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HSIGAN: A Conditional Hyperspectral Image
Synthesis Method With Auxiliary Classifier

Wei Liu , Jie You, and Joonwhoan Lee

Abstract—In this article, we explore a conditional hyperspectral
image (HSI) synthesis method with generative adversarial net-
works (GAN). A new multistage and multipole generative adver-
sarial network, which is suitable for conditional HSI generation
and classification (HSIGAN), is proposed. For HSIs synthesis, it is
crucial to learn a great deal of spatial–spectral distribution features
from source data. The multistage progressive training makes the
generator effectively imitate the real data by fully exploiting the
high-dimension learning capability of GAN models. The coarse-
to-fine information extraction method helps the discriminator to
understand the semantic feature better while the multiscale classi-
fication prediction presents a positive impact on results. A spectral
classifier joins the adversarial network, which offers a helping hand
to stabilize and optimize the model. Moreover, we apply the 3-D
DropBlock layer in the generator to remove semantic information
in a contiguous spatial–spectral region and avoid model collapse.
Experimental results of the quantitative and qualitative evaluation
show that HSIGAN could generate high-fidelity, diverse hyper-
spectral cubes while achieving top-ranking accuracy for supervised
classification. This result is encouraging for using GANs as a data
augmentation strategy in the HSI vision task.

Index Terms—Classification, generative adversarial network
(GAN), hyperspectral image (HSI), synthesis.

I. INTRODUCTION

THE hyperspectral image (HSI) is a 3-D data cube, where
each pixel of the image contains tens to hundreds of

narrow-band spectral information and produces a complete and
continuous spectral curve. Different substances show different
radiation intensity in HSI and present different spectral response
curves. The spectral information of each pixel is added to
the 2-D spatial image to generate a 3-D data cube. With the
improvement of the spectral resolution of HSIs, the ability of
detecting attribute information of ground objects is enhanced
compared with panchromatic and multispectral imaging.

In recent years, HSIs have been rapidly developed and widely
used in various fields. HSI technology not only plays an in-
creasingly important role in the remote sensing field, but also
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causes great interest in other areas, such as agriculture, medical
diagnosis, atmosphere and environment, automated detection,
and so on.

In the past 30 years, hyperspectral remote sensing technol-
ogy has developed rapidly, and new breakthroughs have been
made in HSI processing and information extraction technology.
The research of HSI mainly includes denoising and recovery,
dimensionality reduction, resolution enhancement, spectral de-
composition, classification, change detection, fast calculation,
and so on [1].

The development of high-performance computing technology
has significantly improved the efficiency of data processing and
analysis, and has been widely applied in the HSI information
extraction. However, the rich spectral band, high dimension,
and less supervised information not only bring difficulties to
data storage and transmission, but also bring challenges to HSI
processing and analysis.

The advantages introduced with deep learning solutions lie in
the automatic and hierarchical learning process from data itself
(or spatial–spectral portions of it) which enables to build a model
with increasingly higher semantic layers until a representation
suitable to the task at hand (e.g., classification, regression,
segmentation, detection, etc.) is reached [2].

Deep learning has been very successful for HSI analysis tasks
while being robust against the noise and uncertainties in spectral
and ground truth measurements. Accurate classification of each
pixel from HSI is a crucial step for land-cover evaluation and
segmentation [3]. Nowadays, the automatic classification meth-
ods which achieve state-of-the-art results are often those using
the deep learning approach [4]. However, accurately delineating
the pixelwise land-cover region of HSIs is time consuming,
expensive, and complicated. This problem leads to a lack of
annotated training datasets [5], which often hinders research in
the HSI domain.

Although deep discriminative models have provided signif-
icant impetus for the progress of deep learning, over the past
few years, many of the notable advances in the field of image
processing have come from new applications of deep generative
modeling. The small sample size problem of HSIs can be alle-
viated by utilizing the synthesis sample of generative models.

Recently, researchers have made impressive progress on syn-
thesis over natural images. There has been an increasing interest
in synthesizing 3-D shapes with deep generative models, such
as voxels [6], point clouds [7], [8], and octave trees [9]. Due
to the high spectral resolution, the computational complexity of
HSI is much higher than the 3-D voxelized data that are sparse
and binary (e.g., 3-D point cloud). It is a challenging problem
to learn the complex spatial–spectral distribution and generate
realistic synthesis of hyperspectral samples. Therefore, we are
committed to researching HSI generative models.
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In many deep learning generation models, the generative
adversarial networks (GAN) are an outstanding representative.
The GAN framework was first introduced by Goodfellow et al.
[10]. Recently in the HSI research area, some GAN-based mod-
els have been proposed. In [11] and [12], the semisupervised
1-D learning methods were introduced, in which the unlabeled
samples are used to train the network. These two models only
focus on the spectral features and do not make full use of spatial
information. Moreover, a 3-D GAN-CRF framework [13] was
proposed by integrating a semisupervised deep learning and a
probabilistic graphical model. However, as presented in [14], an
excellent semisupervised GAN requires a bad generator because
this generator produces data outside the real data distribution.
Therefore, training a semisupervised GAN harms its image
generation capability.

In addition, there are other GAN-based HSI classification
models focusing on spatial–spectral features. Zhu et al. [15]
proposed a 3-D-GAN method to stabilize the GAN training
procedure by retaining only three principal components in HSIs.
MSGAN [16] used a 1-D and 2-D convolutional structure to
extract spatial and spectral features. Then, these extracted fea-
tures were concatenated at the last fully connected layer of
the discriminator to realize the spatial–spectral classification
of HSIs. Later, a symmetric convolutional GAN based on col-
laborative learning and attention mechanism (CA-GAN) was
proposed for HSI classification [17]. The aforementioned three
methods use PCA to reduce the dimensionality and retain a
few principal components of HSIs. They ignore the inherent
dimension reduction capability of deep learning models, and
the substantial correlation information between adjacent bands
would be lost. The generated samples of these GAN-based HSI
classification models are just with a few bands, so the generators
cannot be directly used to generate the high fidelity 3-D HSI
cubes. Moreover, the purpose of these models is to improve the
classification accuracy rather than to solve the problem of HSI
synthesis, so they did not evaluate the fidelity and diversity of
the generated samples. For all we know, there has been very
limited published research in trying to generate high-fidelity
and diverse HSIs with high spectral resolution. There is not any
existing effective generation model for HSI, by far.

It is difficult to learn the spatial–spectral features of HSIs
due to the small number of labeled samples and the high feature
dimensions, which will make synthesis models face an enormous
challenge. In addition, compared with the natural images, the
ground objects in the hyperspectral remote sensing image have
no obvious and specific features. Although the combination of
spatial and spectral features is helpful for the improvement of
classification performance [18], [19], the high-resolution spec-
tral information still plays a leading role. So, ensuring the high
fidelity of synthetic spectral is an issue of crucial importance
while learning real spatial distribution. In this article, we put
forth a novel automatic data augmentation framework and the
generative method that produces 3-D synthetic samples.

In more detail, the main contributions of this article are
summarized as follows.

1) Our HSIGAN model could generate high-fidelity and
diverse HSI 3-D cube with all-band spatial–spectral in-
formation instead of 2-D patch with a few bands.

2) The proposed model copes with generation and classi-
fication tasks jointly and explores the mutual influence
between them to achieve mutual benefits. The generator
(G) can be treated as an automatic data augmentation

network to improve the insufficient labeled samples of the
classifier (C). With the guidance of C, G produces more
visually appealing results.

3) We apply the 3-D DropBlock (DB) layer in the generator
to increase the diversity and evaluate the validity of the
DB layer.

4) The coarse-to-fine and multiscale training strategy pro-
posed not only opens the door to the spatial–spectral
feature synthesis of HSI, but also could be used to generate
other complicated high-dimensional images.

The remaining article is organized as follows. The related
work is introduced in Section II, the details of our proposed
method are given in Section III, and the performed experiments
and resulting discussions are presented in Section IV. Finally,
several concluding remarks are given in Section V.

II. RELATED WORK

A. Class Conditional GAN

In theory, the GAN allows the random distribution to approx-
imate the real data completely. It has been the most prominent
contemporary approach of image synthesis because the GAN
model sidesteps the difficulty of many intractable probabilistic
approximating computations. However, the downside of the
original GAN is too much freedom and it is not controllable.
The natural idea is to put some constraints on GAN, and then,
there is the conditional GAN. Conditional generative models
enjoy remarkable progress over the past few years. CGAN
[20] directs the data generation process by conditioning the
model on additional information, such as simply feeding class
labels into both the generator and discriminator. In the AC-
GAN [21], an auxiliary classifier GAN, every generated sample
has a corresponding class label, and the discriminator gives
both a probability distribution over sources and a probability
distribution over the class labels. The unsupervised InfoGAN
[22] decomposes an input vector into a standard noise latent
vector and another conditional latent variable to capture salient
semantic features of real samples. The automatically inferred
additional information in InfoGAN has much more freedom to
obtain certain features of real data than using the class label
in CGAN which is restricted to known information [23]. In
semisupervised Triple-GAN [24], the generator and the classifier
characterize the conditional distributions between images and
labels, and the discriminator solely focuses on identifying fake
image–label pairs.

In our task, the aim of the generator is to generate HSI samples
according to a specified class label, while the discriminator needs
to not only determine whether each sample is true or false but
also perform the classification task.

B. Supervised and Semisupervised GAN

Recently, the various supervised GAN models are demon-
strated to be able to generate visually realistic images. The
semisupervised GAN methods proposed in [25] and [26] make
full use of both labeled and unlabeled data to obtain reliable
empirical results. The collection of HSI ground-truth labels is
expensive and difficult. In order to make full use of a lot of
unlabeled samples in HSI data, some researchers try to use
the semisupervised GAN to create HSI classifier. However, the
following questions remain open. First, the land cover of HSIs is
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Fig. 1. Overall schematic of the HSIGAN model. The solid lines denote the forward pass and each color line represents a different scale. The red dashed lines
denote the flow of gradients. The losses include the spectral classification loss LC , the feature matching loss LFM, the adversarial loss Ladv , and the multiple
classification loss Lcla.

complex and diverse. The unlabeled samples may not be consis-
tent with labeled data in the types of land cover. This category
inconsistency will lead to different data distributions between
unlabeled and labeled samples, and could affect the generation
of synthetic samples. Second, it seems that good semisupervised
learning and a sound generator cannot be obtained at the same
time. A good semisupervised GAN requires a bad generator
because the generator produces data outside the real-data dis-
tribution, as presented in [14]. The same phenomenon was also
observed in [27], where the model generated better images but
failed to improve the performance of semisupervised learning.
For these reasons, we introduce a supervised GAN model with an
eye on the generation of high fidelity 3-D HSIs. The experimen-
tal results demonstrated that training a small number of labeled
samples could achieve the top-ranking quality of reproduction.

C. Three-Dimensional Generative Adversarial Network

Recently, with the advances in deep representation learning,
there is more and more relevant literature on studying 3-D
object generation. 3-D image understanding and generation in
the graphics and vision community has been paid more and more
attention [28]. In [6], the authors propose a novel framework
which generates 3-D objects from a probabilistic space by lever-
aging recent advances in volumetric convolutional networks and
generative adversarial nets.

Although the HSI is the usage of 3-D field representation,
it is different from 3-D shape data that are sparse and binary
[29] because the HSIs include tens or hundreds of consecutive
spectral bands, and the computational complexity is much higher
than the voxelized shapes.

So, it is a challenging problem that the HSI cube is synthesized
based on learned feature representations. Compared with RGB
images and 3-D voxelized objects [30], it is more difficult to

model the abundant spatial feature and high-resolution spectral
information of HSI cube. The research on depth feature repre-
sentation of HSI generation has just started, and there are still
many problems to be explored.

III. PROPOSED METHOD

A. Framework of the Proposed Method

Our goal is to explore a learning data augmentation method
via adversarial networks. The proposed GAN model enables
the machine learning-based approach to increase the available
annotated samples more efficiently, and the generated generic
augmented data could be utilized to improve the HSI classifica-
tion performance. To address both problems, we present a novel
multistage and multipole supervised conditional HSI GAN.

Compared with the traditional bipolar adversarial network,
we add a spectral classifier to the opposing camps as the third
pole, which offers a helping hand to stabilize and optimize the
model. The flowchart of the HSIGAN model is shown in Fig. 1.
HSIGAN consists of three parts—a multistage 3-D spatial–
spectral feature generator G, a multistage spatial–spectral fea-
ture discriminator-classifier D, and a multistage 1-D spectral
feature classifier C.

The HSI undergoes the detailed division on the spectral di-
mension, and each pixel has a continuous spectrum of B bands.
Let a set of pixels with the high-resolution spectral information
be denoted by Xspe = {xspe

i }Ni=1 , where xspe
i ∈ RB is a 1-D

spectral vector andN is the number of pixels. The corresponding
spatial neighborhood pixels that are centered atxspe

i are sampled
from HSI, and these pixels compose a 3-D cube which is
denoted by X = {xi}Ni = 1, where xi ∈ RH×W×B . H and W
is the spatial size of the 3-D cube. Y = {yi}Ni=1 represents the



LIU et al.: HSIGAN: A CONDITIONAL HYPERSPECTRAL IMAGE SYNTHESIS METHOD WITH AUXILIARY CLASSIFIER 3333

corresponding one-hot coded labels of the center pixel of each
cube, where yi ∈ RC and C is the number of land cover classes.

As common conditional generative models, G uses both ran-
dom noises z ∈ Z and class labels y ∈ Y to generate images
with stabilized training, and then every generated sample has its
corresponding class label. After the training, the spatial–spectral
3-D cube with label Xfake = {G(zi, yi)}Ni=1 is generated. Then,
the synthesized samples are fed to the other two poles D and
C. The model training enters the feature extraction and classi-
fication phase. One pole is the discriminator D that provides
a probability distribution over sources and the class labels.
Another pole is the spectral classifier C that outputs the class
label of the 1-D spectral samples.

The proposed model performs 3-D convolution to extract
features along both spatial and spectral dimensions. The 3-D
convolution is enforced by convolving with 3-D kernels and
then outputs a volume formed by stacking multiple contiguous
spectral bands together. 3-D convolution is well-suited for HSI
and can preserve the spectral information as much as possible.

B. Multistage 3-D Spatial–Spectral Feature Generator

Due to hundreds of spectral bands in HSIs, in the training
phase for synthesis HSIs, each occupied pixel in the HSI vol-
ume fetches a great deal of spatial–spectral distribution feature
from real source data. In other words, the generator needs to
effectively imitate the real data by fully exploiting the high-
dimensional learning capability of GAN models.

Our goal is to find a solution that breaks through the limitation
of high spectral dimensions and synthesizes spatial–spectral fea-
tures with high fidelity. Inspired by [31] and [32], we proposed
a multistage generator to generate high spectral resolution HSI
cube. For soothing the training difficulty of high-dimensional
data, our generator is divided into several coarse-to-fine stages,
and the generator outputs different scale cubes at each stage,
which is denoted by {xfake_i}Si = 1 and S is the number of
stages. The coarse output of the primary stage tries to sketch
the primitive feature at a low spectral resolution, and the fine
output of the superior stage aims to improve the spectral details
of the coarse cube from the previous stages. The objective of
multistage generators is to learn the distribution of real samples
progressively. In [31], the network adds new layers that model
increasingly fine details as training progresses, starting from a
low resolution. In [32], the model includes two-scale subgener-
ators and trains them in two steps. The main difference from the
above models is that we use an integrated model. The samples
of multiscales are trained synchronously.

In Fig. 1, G receives both noise z and label y as input, and the
various scale fake samples xfake are generated at various stages
of G, xfake = G(z, y). Then, xfake is fed into the corresponding
stage of D and C. The generator is constructed by a series of
convolutional-transpose layers, batch normalization layers, and
ReLU activations [33]. The input is a class label y and a latent
vector z that is drawn from a standard normal distribution. The
output is a 3-D cube with the spatial–spectral feature. The strided
transposed convolution layers allow the latent vector to be trans-
formed into a volume close to the distribution of training samples
by using 3-D filters. This generator could aggregate multistage
information for the HSIs synthesis task. For RGB images, such
a multiresolution pipeline is a well-established practice, such as
recent unconditional GANs [34], [35] and conditional image
generation [36], [37]. Now, we bring similar ideas from the
high-resolution spatial domain to the high-resolution spectral

domain, and use the multiresolution pipeline to generate the
3-D HSIs.

C. Multistage 3-D Spatial–Spectral Feature Discriminator
and Classifier

The synthesis of high-dimensional and high-spectral res-
olution 3-D cube poses a significant challenge to the GAN
discriminator design. Recent work has shown that GAN can
produce convincing image samples with high spatial resolution
[36], [38]. As improving of the spatial resolution, differentiating
real and synthesized images is getting harder and harder for the
discriminator. To enhance discriminator ability, [39] introduced
multiple discriminators at the same image scale. In [40], the
global and local context discriminators are trained to distinguish
real images from completed ones. And then, [32] extend the
design to multiple discriminators with identical architecture at
different image scales. In view of multiple discriminators having
the same structure in [32], we naturally employ an integrated
discriminator. This discriminator could take concerted action
to the multistage structure of the generator. The generated and
real samples, {xfake_i}Si = 1 and {xreal_i}Si = 1, flow into the
corresponding stages of the discriminator. As shown in Fig. 1, G
and D achieve docking at various stages. Although there is only
one discriminator, D can extract multiscale features from coarse
to fine scale and guide the generator to produce finer details.

If the generator with a class label creates unreasonable wrong
images, the classifier will not be able to tell which class the
generator was attempting to sample from. This strategy encour-
ages the generator to stay away from awful, hard-to-classify
images and attracts it toward easy-to-classify images [41]. The
auxiliary classifier stabilizes training and makes G produce
excellent results. In our model, D could perform double duty
as the discriminator and classifier.

The discriminator is made up of strided convolution layers
with 3-D kernels, batch normalization layers, and LeakyReLU
activations. The inputs are multiscale 3-D cubes and contain real
and fake training samples. There are two outputs of D—one is a
scalar probability that indicates the real or fake data distribution;
another is the multiclass probability.

D. Multistage 1-D Spectral Feature Classifier

The learning ability of G depends entirely on discriminators.
Inspired by [42] and [43], further, an auxiliary spectral feature
classifier C joins the opposing camps of G and D. This spectral
classifier could offer a helping hand to improve the performance
of the generator. On the other hand, adding extra loss could
stabilize training because adversarial training is known to be
unstable and sensitive to hyperparameters [44]. The primary task
of C is to adapt the spectral feature from the synthesis domain to
make them appear as if they are sampled from the real domain.

The classifier structure consists of several strided convolution
layers with 1-D kernels, batch normalization layers, LeakyReLU
activations layers, and the fully connected layer. The inputs of
C are 1-D spectral vectors that cover all bands. The vectors
are extracted from the spatial center of the 3-D HSI samples,
which is denoted by {xspe

real_i}Si = 1 and {xspe
fake_i}Si = 1 andS is the

number of stages. The output of C is the multiclass probability
of spectral information. As shown in Fig. 1, the multistage
classifier C acts in cooperation with the multistage structure of
the generator. By applying auxiliary C, we reinforce the learning
effort of G on the spectral features.
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E. Losses for Optimization

Initially, we tend to understand the GAN model from a game
theory perspective. However, WGAN [45] guides us forward
to reflect the GAN problem from the view of data distribution.
The goal of the generator is to eventually output different data
samples that conform to the real data distribution. The compar-
isons based on explicit expressions are not possible due to the
resulting distribution being too complex. So, the task of the dis-
criminator is to compare two probability distributions based on
samples. That is, the discriminator could be tread as a learnable
loss function of the generator, which can effectively close the
distance of generated distribution and the real distribution.

In this article, the objective function of D has two parts—the
adversarial lossLadv and the multiple classification lossLcla. As
shown in (1), Ladv uses the adversarial objective function pro-
posed by WGAN-GP [46], which introduces a gradient penalty
norm to the previous WGAN

Ladv = E
x̂∼P_g

[D (x̂)]− E
x∼Pr

[D (x)]

+ λ E
x̂∼Px̂

[
(‖∇x̂D (x̂) ‖2 − 1)2

]
(1)

where x̂ = G(z, y), Pg and Pr are the generated and real
distribution, respectively. The third term is a penalty on the
gradient norm for random samples x̂ ∼ Px̂. In the case of
classification, we use a typical softmax cross-entropy loss

Lcla = E [P (class = c|x)] + E [P (class = cx̂)] . (2)

The loss of multistage discriminator D is represented as LD

LD =
S∑

i=1

(Ladv + Lcla) . (3)

LC is the spectral classification loss, and we also use a softmax
cross-entropy loss

LC = Lreal
C + Lfake

C (4)

where we introduce

Lreal
C =

S∑
i=1

E [P (class = cxspe)] (5)

Lfake
C =

S∑
i=1

E [P (class = cx̂spe)] . (6)

The goal of G is to optimize the following objective:

LG = Ladv
G + Lcla

G + LC
G. (7)

Here, we define

Ladv
G =

S∑
i=1

−E [D (x̂)] (8)

Lcla
G =

S∑
i=1

E [P (class = cx̂)] (9)

LC
G =

S∑
i=1

E [P (class = c|x̂spe)] . (10)

In addition, a feature matching loss [25] is proposed to address
the instability of GANs and prevent the generator from overtrain-
ing. This new objective requires the generator to produce data
that matches the statistics of the real data. The feature value on an
intermediate layer of the discriminator is extracted to optimize
G. There is a similar concept in [47] that calculates the matching
loss using the feature value from pretrained VGG net, which is
helpful for improving performance.

We use the discriminator to specify the statistics that we think
are worth matching. Here, the feature map is obtained by the
last convolution (after activation) before the fully connected
layer within each stage of D. For ease of presentation, we define
LFM as the total feature matching loss. Then, we get the feature
matching loss of each stage by using the Huber loss function
with a parameter δ = 1, and then denote the ith stage Huber loss
as HL(i)

LFM =

S∑
j=1

j∑
i=1

HL(i) (11)

where
∑j

i = 1 HL
(i) is the feature matching loss of the jth

stage and S is the total number of stages of D. Note that
LFM is employed to optimize only the generator rather than
discriminator.

The full objective of G combines adversarial loss, classifica-
tion loss, and feature matching loss as follows:

LG = λ1L
adv
G + λ2L

cla
G + λ3L

C
G + λ4LFM (12)

where λi are weights that control the interaction of all losses.
The losses mentioned above could anchor the generated image
to the original distribution in some meaningful way. However, to
tradeoff the training between discriminator and the generator and
achieve better convergence, the hyperparameter tuning needs to
take time and a lot of patience, particularly when many loss
functions are introduced in GAN.

F. Diversity of Augmented Data

There are prodigious differences between HSIs and RGB
images. That is, the intraclass spatial–spectral information is
very similar, and the variations in the interclass feature are not
significant. This characteristic dramatically increases the risk of
model collapse. Thus, a very challenging task for the HSI GAN
model is to avoid model collapse and increase the diversity of
synthetic samples in the process of mapping a low-dimensional
manifold to a high-dimensional space. In the research of GAN,
model collapse is a widely concerned issue. There are many
related papers to study and solve this problem from different
perspectives [25], [48]–[51]. Here, we employ an efficient and
low-cost method in which the DB [52] layer is introduced into
the GAN model. DB is a form of structured dropout, where units
in a contiguous region of a feature map are dropped together. Its
effectiveness has been verified in RGB image classification and
detection task. So, we have reason to believe that a superior D
can be obtained by appending DB. Then, the well-performing D
is the best motivator for G learning. In previous research, most
of the optimization strategies are only for D. Here, we apply DB
not only in the discriminator but also in the generator. 3-D DB
is effective in removing semantic information in a contiguous
spatial–spectral region. Randomly dropping continuous regions
enforces the remaining units to synthesize more diverse features,
which can avoid the model collapses. The effect of using DB in
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Fig. 2. Pavia University dataset. (a) From left to right: False-color composite,
ground truth (gt), training_gt, and test_gt. (b) Mean spectrum curve of per class.

the generator to improve performance is notable, especially if
the samples are insufficient and have similar characteristics.

IV. EXPERIMENTS

A. Dataset Description

In the experiment, we evaluate the performance of the pro-
posed technique on the real HSIs dataset. These datasets are
well-known standard remote sensing HSIs datasets with various
image properties and size, which include the Pavia University
(PU), and Indian Pines (IP). The PU scenes (see Fig. 2) acquired
by the ROSIS sensor during a flight campaign over Pavia,
Northern Italy, is a 610 × 340 pixel image and the number of
spectral bands is 103. The image ground truths differentiate nine
land cover types. IP scene (see Fig. 3) was gathered by AVIRIS
sensor over the Indian Pines test site in North-Western Indiana
and consists of 145 × 145 pixels and 200 spectral reflectance
bands. The ground truth available is designated into 16 classes
and is not all mutually exclusive. The number of training and test
samples for each class is listed in Tables I and II. In consideration
of the computation complexity, down-sampling is done in the
spectral domain, and the image is cropped into small cubes. The
size of each 3-D cube is 101×17×17 (band×height×width).

Fig. 3. Indian Pines dataset. (a) From left to right: False-color composite,
ground truth (gt), training_gt, and test_gt. (b) Mean spectrum curve of per class.

TABLE I
PU DATASET: THE LAND COVER CLASSES AND THE NUMBERS OF SAMPLES

TABLE II
IP DATASET: THE LAND COVER CLASSES AND THE NUMBERS OF SAMPLES
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TABLE III
ARCHITECTURES OF THE GENERATOR

TABLE IV
ARCHITECTURES OF THE DISCRIMINATOR

TABLE V
ARCHITECTURES OF THE SPECTRAL CLASSIFIER

B. Experimental Setting

For the generator, the dimensions of input noise vector z are
200 and the dimensions of label vector y depend on the number
of land cover classes. The generator G outputs three-scale HSI
cubes. They are from coarse to fine 33× 9× 9, 65× 13× 13, and
101 × 17 × 17, respectively. The DB, which is inserted between
deconvolution and BN layers, has two parameters corresponding
to block size and drop probability. The main network structure
and parameters are shown in Tables III–V.

Through observing the training process, we find that the
learning rate has a great influence on the training stability of the
adversarial network. D and C are trained with a learning rate two
times greater than G. They are 50e−4 and 25e−4, respectively.
Because the different learning rates are used, D and C do not
need more training per iteration before optimizing G’s weights.

In other words, D, C, and G just need to be trained once in each
iteration as long as the appropriate learning rate is set. We fully
exploited the different learning rates and the gradient penalty
[46] to keep training stable.

The batch size is set as 20 with shuffle enabled. We pass the
loss to RMSProp for parameter optimization. For the coefficients
of generator loss λ1, λ2, λ3, and λ4 are set as 1, 0.2, 0.2, and 10,
respectively. To avoid classification overfitting of real training
samples, we feed a mixup of two real samples into D and C

xmix = α · xi + (1− α) · xj (13)

where α is a random value that obeys beta distribution with
a parameter 0.1. Corresponding classification loss of xmix is
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Fig. 4. Samples of IP dataset. (a) Real patch. (b) Fake patch. (c) Spectral curve of generated patches. The patches of the corresponding position in (a) and (b)
have the same class label.

calculated by

Lcla = α · E [P (class = yi xi)]

+ (1− α) · E [P (class = yj xj)] . (14)

C. Experimental Results of Synthesis

The conditional GAN could learn complex and high-
dimensional distributions of HSIs. Here, we verify the archi-
tecture plausibility for the synthetic 3-D cube. So far, there are
many available GAN model evaluation indexes [53]. However,
these indexes are designed for RGB images and unsuitable
for HSIs. Evaluating the generated fake data from HSIGAN is
inherently challenging due to the nonsignificant spatial feature
of the ground-object and the high spectral dimension. Here, we
try to validate and compare the similarity of real and synthetic
distributions under several criteria.

1) Fidelity of Spatial–Spectral Feature: First, we illustrate
the visual results of real and generated samples. In general, the
quality of the generated images could be validated by visual
inspection. To an observer, a well-trained generator produces
synthetic image patches which are visually similar to real ones,
as shown in Figs. 4 and 5. The patches of the corresponding
position in (a) and (b) have the same class label. The corre-
sponding spectral curves at the center of each fake patch are
presented in Figs. 4 and 5(c). The visual result and spectral curve
demonstrate that the fake samples are comparable to the real ones
for each class. In HSIs, each kind of ground-object is made up of
irregular geometry and has little distinct spatial characteristics.
Because the spatial visual discriminability of HSIs is very weak,
we argue here that it is insufficient to evaluate the authenticity of
the generated image according to only the visual result of spatial
information.

Next, the distribution of the synthetic samples in spatial–
spectral space should be followed. We apply principal
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Fig. 5. Samples of PU dataset. (a) Real patch. (b) Fake patch. (c) Spectral curve of generated patches. The patches of the corresponding position in (a) and (b)
have the same class label.

Fig. 6. Sample distribution of PU dataset. (a) and (b) PCA applied to the real and fake spatial–spectral patch. (c) and (d) TSNE applied to real and fake
spatial–spectral patch. The real and fake sets have the same number of samples.

component analysis (PCA) and T-stochastic neighbor embed-
ding (T-SNE) [54] to map the spatial–spectral information into
a 2-D space (see Fig. 6). The cluster of the different classes
is reproduced truthfully by synthetic samples. It is clear from
this figure that although there are slight deformations between
the real and synthetic data, the generator can well-capture the

classwise specificities. Through the observation of Fig 6, the
class boundaries of fake distribution are clearer than the real
ones, which implies that the fake data are easier to separate.

2) Fidelity of Spectral Feature: Due to the weak spatial
feature of the ground-object in HSIs, spectral information is
more critical for semantic analysis. The quality of the synthetic
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Fig. 7. Comparison of the mean spectrum and standard deviation per class on the PU dataset. The mean spectrum and standard deviation are indicated by the
solid lines and dotted lines, respectively.

spectral curve is assessed visually by comparing the spectral
characteristics between real and fake samples. The spectral curve
produced by the generator is very similar to the real data curve,
as shown in Fig. 7. The proposed GAN model could capture the
significant spectral characteristics and the spectral shapes have
been learned effectively by the generator. Fig. 8 represents the
real and fake spectral feature in each category in more detail.
Each dotted line in olive and pink is for the spectral curve of
each real and generated samples, in which the number of real
and fake samples is the same. We can see that most of the fake
samples are within the standard deviation range of the real data.
This shows that the generator learns well the distribution of
training data, and then, the synthetic samples from a well-trained
generator simulate the real data well. However, according to
the observation of the spectral curve, we find out that the fake
standard deviation of certain classes is slightly lower than the
real one, which means that the synthetic spectrum is a little
less diverse than the real one. Note that the x-axis indicates the
number of spectral bands and the y-axis shows the normalized
reflectance of spectral bands in Figs. 7 and 8.

3) Tradeoff Between Diversity and Realism: We apply the
DB layer to increase the samples diversity. Through comparing
results between adding/removing the DB layer, this approach
seems to be beneficial to improving model performance.

First, we observe the effect of the DB layer for the generator
from the spectral perspective. We select a certain class and
generate 32 samples by using two trained generators with and
without the DB layer, respectively. The comparison results of
spectral curves at center pixel are shown in Fig. 9. We find
out that the standard deviation of spectral curves from the right
column (without DB layer) is lower than the one from the left
column (with DB layer), which means that employing the DB
layer in the generator could contribute to generating diverse
samples and avoid model collapse.

Then, we observe the distribution of the synthetic samples. In
Figs. 10 and 11, we can see that the synthetic samples of each
class tend to cluster close together when using the generator
without the DB layer. That is, the ability to capture inner class
diverse characteristics is weak in Figs. 10(c) and 11(c).

Next, we try to improve the realism of the generated samples
by increasing the weight of classification loss. However, in the
training process, we find that the model intentionally avoids
generating samples near the class decision boundary in order to
pursue higher classification accuracy. That is why fake samples
usually have a clearer boundary than the real one. We could
do a tradeoff between the diversity and realism of generated
samples by adjusting the classification coefficient λ2 and λ3.
The greater the coefficient, the more we expect the model to
reduce the samples near the auxiliary classifier decision bound-
ary. As shown in Figs. 10 and 11, (d) is more concentrated
than (b).

D. Experimental Results of Classification

To verify that the synthesized hyperspectral samples are real-
istic and diverse, we use the fake data to augment existing hyper-
spectral datasets. In this part of the experiments, the advantages
of synthetic samples for feature extraction and classification
are investigated. First, we fix the trained G and only employ
the classification loss Lcla to optimize D without considering
the adversarial loss Ladv. For comparison, the discriminator is
trained on the augmented dataset (AD), the real dataset (RD),
and the fake dataset (FD), respectively. Finally, we use the
same number of test samples from RD and FD to evaluate the
classification performance. Overall accuracy (OA%), average
accuracy (AA%), and kappa statistic (K × 100) are adopted to
assess the classification performance.
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Fig. 8. Comparison of the spectral curve on the PU dataset. The solid and dotted lines in blue are used for the mean spectrum and standard deviation of real
samples, respectively. The real and fake samples in each category are presented in olive and pink, respectively.

Each training minibatch is made up of real–fake mixed sam-
ples with a 50–50 ratio when using the augmented dataset. Note
that, when the training samples were input in the discriminator,
each fake sample is generated dynamically by trained G ac-
cording to the label of the real training sample. That is, the fake
samples are different in every training minibatch instead of using
pregenerated fixed fake samples set. This strategy dramatically
enriches the quantity of trainable samples.

As shown in Tables VI and VII, we train D by using the RD
and AD, and then test the classification performance on AD and

FD. The D network trained by real–fake mixed dataset shows
better performance on both test sets. It can also be found from
the classification results that the fake data have more clear class
boundaries than real samples and would be easier to distinguish.

Next, we try to train the D network only using FD. According
to the test result provided by Table VII, the performance of
fake samples is not bad in both the training and testing phases.
The augmented HSI samples have a similar distribution with
real data and could help the classifier to learn more robust and
discriminative features. The superior classification performance
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Fig. 9. Comparison of the spectral curve on the IP dataset. The left column is with DB layer, and the right column is without DB layer. The dashed lines and
dotted lines are used for the standard deviation of real and fake data, respectively.

Fig. 10. Comparison of PCA applied to the spatial–spectral patch for IP dataset. (a) Real sample. (b) With DB layer, λ2 = λ3 = 0.2. (c) Without DB layer,
λ2 = λ3 = 0.2. (d) With DB layer, λ2 = λ3 = 1.

Fig. 11. Comparison of PCA applied to the spectral feature of IP data set. (a) Real sample. (b) With DB layer, λ2 = λ3 = 0.2. (c) Without DB layer, λ2 = λ3 = 0.2.
(d) With DB layer, λ2 = λ3 = 1.

further verifies that the proposed GAN model could generate
high fidelity synthetic 3-D HSI cubes. Under the condition of
limited HSI training samples, the AD is a powerful and useful
tool to improve classification accuracy. This is encouraging for
using GANs as a data augmentation strategy in the HSI vision
task.

Now, we compare our proposed classifier with other con-
volutional networks. Several supervised deep feature classifi-
cation architectures based on CNN were conducted to extract
the spectral–spectral feature for comparison. A baseline neural
network (NN) is built using four fully connected layers with
DropOut. In Lee et al. [55], a model is built through fully
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TABLE VI
COMPARISON OF CLASSIFICATION RESULT ON THE IP DATASET

TABLE VII
COMPARISON OF CLASSIFICATION RESULT ON THE PU DATASET

convolutional layers that eventually predict the corresponding
label of each pixel vector. Also, three other networks use 3-D
convolution and fully connected layers, Hamida et al. [56],
Li et al. [57], and He et al. [58]. We perform comparison
experiments using the default parameters and only adjust the
training the number of iterations to optimize the result.

In Tables VIII and IX, we can see that the classifica-
tion accuracy of our proposed model is higher than those
of the other methods. The results show that the designed
classifier can achieve the desired performance even without data
augmentation. We think this mainly benefits from the multistage
network structure. In the training phase, the classification losses
from three stages are aggregated to optimize the parameters. The
learning of coarse-to-fine helps the classifier to understand the
semantic feature better. In the test phase, we have also integrated
the results of various stages that come from three input patches
instead of only the fine-grained prediction. As shown in Table X,
in comparison with the single fine-grained prediction, the clas-
sifier with integrated prediction gives us a performance boost.
The advantages of this strategy are even more apparent for the
data with small interclass differences, such as the IP dataset. The

TABLE VIII
COMPARISON OF CLASSIFICATION RESULT OBTAINED BY DIFFERENT

APPROACHES ON THE PU DATASET (3% TRAINING SAMPLE)

TABLE IX
COMPARISON OF CLASSIFICATION RESULT OBTAINED BY DIFFERENT

APPROACHES ON THE IP DATASET (20% TRAINING SAMPLE)

TABLE X
CLASSIFICATION ACCURACY VALUES ON THE IP AND PU DATASETS: TRAINING

AND TEST ON REAL DATA

integrated prediction is a powerful tool, which means that the
multistage method has a positive impact on HSI classification.

V. CONCLUSION

In this article, we present a novel multistage and multipole
supervised conditional HSIGAN, which demonstrates excellent
abilities in feature learning and can be used to generate realistic
synthesis samples.

Our model can output 3-D spatial–spectral HSI cube with all
bands by taking full advantage of the capability of deep learning
models. The multistage generator and discriminator are essential
to stabilize the progressive training procedure, especially in high
spectral resolutions. Our network structure employs an auxiliary
spectral classifier which is mainly employed to strengthen the
learning performance in the spectral domain.
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In hyperspectral remote sensing cases, limited training sam-
ples and extremely similar interclass features could easily lead
to model collapse. To solve this problem, we insert the DB
layer into the generator. The experiment shows that the DB layer
shows powerful capabilities and helps produce diverse synthesis
samples. In addition, adjusting the classification loss weight is an
efficient path for the tradeoff between the diversity and realism of
generated samples. By using the proper architecture and training
strategy, HSIGAN could learn complex spatial–spectral features
and generate high-fidelity 3-D HSIs.

We use the discriminator network as a classifier to evaluate
the fidelity of fake data, while investigating the advantages
of synthetic samples for feature extraction and classification.
Extensive experimental results have demonstrated that synthetic
samples can serve as a data augmentation strategy for hyper-
spectral datasets. Moreover, the discriminator integrates the
multistage predicted result, and achieves positive performance
improvements in terms of classification accuracy.

Our proposed model opens the door to new possibilities
in spatial–spectral feature synthesis of HIS, and this method
also could be extended to other complicated high-dimensional
images.
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