus, lead to incomplete buildings in a patch with inadequate
spatial context information, which could lower the segmentation
accuracy. This defect would limit the performance of a segmen-
tation network, particularly for weakly supervised model whose
identification ability is not so strong as that of fully supervised
model. We adopt a simple yet effective overlapping strategy to
alleviate this problem.

The overlapping strategy is used for concatenating segmen-
tation results of cropped patches to obtain the full-size result.
We crop a large image into patches with a certain overlapping
degree (ratio of overlapping size to patch size), and input the
patches into the trained segmentation network to obtain building
segmentation outputs, which indicate the probability of pixels
belonging to building or nonbuilding. After that, the average of
overlapping areas is calculated as the final score. Finally, argmax
is applied to the fused image to obtain semantic segmentation re-
sults. Though seemingly ordinary, this strategy can significantly
improve the final accuracy caused by object incompleteness.
Detailed validations will be given in Section IV-E.

III. EXPERIMENT SETUP

A. Dataset

The Potsdam and Vaihingen benchmark dataset from ISPRS
2-D Semantic Labeling Challenge [10] are used to validate our
framework. The Potsdam dataset is composed of 38 images with
size of 6000×6000 pixels and spatial resolution of 5 cm. We ex-
tract the RGB bands from the original 4-band IRRGB (Infrared,
Red, Green, and Blue). The Vaihingen dataset is composed of
33 images with approximately 2100×2100 pixels and spatial
resolution of 9 cm. We remove the image 7_10 in Potsdam
dataset because of its error annotations of buildings [15]. Among
the remaining 37 images, we use 23 images for training and the
other 14 images for testing. For Vaihingen dataset, we use 16
images for training and the other 17 images for testing.

The training images are cropped into 256×256 patches with
a sliding stride of 128. Then we assign image-level label “build-
ing” to the images occupying building pixels more than 25% of
the total pixels and “non-building” to images without building
pixels. Finally, we obtain 36245 training patches from Potsdam
dataset with 18416 positive samples (“building”) and 17829
negative samples (“non-building”), and 2255 training patches
from Vaihingen with 1841 positive samples and 414 negative
samples. In addition, randomly horizontal flipping is used for
data augmentation.

B. Implementation Details

Environment: The experiment is conducted on PyTorch1.4.0
and Python3.7. The whole model is trained on a computer with

an Intel Core i7-9700KF CPU, one NVIDIA GeForce RTX 2080
Ti GPU, and 64 GB memory.

Network architecture: A modified ResNet-101 [48] imbed-
ded with dilated convolution is used as the classification net-
work for producing CAM, as described in Section II-B1. The
DeepLabV3+ [56] with output stride 8 is used as the segmen-
tation network. In order to enhance feature extraction ability of
the networks, both classification and segmentation networks are
initialized by the ResNet-101 pretrained on ImageNet [57].

Training: The training procedure is performed as follows:
weak annotations (image tags) are used to train the classification
network, which is used to produce CAMs and pseudo-masks of
the whole training dataset. Then the pseudo-masks are used to
train the DeepLabV3+ segmentation network based on the joint
loss in (9).

When training the networks, we utilize the batched stochastic
gradient descent (SGD) optimizer with momentum = 0.9 and
weight decay = 0.0005. The initial learning rate is set as 0.001
and the learning rate decay strategy of “poly” is deployed. For
both networks, we train 30 epochs with the batch size as 10.
Besides, the scale ratio of multiscale CAM is set as {0.5; 1;
1.5; 2} as in [46] and the decay parameter ∝ is set as 4. The
parameters of CRF-loss follow the setting in [50] without fur-
ther optimization. The thresholds for obtaining the foreground
and background regions when generating pseudo-masks will be
discussed in Section IV-A.

Testing: The trained segmentation network is applied on test-
ing images to obtain building segmentation results. For conve-
nience, we split the original large testing images into patches of
size 250×250 pixels when inferencing. The overlapping strategy
is then adopted to fuse segmentations of cropped patches, and
its effectiveness will be analyzed in Section IV-E.

Evaluation metrics: Four accuracy metrics are used to evalu-
ate the accuracies of results, including the intersection-of-union
(IoU), precision, recall, and F-score, which are formulized as
follows:

IoU =
TP

TP + FN+ FP
(10)

precision =
TP

TP + FP
(11)

recall =
TP

TP + FN
(12)

F -score = 2 · precision× recall

precision+ recall
(13)

where TP, FN, and FP represent to truly predict the “building”
pixels as positive, to falsely predict the “building” pixels as neg-
ative, and to falsely predict the “nonbuilding” pixels as positive,
respectively. IoU and F-score indicate the overall segmentation
accuracy. Precision and recall indicate the omission and com-
mission errors, respectively. It is noted that we calculate the
accuracies based on the “no boundary” ground-truth provided
by ISPRS.
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TABLE I
ACCURACIES OF THE FOREGROUND REGIONS IN PSEUDO-MASKS WITH DIFFERENT FG-THRE AND THE CORRESPONDING SEGMENTATION NETWORK OUTPUTS

(BG-THRE = 0.2) ON THE ISPRS POTSDAM DATASET, WHERE THE ACCURACIES OF PSEUDO-MASKS ARE CALCULATED ON TRAINING SAMPLES AND THOSE OF

SEGMENTATION NETWORK OUTPUTS ON TESTING SAMPLES

C. Experiment Design for Analyzing the Effectiveness of WSSS

The process of our analyzes is organized as follows. Effects
of the pseudo-mask quality on the segmentation network are
evaluated in Section IV-A. Section IV-B shows the benefits
of training a segmentation network by comparing with only
using a classification network for WSSS of HR images. Section
IV-C presents the advantages and disadvantages of the CRF-loss
when training segmentation network, as well as the optimiza-
tion effects of the CRF postprocessing. Our WSSS results are
compared with fully supervised case in Section IV-D, and the
gap can be further narrowed by the overlapping strategy as
described in Section IV-E. Finally, the comparison results with
other state-of-the-art two-step WSSS methods are presented in
Section IV-F.

IV. RESULTS

A. Influence of Pseudo-Mask Quality

In this section, we analyze how the quality of pseudo-mask
affects the successive training of the segmentation network.
The quality of the pseudo-masks is directly influenced by the
thresholds of both foreground (fg-thre) and background (bg-
thre) regions applied on CAM, as well as by the CRF optimiza-
tion. Therefore, the accuracies of segmentation network outputs
are evaluated and compared, where the segmentation networks
are trained by pseudo-masks with different qualities, aiming
at revealing the relative importance of the accuracy (indicated
by precision) and the completeness (indicated by recall) of the
pseudo-mask for training segmentation network in WSSS of HR
images.

Influence of fg-thre: The accuracies of the foreground regions
in pseudo-masks by setting different fg-thre and the correspond-
ing segmentation network outputs on the Potsdam dataset are
presented in Table I, given bg-thre as 0.2. As fg-thre changes
from 0.3 to 0.7, the precision and recall of pseudo-masks
gradually increases and decreases, respectively, because fewer
foreground pixels with higher probability of building are left in
pseudo-masks. The IoU and F-score of pseudo-mask achieves
the highest value when fg-thre is set as 0.3. However, the
accuracy change trend of the segmentation network outputs with
increasing fg-thre is different with that of the pseudo-masks.
When fg-thre is 0.5, the precision and recall of the segmentation
network output achieve the best tradeoff, and thus, the highest
IoU of 0.806.

Fig. 6. Examples of segmentation network outputs with different fg-thre. The
images are taken from the ISPRS Potsdam dataset. (a) Image. (b) Ground-truth.
(c) Fg-thre = 0.4. (d) Fg-thre = 0.5. (e) Fg-thre = 0.6.

The comparison of the two change trends indicates that the
highest overall accuracy of pseudo-mask (indicated by IoU and
F-score) may not achieve the best training performance of seg-
mentation network under weakly supervised condition, which
means that the best precision-recall tradeoff for pseudo-mask
cannot assure the best precision-recall tradeoff for segmentation
network. It is also shown that too many or too few foreground
pixels in pseudo-mask would do harm to the performance of
segmentation network, as the cases of setting fg-thre as 0.3
and 0.7, respectively. In the case of too few foreground pixels
by setting fg-thre as 0.7, the spatial prior information is not
enough for training the segmentation network, while in the case
of too many foreground pixels by setting fg-thre as 0.3, the
pseudo-mask contains many error labels. Furthermore, the same
experiments are conducted on the Vaihingen dataset, as shown
in Table II, whose accuracy changes similarly with Potsdam.

To further illustrate the influence of the pseudo-mask quality
on segmentation network when the foreground pixels are neither
too few nor too many, the example segmentation outputs on
Potsdam by setting fg-thre as 0.4, 0.5, and 0.6 are presented
in Fig. 6. Combining Fig. 6 and the accuracies in Table I, it
shows that more foreground pixels (higher completeness but
lower accuracy) in pseudo-mask would make the segmentation
network produce more target pixels. By contrary, fewer fore-
ground pixels in pseudo-mask would result in fewer target pixels.
In this range, a suitable fg-thre needs to be cautiously set with
the consideration of the successive segmentation performance,
rather than only for achieving the best tradeoff between the
completeness and the accuracy of pseudo-masks. It is worth
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TABLE II
ACCURACIES OF THE FOREGROUND REGIONS IN PSEUDO-MASKS WITH DIFFERENT FG-THRE AND THE CORRESPONDING SEGMENTATION NETWORK OUTPUTS

(BG-THRE = 0.3) ON THE ISPRS VAIHINGEN DATASET

TABLE III
ACCURACIES OF BACKGROUND REGIONS IN PSEUDO-MASKS WITH DIFFERENT BG-THRE AND THE CORRESPONDING SEGMENTATION NETWORK OUTPUTS

(FG-THRE = 0.5) ON THE ISPRS POTSDAM DATASET

TABLE IV
ACCURACIES OF BACKGROUND REGIONS IN PSEUDO-MASKS WITH DIFFERENT BG-THRE AND THE CORRESPONDING SEGMENTATION NETWORK OUTPUTS

(FG-THRE = 0.7) ON THE ISPRS VAIHINGEN DATASET

mentioning that the bg-thre is set as a unified value here (0.2
for Potsdam and 0.3 for Vaihingen) to analyze the influence
of fg-thre. The change trend also presents the same pattern
as demonstrated above when setting different unified bg-thre,
which we do not show due to space constraints.

Influence of bg-thre: The background label is also crucial
for binary segmentation since it indirectly imposes constraint
to foreground. Tables III and IV show the accuracies of the
background regions in pseudo-masks and the corresponding
segmentation network outputs on the Potsdam and Vaihingen
dataset, respectively, when setting different bg-thre.

Even though different bg-thre values would not lead to a
change of the foreground region, the accuracies of segmentation
network outputs are truly changed with different bg-thre values.
As presented in Tables III and IV, a too small bg-thre value (0.1
for Potsdam or 0.2 for Vaihingen) would produce background
region in pseudo-mask with high precision but low recall. In
this case, the trained segmentation network tends to produce
output with low precision because they may cover more com-
mission building pixels due to the lack of sufficient supervision
on nonbuilding pixels, as shown in Fig. 7(c). By contrary, a
too large bg-thre value (0.3 for Potsdam or 0.4 for Vaihingen)
would produce background region in pseudo-mask with low
precision and high recall, which indicates that building pixels
are mistakenly labeled as background in the pseudo-mask. This
makes a trained segmentation network sustain too much con-
straint when predicting foreground, and thereby output results
with excessively low recall, as shown in Fig. 7(e). In summary,
inadequate background constraint may introduce more false

Fig. 7. Examples of segmentation network outputs with different bg-thre. (a)
Image. (b) Ground-truth. (c) Bg-thre = 0.1. (d) Bg-thre = 0.2. (e) Bg-thre =
0.3.

predictions while too much constraint may lead to incomplete
results.

Effectiveness of optimizing pseudo-mask with CRF: The fore-
ground in pseudo-mask is improved by intersecting the fore-
ground region from CAM threshold with the result of applying
CRF on CAM (CAM-CRF), as presented in Fig. 4. It should
be noted that the CRF operation can hardly work on the CAMs
of the Vaihingen dataset, because the building pixels produced
by CAM-CRF are always covering nearly the entire image due
to the densely distributed buildings in the Vaihingen dataset.
Hence, we only conduct the CRF optimization for pseudo-mask
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TABLE V
ACCURACIES OF THREE TYPES OF FOREGROUND REGION IN PSEUDO-MASK AND THE CORRESPONDING SEGMENTATION NETWORK OUTPUTS (FG-THRE = 0.5,

BG-THRE = 0.2) ON THE ISPRS POTSDAM DATASET. “CAM-CRF” REPRESENTS THE METHOD APPLYING CRF ON CAM TO OBTAIN FOREGROUND IN

PSEUDO-MASK, “FG-THRE = 0.5” ONLY APPLYING A HARD FOREGROUND THRESHOLD TO CAM, AND “INTERSECTION”
INTERSECTING THE ABOVE TWO FOREGROUND REGIONS

on the Potsdam dataset here since this optimizing operation
is not effective for the Vaihingen dataset. Table V shows the
accuracies of the three types of foreground regions before and
after intersection on the Potsdam dataset, where fg-thre and
bg-thre are set as 0.5 and 0.2, respectively.

Compared with the foreground by threshold, CAM-CRF
achieves apparently lower precision and extremely high recall,
which leads to a 0.16 higher IoU and 0.11 higher F-score.
As demonstrated above, a too large recall together with low
precision indicates that CAM-CRF tends to cover too much
false foreground, which is harmful for segmentation network
training, and thus, leads to the worst segmentation network
output as shown in Table V. In addition, this comparison further
demonstrates a high IoU (or F-score) of pseudo-mask would not
assure a high IoU (or F-score) of segmentation network output.

Though the performance of segmentation network directly
trained on CAM-CRF is even negatively affected, the accuracy
of segmentation network output is apparently improved by train-
ing on pseudo-mask with intersected foreground. However, the
accuracy of the intersected foreground is very similar with that of
the foreground from threshold, where the IoU and the precision
of the intersected foreground are only 0.001 and 0.007 higher,
as shown in Table V.

This comparison at first demonstrates the effectiveness of
CAM-CRF on improving the performance of training segmen-
tation network through intersection. However, it also raises
another question—why such a small accuracy improvement of
pseudo-mask could result in an apparently large accuracy im-
provement of segmentation network output? Fig. 5 has demon-
strated that CRF can help improve the foreground boundary for
regular buildings. To further prove that, quantitative boundary
accuracies of the two kinds of pseudo-masks are calculated using
the measure of edge location error [58]. The edge location error
of the pseudo-mask before intersection (with only fg-thre) is
0.673 and that after intersection is 0.524 (a larger error value in-
dicates more mismatching boundaries). The quantitative results
demonstrate that foreground boundaries in pseudo-mask are
improved, which would thus promote the segmentation network
to capture more precise boundaries. Several example segmen-
tation outputs are presented in Fig. 8 to show the improvement
of building boundaries by intersected foreground. In summary,
this comparison indicates that the boundary accuracy is another
important character of the quality of pseudo-mask.

How to produce good pseudo-masks: As to the foreground
region in pseudo-mask, it could be safe to summarize that both
high precision and high recall would promote the training per-
formance of segmentation network. However, the precision and
recall are always needed to be tradeoff. When too few foreground

Fig. 8. Examples of segmentation network outputs trained by pseudo-masks
containing different types of foreground regions on the Potsdam dataset. (a)
Image. (b) Ground-truth. (c) Segmentation using foreground by applying hard
threshold on CAM. (d) Segmentation using foreground by intersecting the
threshold CAM and the CAM-CRF.

pixels are obtained, which is indicated as high precision with
low recall, the spatial context prior information is not enough
to support the high-quality training of segmentation network.
By contrary, when too many foreground pixels are obtained,
which is indicated as low precision with high recall, the error
foreground pixels outside the true objects would be harmful to
segmentation network training. Hence, a suitable solution of
obtaining foreground region should be cautiously settled within
the range of neither too few nor too many foreground pixels. It is
also demonstrated that the best precision-recall tradeoff case for
foreground region would not assure the best final segmentation
accuracy. Accordingly, we cannot simply determine the best
solution of generating foreground region by the largest IoU or
F-score value. Beyond that, improving the boundary accuracy
of foreground region is another important factor for training
segmentation network to improve segmentation accuracy.

As to the background region, which imposes constraints to
foreground objects, it is also crucial to insure sufficient and
accurate background pixels. A suitable tradeoff of background
region needs to be found out for training an effective segmenta-
tion network.
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Fig. 9. Examples on the Potsdam dataset. (a) Image. (b) Ground-truth. (c) CAM. (d) Extracted foreground regions from the trained classification network. (e)
Increasing probability of foreground in segmentation network output indicated by color range from purple to red. (f) Extracted foreground regions from the trained
segmentation network.

TABLE VI
ACCURACIES OF EXTRACTED FOREGROUND REGIONS FROM THE TRAINED

CLASSIFICATION NETWORK AND THE TRAINED SEGMENTATION NETWORK

B. Benefits of the Segmentation Network in Two-Step
WSSS Framework

A classification network holds inherent abilities to perceive
the discriminative regions in an image by various visualization
methods [30]–[32] as described in Introduction, which has been
directly adopted for extracting geographic information from
remote sensing images. For example, CAM has been applied
to WSOD from HR images [59], which does not need dense
prediction. In addition, the discriminative regions obtained from
classification network were also directly used for extracting
geographic information that needs dense prediction [37], [38].
However, in the two-step WSSS framework, the discriminative
regions are used as pseudo-masks for training a segmentation
network and the final inferencing procedure (dense prediction)
is fulfilled by the segmentation network rather than the classifica-
tion network. In this subsection, we aim at clarifying the benefits
of segmentation network in the two-step WSSS framework and
thus verifying the suitability of the two-step WSSS framework
for extracting geographic information from HR images.

To illustrate the benefits of segmentation network, the trained
classification network and the trained segmentation network in
our framework are respectively applied on testing images to

produce CAM and segmentation result for comparison. The
parameters of producing foreground region from CAM in testing
images are set same as that for training segmentation network.
Accordingly, the differences between the extracted foregrounds
by the two networks can clearly reveal the benefits of the
segmentation network. As shown in Table VI, the accuracy of
extracted foreground by segmentation network is apparently im-
proved compared with that by inferencing CAM directly, which
indicates that the segmentation network could learn to explore
more spatial context information during training by itself and
thus result in higher accuracy. Examples of inferencing results
from CAM and segmentation network are presented in Fig. 9,
showing that both the completeness and the boundary accuracy
by segmentation network are apparently improved compared
with those by CAM.

C. Effectiveness of CRF-Loss and CRF Postprocessing

CRF-loss allows the segmentation network to be trained with
spatial context information from images in addition to that from
pseudo-masks. CRF postprocessing is applied to improve seg-
mentation network outputs by further exploring spatial context.
For the Potsdam dataset, as shown in Table VII , the seg-
mentation network trained by CE-loss purely on pseudo-masks
could achieves IoU 0.749, and the IoU is improved to 0.806
by the extra CRF-loss supervision and improved to 0.774 by
CRF postprocessing. The accuracy improvements demonstrate
the effectiveness of both CRF-loss and CRF postprocessing,
but the different ranges of improvements reveal that CRF-loss
and CRF postprocessing work differently. In addition, the CRF
postprocessing could even improve the segmentation accuracy
of the network trained by joint loss.

Several examples on the Potsdam dataset are presented in
Fig. 10 to illustrate the different effectiveness of CRF-loss and
CRF postprocessing. As shown in Fig. 10(c) and (d), due to
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TABLE VII
ACCURACIES OF SEGMENTATION NETWORK OUTPUTS WITH DIFFERENT LOSS FUNCTIONS AND WITH/WITHOUT CRF POSTPROCESSING (CRF-POST) ON THE

ISPRS POTSDAM AND VAIHINGEN DATASET

Fig. 10. Examples of segmentation network outputs trained by different loss functions and with/without postprocessing on the Potsdam dataset. “CE-loss”
represents network trained with only CE-loss. “CRF” means postprocessing by CRF. “CRF-loss” represents network trained with the joint CE-loss and CRF-loss.
“Fully” represents network trained with full supervision of pixel-level labels. (a) Image. (b) Ground-truth. (c) CE-loss. (d) CE-loss+CRF. (e) CRF-loss. (f)
CRF-loss+CRF. (g) Fully.

TABLE VIII
COMPARISON OF THE ACCURACIES BETWEEN THE WEAKLY AND

FULLY SUPERVISED METHOD

the inevitable mistakes in pseudo-masks, the trained network
may produce errors which are hardly corrected by CRF post-
processing. However, the segmentation network trained with
extra CRF-loss is capable of exploring the spatial context from
images implicitly and thereby correcting such errors, as shown in
Fig. 10(e). Beyond that, for the results from the network trained
with extra CRF-loss, contextual information can be again used
in the postprocessing by CRF to further improve the accuracies,
through which several detailed mistakes can be corrected, as
shown in Fig. 10(f).

As to the Vaihingen dataset, it is shown in Table VII that
the results from combining CRF-loss and CRF postprocessing

also achieve the best accuracy. However, the CRF-loss does
not work as effectively as on the Potsdam dataset. This is
because the segmentation network trained with CRF-loss can
hardly distinguish the buildings that are densely distributed, as
shown in Fig. 11(a). For the images with buildings that are not
very crowded, the segmentation network trained with CRF-loss
is able to output results with higher precision and boundary
accuracy, as shown in Fig. 11(b).

D. Comparison With Fully Supervised Semantic Segmentation

The performance gap between weakly and fully supervised
segmentations is a critical indicator for the effectiveness of
WSSS. The accuracy of our WSSS method is compared with
that of fully supervised method on the ISPRS Potsdam and
Vaihingen dataset in Table VIII, where the fully supervised
segmentation uses the same network DeepLabV3+ and CE-loss.
It is shown that on the Potsdam (Vaihingen) dataset, the overall
accuracy gap is only 0.1 (0.157) and 0.058 (0.096) in terms of
IoU and F-score, respectively, which means that we can achieve
89.0% (82.2%) and 93.9% (89.8%) WSSS performance of fully
supervised network indicated by IoU and F-score, respectively.
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Fig. 11. Examples of segmentation network outputs trained by different loss functions on the Vaihingen dataset. “CE-loss” represents network trained with only
CE-loss, and “CRF-loss” represents network trained with the joint CE-loss and CRF-loss. Segmentation network trained with CRF-loss performs unsatisfactorily
on the images with too crowded buildings (a) and while works well otherwise (b).

Fig. 12. Failure segmentation examples on the Potsdam dataset with compar-
ison to fully supervised method.

As presented in Fig. 10(f) and (g), our WSSS method can
produce segmentation results comparable to fully supervised
network.

According to the gaps indicated by precision and recall,
it shows that the difference mainly comes from the gap of
precision, as shown in Fig. 12. The common failure case is
shown in Fig. 12(a), where the segmentation network can hardly
identify accurate boundaries of complex buildings and results in
lower precision value compared with fully supervised network.
Fig. 12(b) and (c) shows the cases that both the weakly and
fully supervised networks perform poorly when dealing with
complex buildings. A building may be missed and confused with

Fig. 13. Effectiveness of the overlapping strategy on correcting segmentation
errors. The color range from purple to red in (b) indicates the increasing
probability of foreground in segmentation network output. (a) Segmentation
error without overlapping. (b) Correcting segmentation error by 1/2 overlapping
degree.

background as shown in Fig. 12(b), while in a few cases, it can
even perceive buildings that the fully supervised network cannot,
as shown in Fig. 12(c).

E. Effects of the Overlapping Strategy for Inferencing

In this section, we conduct detailed analysis on the effects of
the overlapping strategy during inferencing procedure, through
which we can prevent context limitations and the quality of
segmentation can be significantly improved for WSSS.

Usually, HR images are cropped into patches when inferenc-
ing due to their large size, which would split buildings near
the edge of patches and thus lead to object incompleteness.
It is easy to know that the overlapping strategy can eliminate
the stitching seams from concatenating. Furthermore, the in-
complete buildings in cropped patches would limit the spatial
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TABLE IX
SEGMENTATION ACCURACIES WITH/WITHOUT USING OVERLAPPING STRATEGY FOR BOTH WEAKLY AND FULLY SUPERVISED NETWORK

Fig. 14. Segmentation results of our weakly and fully supervised network on original Potsdam images.

context information to be used for inferencing, and thus, lead to
mistakes, as can be seen in Fig. 13(a). The overlapping strategy
helps to utilize spatial context information from neighboring
patches and is thus capable of correcting such errors caused by
incompleteness, as demonstrated by Fig. 13(b), where accurate
buildings can be segmented with a larger field of view through
the overlapping strategy. As shown in Table IX, the overlapping
strategy is effective for both two datasets in terms of improving
WSSS accuracy greatly.

As for fully supervised case, the segmentation accuracies
are also improved by the overlapping strategy, as shown in
Table IX. Besides, compared with the fully supervised case,
the accuracy improvement range of the weakly supervised case
is apparently larger. This is because the capacity of the weakly
supervised network is not as strong as that of the fully supervised
network, and thus suffers more from inadequate spatial context
information. In this case, the performance gap between the
weakly and fully supervised segmentation is further shortened
thanks to the overlapping strategy. Two groups of final building
segmentation results on two datasets are shown in Figs. 14
and 15.

F. Comparison With the State-of-the-Art Methods

Here, we compare the performance of our method with other
state-of-the-art image-level WSSS methods. Considering the
difficulty of method reproduction and the fairness of compar-
ison, we choose two two-step image-level WSSS models, i.e.,
SEC [27] and DSRG [26], whose codes are available online.

Both SEC and DSRG generated foreground of pseudo-mask
by applying a threshold to CAM [32], and generated background
from the saliency map [31] by setting a customized threshold.
Then, SEC trained a segmentation network based on the “SEC
loss,” and DSRG trained a segmentation network using the “deep
seeded region growing” method.

The method as described in Section II-B1 is used to generate
the pseudo-mask of SEC and DSRG in our comparison experi-
ment. As to the threshold settings, two kinds of fg-thre are set,
i.e., the optimum threshold as discussed in Section IV-A and the
default threshold in SEC and DSRG where the fg-thre equals to
0.8. The results of the different segmentation networks using two
kinds of pseudo-masks are shown in Table X. It is shown that the
results of our segmentation network achieve the best accuracy
on both datasets. Besides, for both SEC and DSRG, the results
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Fig. 15. Segmentation results of our weakly and fully supervised network on original Vaihingen images.

TABLE X
COMPARISON OF THE ACCURACIES AMONG DIFFERENT WSSS METHODS ON

THE TWO DATASETS. “D” REFERS TO GENERATING PSEUDO-MASKS WITH THE

DEFAULT FG-THRE (0.8) OF SEC [27] AND DSRG [26], AND “O” THE

OPTIMUM THRESHOLDS AS DISCUSSED IN SECTION IV-A

by using their default thresholds to generate pseudo-masks are
always inferior to that of using the optimum thresholds, where
the gap is particularly obvious on the Potsdam dataset (IoU gap
0.105 for SEC and 0.044 for DSRG). This gap further proves
the necessity to generate suitable pseudo-masks.

Furthermore, we compute the training and inference time of
the three segmentation networks. As shown in Table XI, the

TABLE XI
TIME COST COMPARISON FOR THE THREE METHODS. THE INPUT IMAGE SIZE

DURING TRAINING AND INFERENCE ARE 256×256 AND 250×250,
RESPECTIVELY

training and inference time of our segmentation network are
both the lowest among the three methods.

V. CONCLUSION

In this study, we investigated how to achieve accurate building
extraction by fully convolutional network from HR images with
no requirement of pixel-level labeled data. The image-level two-
step WSSS framework is adopted, in which pseudo-masks are
first generated by image tags and then a segmentation network
is trained by pseudo-masks. Through detailed analyzes, we il-
lustrate several key impact factors in the two-step weakly super-
vised training procedure. Specifically, the influence of precision,



3280 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

completeness, boundary accuracy, and background should be
carefully considered for producing suitable pseudo-mask. The
segmentation network is able to inherently explore spatial con-
text information during training procedure, and thus, improve
the performance of the two-step WSSS. We also demonstrate
the effects of CRF-loss on improving semantic segmentation
accuracy and its limitations. Combining the two-step training
framework and deliberate settings, we can generate results with
F-score 0.915 and 0.863 on the ISPRS Potsdam and Vaihingen
datasets, respectively, which account for 95.3% and 91.3%
performance of the fully supervised model. The findings in this
study should be meaningful for promoting WSSS applications
for extracting geographic information from HR images.

Although the image-level weakly supervised semantic seg-
mentation results for HR images by our method achieve a small
gap to fully supervised case, more in-depth studies are still
needed to improve the application potential of WSSS for remote
sensing. First, this study is performed based on very-high resolu-
tion remote sensing images with centimeter-level resolution. The
potential of WSSS needs to be further validated with different
types of remote sensing images in terms of both spatial and
spectral resolutions. Second, we only focus on a single category
of building with relatively regular geometric features. More land
cover categories with abundant spectral and geometric features
remain to be explored by WSSS. Third, it remains to be discussed
in the future about the influence of both the quantity and quality
of weak annotations on the performance of WSSS.
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