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Abstract—Deep learning approaches have recently been widely
applied to the classification of hyperspectral images (HSIs) and
achieve good capability. Deep learning can effectively extract fea-
tures from HSI data compared with other traditional hand-crafted
methods. Most deep learning methods extract image features
through traditional convolution, which has demonstrated impres-
sive ability in HSI classification. However, traditional convolu-
tion can only operate convolutions with fixed size and weight on
regular square image regions. Moreover, it refers to the spectral
features of the adjacent pixels but ignores the spectral features
of long-range data with the training sample. Although a graph
convolution network (GCN) can process irregular image regions,
the pixels’ relationships for graph construction cannot be well
ensured with limited iterations. Hence, the extracted features have
limited performance with the GCN. Aiming to extract more rep-
resentative and discriminative image features, in this article, the
deep feature learning with label consistencies (DFL-LC) method is
developed to realize HSI classification. In the proposed method,
a multiscale convolutional neural network is adopted to obtain
basic HSI features, and the GCN can further capture relationships
between pixels and extract more representative HSI features. For
obtaining discriminative features, we add the label consistency of
single pixels and label consistency of group pixels regularization
in the objective function. It can maintain label consistency for
the general and long-range data and alleviate deficiently labeled
samples. The experimental results on three representative datasets
fully demonstrate that the DFL-LC method is superior to other
methods in both quantitative and qualitative aspects.
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1. INTRODUCTION

HERE are several hundred channels in hyperspectral im-
T ages (HSIs) that contain high-resolution spectral informa-
tion of land covers. Each pixel in HSIs corresponds to the spectral
reflectance of a particular wavelength, so it can be considered
as a high-dimensional vector. Many spectral signatures have
largely been used in HSI classification of land covers. In the
past few decades, HSI classification has been developed into a
significant part of remote sensing. In general, it is challenging
for traditional machine learning to realize precise classification
for the complex characteristics of HSIs. In addition, the inher-
ent nonlinear relationship between the corresponding class and
the spectral information is processed by HSI recognition [1].
As a powerful tool for extracting features, deep learning is
widely adopted in several image processing tasks, which can
effectively solve nonlinear problems. Therefore, deep learning
has also been used for HSI classification and has shown good
performance.

In the initial stage of HSI classification research, there were
a number of methods focusing on detecting the role of the
spectral characteristics of HSIs. Thus, numerous classification
methods have been proposed in HSI classification, such as
support vector machine (SVM) [2], multinomial logistic regres-
sion [3], and dynamic subspace detection [4]. Although most
HSI classifications based on spectral and spatial information
have obtained excellent performance, they are heavily dependent
upon hand-crafted features. Moreover, traditional hand-crafted
methods are limited. On the one hand, hand-crafted features are
regarded as shallow features, so images can change considerably
where the imaging environment is sharp [5]. On the other hand,
most hand-crafted features rely on expert knowledge, limited by
human factors. Moreover, crafting hand-crafted labels usually
requires considerable time, limiting the applicability of those
methods in different scenarios [1].

In recent years, deep learning has become a development
trend in HSI classification and has achieved good performance.
Deep learning methods can effectively exploit features from
HSI data compared with other traditional hand-crafted methods.
The process of deep learning is automatic, which makes it
more suitable to deal with various situations. Because differ-
ent networks can extract different feature types, deep learning
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is considered to be a significant feature extraction approach
in HSI classification. Thus, we can divide the deep learning
networks to classify HSI into spectral feature networks (e.g.,
DBN [6], 1-D convolutional neural network (CNN) [7], 1-D
GAN [8], [9], and RNN [10]), spatial-feature networks (e.g., 2-D
CNN [11], FCN-8 [12], and spectral-spatial-feature-based clas-
sification (SSFC) [13]), and spectral-spatial-feature networks
(e.g., SAE [14], 3-D CNN [15], and 3-D GAN [8]).

In deep learning approaches, CNNs have become a powerful
tool in HSI classification methods, which can effectively ex-
tract spatial and spectral features. It has achieved impressive
performance to classify HSI. Chen et al. [11] applied PCA to
reduce the dimension of HSI first and then used the 2-D CNN to
extract the spatial features within the pixel neighborhood. The
above method combines PCA and CNN, which extracts spatial
features and greatly reduces the computational cost. Liang and
Li [16] proposed a sparse representation method to improve
the feature representation ability and the classification accuracy.
Deep spatial features extracted by the CNN are encoded into
low-dimensional sparse features. The SSFC framework [13] is
proposed to classify HSI, in which balanced local discriminant
embedding and CNN are used to extract spectral and spatial
features, respectively. However, the traditional CNN can only
perform convolutions with fixed size and weight on regular
square image regions. It only refers to the spectral features of the
adjacent pixels but ignores the spectral features of long-range
data with the sample. For example, some pixels are usually in the
same class in different positions in HSI. These pixels should have
similar features. Therefore, their classification performances
need to be further improved.

Moreover, with the rapid development of graph theories,
graph convolutional networks (GCNs) have been widely used
in various applications, such as text classification [17]-[20]
and semantic segmentation [21]-[24]. In addition, the GCN
has made great progress in image classification [25]-[27]. The
GCN can process irregular image regions. The learned hidden
layers in the GCN can encode both features of node and local
graph structure. Therefore, the GCN can flexibly retain class
boundaries while adequately exploiting image features. How-
ever, it is not appropriate when the GCN is directly applied in
HSI classification. The GCN can assemble and transform fea-
tures from a defined graph containing the neighbor information
of each graph node. In the GCN, the neighborhood structure
of the graph adaptively governs the graph convolution oper-
ation. Although the GCN can capture relationships based on
the predefined graph that contains global information, pixels’
relationships for graph construction cannot be well ensured.
The main reason lies in that accurate image features can-
not be obtained only with the limited iterations of the deep
learning framework. Thus, this deep learning framework still
cannot ensure the quality of HSI features with the predefined
graph.

Inspired by the above discussions, aiming to learn more
representative and discriminative image features of HSI, label
consistency (LC) is embedded into the deep learning framework
in this article. LC includes not only the label consistency of
single pixels (LCSP) but also the label consistency of group
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pixels (LCGP). LCSP means that LC is maintained by calculat-
ing the error between the predicted label and the real label of the
sample. Moreover, LCGP refers to considering long-range data
by introducing a group label matrix to solve problems such as
different ground objects in the same spectrum. LCGP can also
realize label reuse on the basis of limited labeled data so that the
model has better learning ability.

In this article, deep feature learning with label consistencies
(DFL-LC) is proposed, which considers both LCSP and LCGP,
and its framework is show in Fig. 1. In this approach, we
adopt the multiscale convolutional neural network (MSCNN)
to extract basic HSI features. The features obtained from the
MSCNN are further fed into the GCN, which considers pixels’
relationships by constructing an adjacency matrix. The output
layer of the GCN is activated by the ReLU function. In order to
enhance the performance of HSI classification, LC should also
be applied to the deep learning framework. LC includes not only
LCSP but also LCGP. With LC, the cross-entropy loss is used to
calculate the difference between the outputs and the real labels
to keep LCSP. Moreover, to keep LC for the long-range data
and alleviate deficiently labeled samples, LCGP regularization is
added in the objective function. Finally, an iterative optimization
algorithm is used to optimize the objective function.

The main contributions of this article are summarized as
follows.

1) DFL-LC is developed to extract HSI features and ensure
LC, whose structure contains the MSCNN and the GCN. The LC
constraint is embedded in the objective function, and end-to-end
optimization is implemented.

2) In DFL-LC, we formulate two kinds of constraints to boost
the classification accuracy: LCSP and LCGP constraints. LCSP
ensures LC between the outputs and the real labels of the sample.
LCGP refers to considering the long-range data and alleviating
deficiently labeled sample problem.

3) DFL-LC is optimized through an iterative algorithm. The
test results on three representative datasets demonstrate that the
DFL-LC method is superior to the relevant latest HSI classifi-
cation methods.

II. RELATED WORKS
A. Feature Extraction

There is abundant spatial and spectral information in the HSI,
which is important to efficiently and accurately exploit spatial
and spectral features to classify HSIs. According to the label
of data, classification methods can be divided into supervised,
semisupervised, and unsupervised methods.

We need alarge amount of labeled data in supervised methods.
Liu et al. [6] proposed an effective classification model based on
active learning and DBN, in which the active learning algorithm
is used to repeatedly select high-quality labeled samples for
training, and DBN is used to deeply extract spectral features. In
[28], a diversified DBN model was proposed, in which the clas-
sification performance of the model is significantly improved
by normalizing the DBN pretraining and fine-tuning progress.
Semisupervised methods need less labeled data compared with
supervised methods. In [29], a semisupervised deep feature
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and is combined with the basic features extracted by the MSCNN as the input of graph convolution. Finally, we embed the LCSP and LCGP constraints into the

objective function to ensure LC.

learning method was proposed with feature consistency, where
the CNN is used to extract spectral-spatial features, and fully
connected layers are used to model feature consistency. Sun
et al. [14] proposed a semisupervised method to obtain features
by training SAE using a batch training scheme. Then, a mean
convergence method is used to generate deep characteristics by
further fusing the spectral and local spatial features. HSI data
can often be represented as a 3-D cube. Therefore, it can provide
a more effective method to simultaneously extract spectral and
spatial features of HSIs by performing 3-D convolution in spec-
tral and spatial dimensions. In [30], a subspace learning with
the conditional random field (CRF) method was developed to
obtain the subspace of the HSI pixels using the semisupervised
approach, in which the CRF is embedded in subspace learning
to classify HSI. Different from supervised and semisupervised
methods, unsupervised methods do not use labeled data. Some
traditional methods (PCA [31] and ICA [32]) can effectively
extract spectral features, but these linear models only have
simple linear processing, which makes it difficult to process
complex spectral features in HSIs. Kuo et al. [33] proposed ker-
nel nonparametric weighted feature extraction, which combined
linear and nonlinear transformation.

However, the traditional CNN only refers to the spectral
features of the adjacent pixels but ignores the spectral features of
long-range data with the sample, which only perform convolu-
tions with fixed size and weight on regular square image regions.
Therefore, the GCN is introduced to realize HSI classification,
which encodes the graph structure to consider long-range data.

B. Graph Convolution

The GCN has been extensively explored in the problem areas
of supervised, semisupervised, and unsupervised networks. Gori
et al. first proposed the concept of graph neural network, which
can process graph data [34]. Compared with the CNN and
the RNN, the advantage of the GCN is that it can process
non-Euclidean data with graph structure. The GCN is a mul-
tilayer neural network that operates directly on a graph and
studies the features of the graph through the eigenvalues and
eigenvectors of the Laplace matrix of the graph. The GCN can
correctly transform the graph into a new discriminative space by
integrating the adjacency relationships and features of the nodes
in the graph.

Recently, the GCN has been diffusely used for text classifi-
cation. Hamilton et al. proposed an inductive framework named
Graph SAGE, which efficiently generates node embeddings for
previously unseen data utilizing node features [17]. By sampling
and aggregating features from the local neighborhood of the
node, it learns a function that generates embedding, instead of
training individual embeddings for each node. A fast approxima-
tion localized graph convolution was proposed to avoid numer-
ical instabilities and explosion or vanishing of gradients [18].
It can encode both features of node and graph structure and
lead to more efficient filtering operations, because the GCN was
simplified by the first-order approximation of graph convolution.
Monti et al. proposed a unified framework that generalizes the
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CNN to non-Euclidean domains, such as graphs and manifolds,
and learns stationary and local features [19].

The GCN is also widely used in image classification. Garcia
and Bruna used a reasoning prism to study the problem of
few-shot learning on part of the graph observation model, which
is composed of a set of input images that can be observed or not
observed with labels [35]. Wang et al. proposed a method based
on the GCN, which uses semantic embeddings and categorical
relationships to classify images [36]. In this method, given a
learning knowledge graph, the method inserts each node (repre-
senting a visual category) as input semantics. Some scholars also
use the GCN to realize HSI classification. Qin ef al. proposed
a spectral-spatial GCN to approximate convolution by using
adjacency nodes in the graph [37]. Thus, this method takes full
advantage of the current pixel spatial information in the process
of approximate convolution. Wan et al. proposed a multiscale dy-
namic GCN, whose graph is dynamically updated during graph
convolution, and its input graphs have different neighborhood
scales to utilize multiscale information in HSIs [38]. The GCN
can capture relationships based on the predefined graph that
contains global information, but the pixels’ relationships for
graph construction cannot be well ensured. Therefore, LC is
embedded into the deep learning framework in this article to
learn more features of HSIs.

III. PROPOSED METHOD

In this section, a new feature learning method, DFL-LC,
is introduced. First, the motivation of this article is presented
in Section III-A. Next, the DFL-LC framework is given in
Section III-B. Finally, we optimize DFL-LC in Section III-C.

A. Motivation

Traditional convolution only refers to the spectral features of
the adjacent pixels butignores the spectral features of long-range
data with the sample. The GCN cannot ensure the pixels’ rela-
tionships for graph construction because accurate image features
cannot be obtained with only the limited iteration of the deep
learning framework. Therefore, we combine MSCNN and GCN,
and LCSP and LCGP are added to the objective function to keep
LC. LCSP denotes that the LC is maintained by calculating the
error between the predicted output label and the real label of the
sample. Moreover, LCGP refers to considering long-range data
by introducing a group label matrix and realizing label reuse on
the basis of limited labeled data. Finally, the objective function
is optimized by an iterative optimization algorithm.

B. Framework of DFL-LC

1) Multiscale Feature Extraction: In recent years, classifi-
cation, detection, and recognition issues can be addressed by
CNNs, which are effected by the structure of the human visual
system. There are two special aspects in the CNN architecture:
shared weight and local connection, which make CNNs different
from other deep learning methods in architecture. Shared weight
can reduce network parameters. And the CNN can make use of
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local connections to exploit the local correlation between the
neurons of near layers.

The objects of HSI usually have different geometric appear-
ances, so multiscale features have been proven to be useful to
solve the HSI problems [39]. The multiscale structure contains
plentiful contextual HSI information [40]. Deep learning can
extract abundant local characteristics of image regions from
different levels by using the contextual information exposed
by different scales. To obtain more detailed features, we em-
bed multiscale information into the CNN. The MSCNN can
exploit both shallow features and deep features, which is better
adapted to classify HSIs, and multiscale features can effectively
improve the results of HSI classification. Using the MSCNN, the
spectral-spatial features are introduced to describe HSIs. The
MSCNN adopts three different convolutional filters to locally
convolve patches X!, X2, and X3 with three different sizes.
Then, all the features extracted from these three layers are
stacked together as the input to the fully connected layer. With
the MSCNN process, we can obtain the spectral—spatial features
le

Z; = f(ReLUW Y @ X! + b))
@ ReLU(W (2 @ X2 4 b(0:2))
@ ReLU(W (%) @ X3 4 p(0:3)) (1)

where fis the fully connected operation. ® represents the tradi-
tional convolution operation, and ® represents the features that
are added together in the third dimension. W (%*) and b(®:%) are
the weight and bias for X°.

2) Graph Convolution Process: There are hundreds of thou-
sands of pixels in the HSI, which makes the computational
complexity for graph convolution and HSI classification difficult
to accept. In order to solve this problem, the GCN is introduced
by treating each sample as a node in graph instead of a pixel
of the HSI. This method can significantly reduce the number of
graph nodes and improve the computational efficiency. Different
from the CNN, which extracts features by convolution, the GCN
studies the features of the graph through the eigenvalues and
eigenvectors of the Laplace matrix of the graph. The GCN can
find the simple and clear neighbor connections between the
nodes from a complex graph and smooth the label information
via neighbor connections over the graph until achieving a global
steady state.

To perform graph convolution, we first construct an undirected
graph, which is defined as G = (), £). V and & are the sets of
nodes and edges, respectively. A denotes the adjacency matrix
of G, which represents the connection relationship between
nodes in the graph. Here, the adjacency matrix is constructed
according to the spatial relationship among patches, which can
be calculated as follows:

Ay — {evlzimjz’ x; € N(xj)orxj € N(z;) @)
0 otherwise

where 7 is empirically set to 0.01 in the experiments. x; repre-
sents the patch, and N (x;) is the set of neighbors of ;.
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The normalized Laplacian of the graph is L =1y —
D :LD % = UAUT7T, where D denotes the degree matrix of
G, U is the matrix composed of the eigenvectors of L, A is a
diagonal matrix containing the eigenvalues of L, and I denotes
the identity matrix with the proper size. According to the graph
convolution theorem, the graph convolution can be written as

gxx=U (UTgUTX) . 3)

Then, we can consider that gg(A) = U7 g is a function of the
eigenvalues of L. We can define spectral convolutions on graphs
as the multiplication of a signal x with a filter in the Fourier
domain

go xx =Ugy (A) UTx = UgyUx 4)

where gy = diag(0) = gg(A) is the filter.

However, the amount of computation required to eigende-
compose the L of large graphs is prohibitively expensive. To
address this problem, Hammond et al. approximated gy (A) up to
the Kth order by a truncated expansion according to Chebyshev
polynomials Ty (x) [41]

o ()~ 301, (4) )

k=0

witharescaled A = —2-A — I N- Amax 18 the maximum eigen-

)\max
values of L and @' is a vector of Chebyshev coefficients. There-

fore, the convolution can be written as

K
go < x~ Y 6T, (L) x (©6)
k=0

where L = %L — Iy is the scaled Laplacian matrix.

(UAUT)k = UARUT can easily verify (6). Since this formula
is a Kth-order polynomial for the Laplacian, the nodes away from
the central node at most K steps determine the filtering.

Therefore, in the form of (6), stacking graph convolutional
layers can build a graph convolution network model, in which
pointwise nonlinearity is after each layer. Therefore, (6) be-
comes a linear function on the Laplacian spectrum of the graph
considering the first-order neighborhood (K = 1). We further
approximate Apyax & 2 in this linear formulation of a GCN.
Therefore, (6) can be simplified to

go *x~0ix + 07 (L—1Iy)x=0x+ 9/1D7%AD7%X
(7
where 60f, and 6 are two free parameters. To avoid overfitting
caused by many parameters, (7) is converted to

ga*xze(INJrD*%AD*%)x (8)

with a single parameter 0 = 6, = —6). Since the eigenval-
ues of Iy + D 3AD"% are in the range [0, 2], numerical
instabilities and explosion or vanishing of gradients will be
resulted by repeatedly using this operator. To alleviate this
problem, Kipf and Welling performed the renormalization
trick Iy + D 2AD 7 - Iy + D 2AD % with A = A +
IN and ]j“ = Zj Aij [18]
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Since the spectral-spatial features Z; have been obtained,
based on the graph convolution, we build a GCN, which contains
two-layer graph convolution for node classification on a graph
as an example. Therefore, the forward model can be simplified
to

Z = 4 (X, A) = soft max (AReLU (AZ1W(O)> W(l))
o ©)
where A =D 2AD 2z and W® € R®# and W) ¢
RA*M are the weight matrixes of the input-to-hidden layer
and the hidden-to-output layer, which can be updated via the
backpropagation algorithm.

3) Output Layer: In the output layer, we formulate two kinds of
constraints to boost the classification accuracy: LCSP and LCGP
constraints, which are shown in Fig. 2. LCSP is maintained by
calculating the error between the label prediction and the real
label of the sample. LCGP refers to considering the long-range
data by introducing a group label matrix and realizing label reuse
on the basis of limited labeled data. Let s be the number of labeled
patches, g be that of unlabeled patches, and n = s + ¢ be the
number of patches. The cross-entropy loss and LC constraint
train the features extracted from the MSCNN and the GCN with
the labeled data.

LCSP Loss: In the GCN, the output layer is activated by
the ReLU activation function to transmit the features into the
probability of all class labels Z. The LCSP loss is used to
calculate the difference between the output of the network Z
and the real label Y

s L
OLcsp = —é Z Zl(j) log Z;;

i=1j=1

(10)

where L is the number of classes and Z; is the label prediction
for the ith patch. The value of /(j) is 1 when j equals the desired
label Y; of the ith patch (1 < i < s); otherwise, the value is 0.

In (10), the probability of all class labels is predicted and
optimized using the cross-entropy loss.

LCGP Loss: The LCGP is achieved by introducing the group
label matrix G, which considers the long-range data and realizes
label reuse. For example, assume that patches X are from class
1; X5 and X3 are from class 2; and X, is from class 3. Then, G
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is defined as

1 0 00
01 10
G= D
01 10
0 0 01
The objective function of the LC is then described as
Orcor = |G — TZ|[7 + o | T| % (12)

where T € R**! is a transformation matrix for transforming
the predicted label Z € R%** into the matrix of the same size
as G € R**%, and « is the balance term.

4) Overall Objective Function of DFL-LC: Considering the
constraints of (10) and (12), we formulate the joint objective
function of DFL-LC as follows:

© = Orcsp + AOLcgp

s L
1 .
=== > Y1) log Ziy + 2 [IG — TZG + o | T
i=1 j=1
(13)
where A is the balance term.

C. Optimization of DFL-LC

In this section, we propose an iterative algorithm to optimize
the parameters in the DFL-LC, and Algorithm 1 summarizes
the optimization procedure. Let ¢; be the collection of weights
and bias of the CNN, and 5 be the collection of weights of the
GCN. In each iteration of the algorithm, the parameters 1, @2,
and T are optimized.

The parameters ¢; and ¢ are solved when T is fixed, so the
optimization problem defined in (13) can be rewritten as

s L
1
min © = min ——ZZI(j)logZij

P1,92 P12 S

i=1 j=1
+3[lIG - Tz} (14)
Then, we update the parameters on each iteration
Y1 < @1 — BV, | min O
P1,P2 (15)
P2 < P — BVS(,Z min ©
P1,P2

where [ is the learning rate of the DFL-LC.
T is resolved when ¢; and @9 are fixed. Therefore, the
optimization problem defined in (13) is rewritten as

min® =[G - Tz} + o | T a6
Then, we update the transform matrix T as
T+ T- Vg [mci;n @} : (17
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(@ (b)

Fig. 3. Indian Pines. (a) False color image. (b) Ground-truth map.

Algorithm 1: DFL-LC.
Input: Training samples X, matrix G, parameters A, a.
Output: Predicted class labels Z.
Initialize: 1, w2, and T.
for the number of iteration do
1:  Sample batch size of samples X;
2: Compute the features from the MSCNN using (1);
3:  Feed the features extracted from the MSCNN into the
GCN;
Compute the features from the GCN using (9);
Compute the class probability Z using (9);
Compute the LCSP loss using (10);
Compute the LCGP loss using (12);
Update 1 and @5 using (15);
Update T using (17);

R e A A

IV. EXPERIMENTS

In this section, we experimentally evaluate the performance of
the DFL-LC to classify HSIs. First, the datasets are introduced in
Section I'V-A. Next, the experimental settings of DFL-LC and
approaches are given in Sections IV-B and IV-C. Finally, we
give the classification results and the analysis of parameters in
Sections IV-D and IV-E.

A. Dataset

1) Indian Pines: The Indian Pines dataset is over the Indian
Pines test site in north-western Indiana, which collected by the
AVIRIS sensor. In the Indian Pines dataset, there is one-third
of forest or other natural perennial vegetation and two-thirds of
agriculture. The dataset contains 145 x 145 pixels and 220 bands.
After removing 20 bands that are water absorption and noisy,
200 bands are reserved. The Indian Pines ground truth contains
16 classes. Fig. 3 shows the false color image and ground-truth
map of the dataset, and Table I lists the number of labeled and
unlabeled pixels of various classes.

2) Salinas: The spatial resolution of Salinas dataset was
3.7 m, which was collected by the 224-band AVIRIS sensor over
Salinas Valley, CA, USA. After removing 20 water absorption
bands, the image comprises 204 bands with 512x217 pixels. It
includes vegetables, bare soils, and vineyard fields. The ground
truth of Salinas contains 16 classes. The false color image and
ground-truth map are shown in Fig. 4, and Table II shows the
numbers of samples to train and test in the Salinas dataset,
respectively.
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TABLE II
NUMBERS OF TRAINING AND TEST SAMPLES IN THE SALINAS DATASET

1D Class Training(10%)  Test(90%) ID Class Training(10%)  Test(90%)
1 Alfalfa 5 41 1 Brocoli_green_weeds_1 201 1808
2 Corn-notill 143 1285 2 Brocoli_green_weeds_2 373 3353
3 Corn-mintill 83 747 3 Fallow 198 1778
4 Corn 24 213 4 Fallow_rough_plow 140 1254
5 Grass-pasture 49 434 5 Fallow_smooth 268 2410
6 Grass-trees 73 657 6 Stubble 396 3563
7 Grass-pasture-mowed 3 25 7 Celery 358 3221
8 Hay-windrowed 48 430 8 Grapes_untrained 1128 10143
9 Oats 2 18 9 Soil_vinyard_develop 621 5582
10 Soybean-notill 98 874 10 Corn_senesced_green_weeds 328 2950
11 Soybean-mintill 246 2209 11 Lettuce_romaine_4wk 107 961
12 Soybean-clean 60 533 12 Lettuce_romaine_5wk 193 1734
13 Wheats 21 184 13 Lettuce_romaine_6wk 92 824
14 Woods 127 1138 14 Lettuce_romaine_7wk 107 963
15  Buildings-grass-trees-drives 39 347 15 Vinyard_untrained 727 6541
16 Stone-steel-towers 10 83 16 Vinyard_vertical_trellis 181 1626
Total 1031 9128 Total 5418 48711
Fig. 5. University of Pavia. (a) False color image. (b) Ground-truth map.
(@) (b)
Fig. 4. Salinas. (a) False color image. (b) Ground-truth map. TABLE III
NUMBERS OF TRAINING AND TEST SAMPLES IN THE UNIVERSITY OF
PAVIA DATASET
3) University of Pavia: The University of Pavia dataset is with ID Class Training(10%)  Test(90%)
a spatial resolution of 1.3 m during a flight over Pavia in northern 1 Asphalt 664 5967
Italy, which was obtained by the ROSIS sensor. The scene is 610 2 Meadows 1865 16784
x 340 x 103 after removing 12 noisy bands. The University of 3 Gravel 210 1889
Pavia dataset contains nine classes of interest. Fig. 5 shows the 4 _ Trees 307 2757
false color image and the ground-truth map of the University of 5 Painted metal sheets 135 1210
Pavia dataset, and Table III shows the information of training 6 Bére Soil 303 4526
and test samples on the number. ! Bitumen 133 197
8  Self-Blocking Bricks 369 3313
9 Shadows 95 852
B. Experimental Settings Total 4281 38495

The proposed method is enforced through PyTorch with the
Adam optimizer, and the backpropagation algorithm is used to
optimize the parameters of the whole network. For learning the
network, we set the learning rate to 0.01 with 9000 epochs and
a hidden layer size of 24 units. We crop each pixel and its
surrounding neighboring pixels as the input of DFL-LC. The

datasets we use in the experiment are Indian Pines, Salinas, and
University of Pavia. Training samples are selected from 10% of
the samples in each class, and other samples are used to test to
evaluate the classification performance.
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TABLE IV
ACCURACY OF EACH CLASS, AND OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT CLASSIFICATION METHODS ON THE INDIAN PINES DATASET

D SVM CNN CNN-MRF HybridSN SSCNN SDP DFL-LC
1 75.61 97.22 95.12 100.00 87.80 82.93 90.24
2 77.82 89.85 91.83 90.17 93.70 94.86 95.88
3 65.33 84.09 91.97 92.77 90.23 87.01 95.31
4 69.01 84.73 77.93 95.48 82.16 75.59 87.79
5 89.40 99.04 98.16 96.28 91.24 95.39 97.47
6 95.74 95.44 99.09 96.83 97.56 97.41 99.39
7 84.00 100.00 56.00 100.00 92.00 88.00 100.00
8 99.30 94.42 99.53 99.31 100.00 100.00 100.00
9 38.89 85.71 100.00 71.78 3333 38.89 100.00
10 81.35 86.42 84.78 87.17 91.30 95.19 89.36
11 82.66 86.74 96.88 94.26 93.53 95.29 97.60
12 70.36 90.79 82.18 95.13 84.05 80.86 93.06
13 96.20 95.98 100.00 95.34 96.20 98.91 100.00
14 92.27 97.85 97.19 96.58 99.38 99.30 99.03
15 55.91 84.57 86.74 88.27 92.80 91.35 92.22
16 84.34 82.35 90.36 81.05 79.52 79.52 100.00

OA 81.81 90.23 93.23 93.37 93.22 93.71 96.16

AA 78.64 90.95 90.48 92.90 87.80 87.53 96.08

Kappa 79.22 88.84 92.26 92.44 92.26 92.83 95.62

C. Comparison Approaches

To verify an evaluate the classification ability of the pro-
posed DFL-LC, other traditional and state-of-the-art methods
for HSI classification (SVM [2], CNN [11], CNN-MRF [42],
HybridSN [43], SSCNN [44], and SDP [45]) are also used for
comparison. We compare CNN-GCN with DFL-LC to verify
the validity of MSCNN.

1) SVM [2]: Combining SVM with a feature-reduction tech-
nique is sufficient in HSI classification.

2) CNN [11]: Tt is a 3-D CNN model to effectively extract
spectral and spatial for HSI classification.

3) CNN-MRF [42]: The CNN is used to learn the posterior
class distributions, and then, Markov random field prior is used
to consider the spatial information.

4) HybridSN [43]: 1t is a spectral-spatial 3-D CNN followed
by spatial 2-D CNN. The 3-D CNN can represent spectral and
spatial features, and the 2-D CNN can further learn more spatial
features.

5) SSCNN [44]: It is a novel semisupervised CNN to classify
HSIs, which can automatically learn features from complex data
structures.

6) SDP [45]: Tt is a new semisupervised active learning
approach to classify HSIs that improves machine generalization
by using pseudo-labeled samples.

D. Classification Results

In these experiments, three objective metrics (overall accu-
racy (OA), average accuracy (AA), and the Kappa coefficient)
adopted are used to quantitatively evaluate the capability of
DFL-LC and other methods. The OA is obtained by calculating
the ratio of the number of correctly classified test samples to
the total number of test samples. The AA is the average of the
classification accuracies of each class. The Kappa coefficient
represents the robust measure of the degree of consistency, which
is calculated by weighting the classification accuracies. The

experiments are conducted on Indian Pines, Salinas, and Univer-
sity of Pavia datasets. The quantitative classification results are
summarized in Tables [IV-VI, and the highest accuracy in each
class is highlighted in bold. And the classification maps obtained
by different methods are shown in Figs. 6-8. Therefore, we can
obtain the following observations.

1) Compared with other methods, the DFL-LC can achieve
a higher classification accuracy and the best performance on
three datasets than other methods. It demonstrates that DFL-LC
can learn more representative features of HSI, which considers
long-range data and keeps LC. Compared with the ground-truth
map and other classification maps, the result of DFL-LC method
shows fewer misclassifications and produces a smoother visual
effect. This indicates that DFL-LC is very useful to classify
HSIs, which can effectively construct the relationships among
the samples.

2) We can observe that the CNN-based methods, including
CNN, CNN-MRF, HybridSN, SSCNN, and SDP, achieve rel-
atively low accuracy combined with DFL-LC. The reason is
that they can only perform convolutions on a regular image
region and cannot extract specific local spatial information. It
also proves that GCN and LCGP can consider spectral fea-
tures of long-range data, which play a significant role in HSI
classification.

3) By contrast, we also observe that the DFL-LC methods
can yield relatively good performance compared with SSCNN
and SDP, which are semisupervised classification methods.
It explains that LC can realize label reuse based on lim-
ited labeled data to improve the feature learning ability of
DFL-LC.

E. Parameters Analysis

1) Impact of v in the Adjacency Matrix: In the proposed
method, the calculation method of the adjacency matrix in this
article is shown in (2). It can be seen that different values of
v affect the classification accuracy in (2). Thus, we vary the
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ACCURACY OF EACH CLASS, AND OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT CLASSIFICATION METHODS ON THE SALINAS DATASET

D SVM CNN CNN-MRF HybridSN SSCNN SDP DFL-LC
1 99.56 99.50 99.89 99.83 99.50 99.56 100.00
2 99.55 99.94 99.94 99.91 99.88 99.94 100.00
3 99.61 99.78 84.59 99.83 99.49 99.61 99.49
4 99.44 98.96 99.76 99.28 99.92 99.52 100.00
5 98.13 99.46 98.80 99.29 98.76 99.21 99.83
6 99.83 100.00 99.97 99.75 99.94 99.94 100.00
7 99.88 100.00 99.60 99.63 99.69 99.63 99.63
8 91.53 90.56 90.10 89.87 88.88 89.62 96.34
9 99.96 99.71 99.95 99.91 99.68 99.50 99.98
10 95.59 97.73 96.68 99.46 98.14 98.10 96.88
11 98.02 99.48 98.23 99.69 99.90 99.79 96.25
12 99.94 99.94 99.48 100.00 99.94 99.77 100.00
13 97.33 99.88 100.00 99.76 99.64 98.42 100.00
14 98.23 98.86 99.58 99.48 99.90 96.68 98.23
15 65.48 85.52 92.25 85.64 89.36 85.40 91.27
16 99.20 98.65 99.69 99.38 99.51 99.20 98.71
OA 92.99 95.75 95.95 95.76 95.94 95.46 97.67
AA 96.33 97.99 97.41 98.17 98.25 97.74 98.54
Kappa 92.18 95.27 95.50 95.28 95.49 94.94 97.41

TABLE VI
ACCURACY OF EACH CLASS, AND OA, AA (%), KAPPA COEFFICIENT ACHIEVED BY DIFFERENT CLASSIFICATION METHODS ON THE UNIVERSITY OF PAVIA
DATASET

ID SVM CNN CNN-MRF HybridSN SSCNN SDP DFL-LC
1 93.78 97.34 96.65 96.16 94.79 95.22 98.41
2 97.88 98.86 96.66 99.22 98.73 98.50 99.74
3 80.62 78.61 82.58 88.62 91.48 92.22 91.64
4 94.49 98.04 96.55 96.77 98.04 96.23 98.01

5 99.42 100.00 100.00 99.34 99.59 100.00 100.00
6 90.46 94.41 95.67 95.25 93.15 90.65 95.16
7 87.80 94.49 80.7 89.97 87.47 89.14 90.14
8 91.58 90.71 92.76 92.60 94.05 94.02 98.94

9 99.88 99.77 99.77 99.77 99.88 100.00 100.00
OA 94.52 96.26 95.18 96.74 96.36 96.00 98.12
AA 92.88 94.69 93.48 95.30 95.24 95.11 96.89
Kappa 92.72 95.04 93.63 95.67 95.17 94.69 97.50

(e)

®

(@

(h)

Fig. 6. Classification maps obtained by different classification methods on the Indian Pines dataset. (a) Ground-truth map. (b) SVM. (c) CNN. (d) CNN-MRF.

(e) HybirdSN. (f) SSCNN. (g) SDP. (h) DFL-LC.
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HybirdSN. (f) SSCNN. (g) SDP. (h) DFL-LC.

value of vy from 0.001 to 0.1 and report the OA on the Indian
Pines, Salinas, and University of Pavia datasets. The results
of classification are shown in Fig. 9. We can observe that the
classification accuracy is improved when the maximal value
of the nonzero elements in the adjacency matrix approaches
1. According to the experimental results, we can find that the
classification accuracy is highest when ~ is 0.01. Moreover, the
capability of DFL-LC is more stable than that of CNN-GCN
with a changed value of ~.

2) Impact of the Number of Hidden Nodes: The GCN learns
feature by encoding features of node and graph structure in the
hidden layer. There is a hidden layer in the proposed method, and
the number of nodes of hidden layer also has some influence on
the classification result. Therefore, we vary the number of hidden
nodes in 16, 24, and 32. The OA on the Indian Pines, Salinas,
and University of Pavia datasets are shown in Fig. 10. We can
observe that the classification accuracy is improved when the
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Classification maps obtained by different classification methods on the Salinas dataset. (a) Ground-truth map. (b) SVM. (c) CNN. (d) CNN-MRE. (e)

number of hidden nodes is more than the number of categories
in the dataset. Thus, we choose the number of hidden nodes
according to the best accuracy in the experiment, so 16 hidden
nodes are set in the method.

3) Influence of the Multiscale Filter Bank: To verify the
validity of filter banks with different scales in extracting fea-
ture information, we compare the filter banks with differ-
ent configurations, which are 1 x 1, ~3x3, ~5x5 and
~ 7 x 7. The ~ 7 x 7 denotes that the sizes of the convolu-
tional filters are 1 x 1, 3 x 3, 5 x 5 and 7 x 7, and the others
are in the same way. As shown in Table VII, the classifica-
tion accuracy of multiscale filters is better than that of the
method with a 1 x 1 convolutional filter. Multiscale convolu-
tion can exploit the spatial-spectral feature, which is better
adapted for HSI classification. Additionally, since ~ 7 x 7 con-
tains more noise, the ~ 5 x 5 multiscale filter shows better
performance.
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Fig. 8.
CNN-MRF. (¢) HybirdSN. (f) SSCNN. (g) SDP. (h) DFL-LC.
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Fig.9. Overall accuracies of DFL-LC on Indian Pines, Salinas, and University
of Pavia datasets under different value of ~.
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Fig. 10.  Overall accuracies of DFL-LC on Indian Pines, Salinas, and Univer-
sity of Pavia datasets under different number of hidden nodes.

Classification maps obtained by different classification methods on the University of Pavia dataset. (a) Ground-truth map. (b) SVM. (c¢) CNN. (d)

TABLE VII
OVERALL ACCURACIES (%) OF DFL-LC AND CNN-GCN ON INDIAN PINES,
SALINAS, AND UNIVERSITY OF PAVIA DATASETS

Dataset  Indian Pines  Salinas  University of Pavia
11 81.57 84.59 85.20
33 89.40 92.58 93.36
35 96.16 97.67 98.12
71 95.12 96.55 97.53

V. CONCLUSION

In order to effectively extract features and keep LC, we
propose a novel DFL-LC to achieve HSI classification, which
is based on traditional convolution and graph convolution. In
DFL-LC, the MSCNN is used to obtain basic features, the
GCN can capture relationships between pixels and realize HSI
classification, and LCSP and LCGP are embedded in the objec-
tive function. LCSP can ensure LC between the predicted label
and the real label of the sample. DFL-LC is a semisupervised
method, and the method considers the truthful neighborhood
information of all samples. LCGP can ensure the quality of
extracted features when a small number of labeled samples
are obtained, so DFL-LC can alleviate the deficiently labeled
sample problem. Compared with the traditional and state-of-the-
art classification methods, the experimental result demonstrates
that the proposed method can yield better HSI classification
performance. In future research, DFL-LC will be applied into
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other recognition tasks, such as high-spatial-resolution remote
sensing image segmentation.
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