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Abstract—Internal waves (IWs) are broadly distributed globally
and have significant impacts on offshore engineering and underwa-
ter navigation. The prediction of IW propagation is a challenging
task because of the complex factors involved. In this study, a
machine-learning model was developed to predict IW propagation
in the Andaman Sea. The model is based on a back-propagation
neural network trained by 1189 IW samples, including the crest
length and the peak-to-peak distance of IWs, extracted from 123
Moderate-Resolution Imaging Spectroradiometer (MODIS) im-
ages and 33 Ocean Land Color Instrument (OLCI) images acquired
from 2015 to 2019 and corresponding ocean environment parame-
ters. Using the leading wave crest within an IW packet as input, we
ran the model to forecast the IW locations and compare them with
satellite observations. The average root-mean-square difference
between the model-forecasted and satellite-observed IW leading
crest after one tidal cycle was 3.21 km. The corresponding averaged
correlation coefficient was 0.95 and the average Fréchet Distance
was 11.46 km. We reiterated the model run over two tidal periods
and obtained similar statistical results, indicating the robustness of
forecasting IW packets. We find that reducing the time step helped
to improve forecasting accuracy. The influence of input errors and
seasonal variations on model results are discussed and an analysis
shows that the initial propagation direction introduced to the model
is necessary for cross-propagating IW patterns. Comparisons with
the Korteweg-de Vries equation results show that the developed
model has better performance and is more robust.

Index Terms—Andaman sea, internal wave (IW) forecast,
machine learning.

I. INTRODUCTION

INTERNAL waves (IWs) are frequently observed in the
global ocean [1]–[5]. Large-amplitude IWs can travel for

hundreds of kilometers and carry a significant volume of energy
toward the coastline. The IWs threaten the safety of underwa-
ter navigation [6], enhance ocean mixing [7], affect sediment
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Fig. 1. MODIS true-color image of the Andaman Sea on 17 April 2003. Four
IW packets are labeled by A–D. Black arrows represent IW PDs.

resuspension [8], and have a significant impact on offshore
facilities [9].

Remote sensing has been an effective method for oceanogra-
phy research in recent years. Both synthetic aperture radar (SAR)
and optical satellite images are used for IW studies [10]–[12].
Fig. 1 shows a Moderate-Resolution Imaging Spectroradiome-
ter (MODIS) true-color image covering the Andaman Sea, a
marginal sea in the northeastern Indian Ocean with a water depth
over 2000 m in the central region. The IWs, which manifest as
bright and dark bands on the MODIS images, are generated at
the Nicobar Islands and the Andaman Islands and propagate
eastward into the deep ocean with long wave crests and large
amplitudes [13]–[15]. The imaging mechanism, generation sites,
generation mechanisms, and spatial distribution of IWs have
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been investigated with field data [15] and satellite images [16]–
[18]. The previous investigators have found that the IWs in
the Andaman Sea are mainly distributed in four regions in
the northern, central, southern, and eastern Andaman Sea and
propagate in different directions. We labeled them with arrows
from A to D in Fig. 1. In Region A, the IWs originate from
various sources and propagate southeastward and southwest-
ward. Opposite propagating IW crests interact with each other. In
Region B, the IWs have long wave crests and propagate eastward
into the central Andaman Sea. The eastward propagating IWs
are observed in Regions B and C. The long-crest IWs originating
from the two regions collide with each other when propagating
into Region D.

From satellite images like Fig. 1, the distribution [16], gen-
eration mechanism [19], propagation characteristics [20], such
as reflection [21] and refraction of the IWs [22] have been
reported in other ocean areas, such as the South China Sea (SCS).
Since the forecast of IWs is significant for operational uses, the
IWs propagation is mainly forecasted using numerical [23] and
empirical models with considerable uncertainty. In the SCS,
the locations of IWs have been predicted using the relation
between the IWs and the westward tidal current at the Luzon
Strait [24]. Based on the correlation between the IW occurrence
and the tidal range, Hyder et al. [25] forecasted the possible
IW occurrence focusing on one generation site in the northern
Andaman Sea. As shown in Fig. 1, the IWs in the Andaman
Sea have complicated propagation patterns and seven generation
sites [16]. This complexity makes the prediction of IWs more
challenging. To our knowledge, no numerical model simulation
has been carried out to predict IW propagation in the Andaman
Sea due to complicated IW propagation directions (PDs) and
generation sites. To overcome the difficulty, we developed a
machine learning method to predict IW propagation in the
Andaman Sea in this study.

Machine learning techniques have shown great potential in
oceanographic research [26], [27] and remote sensing data inter-
pretation [28]. Krestenitis et al. [29] showed that machine learn-
ing is an efficient approach to identify an oil spill. Liu et al. [30]
explored mining SAR imagery for coastal inundation mapping
based on deep convolutional neural networks. Machine learning
also provides the opportunity for building relationships among
multidimensional information. Lee et al. [31] retrieved total
perceptible water from Himawari-8 data. The relation of total
perceptible water and observation data in different channels was
built using machine learning techniques. Pan et al. [32] applied
one of the machine learning approaches, the back-propagation
(BP) algorithm, to retrieve the amplitude of IWs using texture
information of satellite images and ocean environmental param-
eters. Li et al. [33] applied deep learning techniques to extract
IW signals from satellite images and systematically reviewed the
application of machine learning techniques to the information
mining of remote sensing imagery. Zheng et al. [34] achieved
the forecast of tropical instability waves based on a purely
satellite data-driven deep learning model. The forecast results
agree well with the satellite observations. These studies have
shown that machine learning techniques have the advantages of
a strong nonlinear mapping and multidimensional information

processing. Zhang and Li [35] proposed a machine learning
based forecast model (ZL model) for IWs in the Sulu-Celebes
Sea, which shows close results with satellite observations. The
ZL model neglects the transmeridional propagating IWs in the
Celebes Sea, and is mainly suitable for noncross-propagating IW
patterns. A major difference for IWs in the Andaman Sea and
Sulu-Celebes Sea is that cross-propagating IWs are observed in
the Andaman Sea. Complicated IW propagation patterns limited
the direct application of the ZL model to the Andaman Sea. To
handle the cross-propagating IWs, this article proposes a new
machine-learning model that can be applied to other areas in the
global ocean with cross-propagating IWs.

The propagation of IWs is affected by many factors ranging
from the properties of IWs to ocean environments. It is conceiv-
able to use a machine learning technique to find the relationship
of IW propagation with other oceanic environmental variables.
To find such a link, we built a BP neural network to predict
locations of IWs when given an initial IW position. Training
samples were extracted from collected MODIS images and
ocean land color instrument (OLCI) images to build the BP
model. The model was then used to predict the propagation
characteristics of IWs in the Andaman Sea. We organized this
article as follows: the machine learning IW prediction model and
satellite observations of IWs in the Andaman Sea are described
in Section II. The model results are shown in Section III and
an analysis is given in Section IV. Section V summarizes the
results.

II. DATA AND METHOD

A. Machine Learning IW Forecast Model

An IW forecast model was developed using a fully connected
BP neural network. The forecast model includes two modules:
the phase speed (PS) and the PD modules. We implemented
the BP neural network with satellite-derived IW parameters,
ocean stratification, locations, and the water depth as inputs.
The BP model is a multilayer feed-forward, fully connected
network trained according to the error BP mechanism, which
is ideal in finding complex relationships in multidimensional
information. The flowchart of the forecast model is shown in
Fig. 2. The model input is an initial IW crest extracted from
satellite images. The input parameters can be extracted based
on the input wave crest and additional external data source. The
BP neural network forecast (BPNNF) model is composed of one
input layer, multiple hidden layers, and one output layer [32],
[36]. The training process consists of forwarding propagation
of IW PS and direction calculations and BP of errors, which
can automatically change the weights of the neural network.
The neural network automatically adjusted weights to minimize
the error between the model outputs and expected outputs. In
training, every training sample contributes to the adjusting of
the neural weights. A two-hidden-layer structure was used for
two modules.

The seven inputs of the PS module are latitude, longitude,
water depth, mixed layer depth, density difference of the upper
and lower layers, length of wave crest (LWC), and peak-to-peak
(PP) distance of IWs [37]. The PD module inputs have an
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Fig. 2. Flowchart of the forecast model. The nodes of the input layer, hidden layers, and output layer for the PS module are empirically set to 7, 18, 3, and 1,
and for the PD module are 8, 16, 5, and 1. The activation function between hidden layers is the tansig function. The activation function between the hidden layer
and the output layer is the pureline function. The dark blue boxes indicate the input parameters for the PS module while the red box serves as an additional input
parameter for the PD module.

extra parameter of the initial PD used to resolve locations with
cross PDs of IWs, as shown in Region D in Fig. 1. The output
parameters for the PS and PD modules are the propagation
speeds and directions of IWs. The nodes for the PS module’s
two hidden layers were empirically set to 18 and 3, while the
PD module was 16 and 5. The training function, ‘trainlm’ based
on the Levenberg–Marquardt algorithm [38], was adopted for
its fast convergence rate. The activation function among the
three hidden layers was the hyperbolic tangent sigmoid transfer
(tansig) function, and the activation function between the hidden
and output layer was the linear transfer (pureline) function. The
model initialized each node with random weights, and then
the model was trained for many epochs (one epoch means the
model was trained once using the training dataset). The model
automatically adjusted the weights of each node to find the best
weights. The trained model was evaluated using the training
dataset and independent test dataset. The training dataset was
divided into the training group and validation group. The training
group was used for model training and the validation group
for monitoring the training process. After the model reached
its best validation (best performance on the validation group),
the model training was stopped and further tested using an
independent test dataset. Excellent performance on the training
dataset and poor performance on the test dataset means the model
is overfitted, and an overfitted model does not generalize well
from the training dataset to an unseen dataset. To overcome the
overfitting problem, we adopted the early stopping method [39].
We set the validation check as six, implying that the model will

stop training if the error on the validation group does not decrease
for six consecutive training steps.

The model could then be trained using an established dataset
based on the fully connected (BP) network. When it comes
to model validation and future applications, a satellite image
containing IW signatures is needed. The input information was
extracted from the satellite images and publicly available data
sources (ETOPO1 and WOA 2018 datasets). The extracted IW
wave crest was saved as a series of longitude and latitude points,
and these points were input into the model one by one. The PS
and PD modules predicted the propagation speed and direction.
After integrating on the time step, the established forecast model
output the locations of the IW after one or several time steps
(12.42 h, for example) for each point. The forecasted points
were connected together to get the forecast IW locations. When
running the model iteratively, the LWC can be recalculated using
the distances between adjacent points.

B. Extraction of IW Signatures From Satellite Images

Two types of satellite images, MODIS and OLCI images, were
used in our study. The MODIS sensors onboard the National
Aeronautics and Space Administration (NASA) satellites Terra
and Aqua acquire data in 36 spectral bands with a swath of
2330 km and a spatial resolution between 250 and 1000 m. The
OLCI is a push-broom instrument with five camera modules
onboard the European Space Agency (ESA) Sentinel-3 satellite.
The OLCI acquires images in 21 spectral bands with a swath of
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Fig. 3. (a) Leading IWs in the Andaman Sea extracted from satellite images. (b) Histogram of propagation speeds of IWs. (c) Rose map of PDs of IWs. The
north corresponds to 0 degrees and follows a clockwise direction.

1440 km and a spatial resolution of 300 m for full-resolution
and 1200 m for reduced-resolutions. In this study, 123 MODIS
images with a spatial resolution of 250 m (Band 1 and 2) and
33 full-resolution OLCI images (Band 3) containing clear IWs
signatures were used.

IWs manifest as bright and dark bands on satellite images, as
shown in Fig. 1. The latitude and longitude information for the
Single IW or leading wave of an IW packet was labeled manually
and output to a geographic information system (GIS) file. The
LWC was then measured with the created IW labels. The PP
distances were obtained by measuring the positive and negative
peaks of the IW profiles along the PD [37]. Propagating IWs
will induce convergence and divergence regions on the surface
and modulate the capillary surface waves. The modulated ocean
surface will modulate the energy received by the radar and hence
make the IW manifest as bright or dark bands. The PP distance
is closely related to the amplitudes of IWs, which makes it a
good indicator of IW scales across wave crest direction. The
extracted wave crests of IWs contain the longitude and latitude
information, so the water depth where IW is observed can be
interpolated from the ETOPO1 Global Relief Model with a
spatial resolution of 1 arc-minute. The ocean stratification data
was extracted from the World Ocean Atlas (WOA) 2018 dataset,
where the monthly averaged temperature and salinity data are
provided. The mixed layer depth corresponding to the maximum
buoyancy frequency level and stratification data were derived
from the WOA 2018. The density difference was the averaged
density difference between the upper and lower layers under

the two-layer ocean assumptions. The initial PD was needed to
resolve cross-propagation IWs, and it was determined based on
the extracted wave crests.

When building the training dataset for the forecast model, we
also estimated the propagation speeds of IWs from the locations
and time differences of IWs. If we tracked an IW in a pair of
images, we used the displacement of the IWs and the acquisition
time difference to calculate the IW PS. If multiple IWs were in a
single satellite image, we assumed the time difference between
the two IWs was the semidiurnal tide period. Although IWs
generated by different tidal cycles may not be quite the same, the
extracted samples show that IW propagation speeds show no ob-
vious variations during the spring and neap tide, mainly ranged
between 2.0 and 2.5 m/s. IWs generated at the spring/neap tide
had different characteristics, so the difference may be considered
implicitly to some extent by including the PP distance and LWC
as input parameters. As a result, we collected 1189 samples and
further divided them into an 80%/20% training/test dataset.

We overlaid the IW leading wave crests on the topographic
map in Fig. 3(a), which shows the spatial distribution of IWs. IW
propagation characteristics show that IW activities were mainly
in four regions of the Andaman Sea. In Region A, the IWs had
two opposite PDs, and the LWC of the IWs ranged from tens
of kilometers to over one hundred kilometers. IWs in Region B
had short LWCs, which grew to several hundred kilometers when
propagating to Region D. Longer IWs were mainly located in
the eastern Andaman Sea because of the eastward propagating
IWs and deep water. Based on the extracted IW information,
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Fig. 4. Loss plot of the PD (a) and PS (b) modules. The insert texts show the root mean squared error and correlation coefficients in the training and test dataset.

the propagation speeds of the IWs in the Andaman Sea range
from 0.5 to 4.1 m/s, with a mean value of 2.0 m/s [see Fig. 3(b)].
Fig. 3(c) shows that the IWs in the Andaman Sea had a significant
variation of PDs, with a dominant PD of 60°–90°.

III. RESULTS

A. Model Results

The BPNNF model was trained using the training dataset
described in Section III. The model results for the training
dataset and test dataset for the PS and PD modules are shown in
Fig. 4. For the PS module, the root-mean-square error (RMSE)
of the training dataset and test dataset were 0.19 and 0.20 m/s,
respectively, and the correlation coefficients were 0.90 and 0.88,
respectively. Since the mean IW propagation, PS was around
2.0 m/s, as shown in Fig. 3(b), the PS module gave a PS error of
10%. The training performance in Fig. 4 shows that the model’s
error decreased gradually, and the mean-square error (MSE)
of the PS module reached the best validation performance at
epoch 37 [see Fig. 4(b)]. Similarly, Fig. 4(a) shows that the
RMSE of the PD module was less than 10°, and the correlation
coefficients were both up to 0.99. Fig. 4 shows that the gradient
decreased gradually, and the MSE of the PD module reached the
best validation performance at epoch 16. When the MSE was not
reduced, and validation checks increased in epoch 16, the model
stopped training in epoch 22 (validation check reaches six). This
result shows the self-adjusting ability of BP neural networks.

B. IW Forecast After One Tidal Cycle

To test the forecast model, we analyzed four MODIS images
containing clear IWs signatures, as shown in Fig. 5. The solid
color lines in Fig. 5 represent the locations of the IWs generated
from different generation sites at the different tidal cycles. In
Fig. 5(a), five IWs propagate in opposite directions in Region
A. Two IWs with shorter wave crests propagate eastward, while
the other three IWs with longer wave crests propagate westward.
Three large IWs propagating eastward are shown in Fig. 5(b),

TABLE I
BIASES OF THE MODEL RESULTS AND SATELLITE OBSERVATIONS

propagating from Region B to D. Fig. 5(c) shows three IWs
propagating in the northeast direction in Region C. In Region
D, Fig. 5(d) shows four IWs with cross PDs. The LWC, PP
distances, water depth, mixed layer depth, density difference,
and locations, were extracted along the IW wave crest as model
inputs. Using the leading wave crest within an IW packet as
input, we ran the model to forecast the IW locations. The model-
forecasted IW locations after one tidal cycle were compared with
IW wave crest locations extracted from satellite observations.
IWs in Fig. 5(a)–(d) are labeled as Case 1, 2, 3, and 4.

In each case, more than two wave crests of IWs generated
at different semidiurnal tidal cycles are shown. The machine-
learning model results are shown as solid black lines in Fig. 6.
The red lines in Fig. 6 represent the locations of IWs in Fig. 5.
The machine-learning model results agreed well with satel-
lite observations. Since the RMSE of the PS module is about
0.20 m/s (see Fig. 4), this propagation speed error led to an
average distance error of 8.94 km after one semidiurnal tidal
cycle (12.42 h). Thus, the most significant distance error was
17.66 km for the northern wave crests in Case 2-1, as shown in
Fig. 6(c). The IWs in the same location with cross PDs are also
well forecasted, as shown in Fig. 6(g) and (h).

The comparison between machine-learning model results and
satellite observations are listed in Table I. Case 2-1 has the
largest RMSE, while Case 4-2 has the smallest RMSE, as
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Fig. 5. Satellite images were used to test the machine-learning models. MODIS images were acquired at 04:35 on 9 February 2019 (a), 04:02 on 9 May 2017
(b), 04:15 on 30 July 2019 (c), and 04:02 on 9 May 2017 (d). Solid red lines represent locations of IWs generated at different tidal phases.

shown in Fig. 6(h). IWs propagating in regions with significant
water depth changes may result in larger RMSE, as shown in
Fig. 6(b) and (c), and vice versa [see Fig. 6(d) and (h)]. The
total average RMSE of the machine-learning model results and
satellite observations was 3.21 km. Two factors were adopted
to evaluate the results, i.e., the correlation coefficient and the
Fréchet Distance were used to assess the similarity of two curves
by considering their distance and shape [40]. A higher similarity
between two curves gives a lower Fréchet Distance. If two curves
have the same location and shape, the Fréchet Distance is zero.
As shown in Table I, the average correlation coefficient is 0.95,
and the average Fréchet Distance is 11.46 km, indicating high
agreement between the machine-learning model and satellite
observations.

C. IW Forecast After Multiple Tidal Cycles

The machine-learning model forecast results of two semidi-
urnal tidal cycles were tested using MODIS images in Regions
A–C. Fig. 7(b) shows that the IWs propagate from Region B to
Region D. The forecasted locations of IWs for one and two
semidiurnal tidal cycles are shown as solid black lines. The
model predicted IW locations after one semidiurnal tidal cycle
served as the input for the model to predict IW locations after
two semidiurnal tidal cycles. Thus, the forecast model could

repeatedly run to predict the IW locations for multiple tidal
cycles.

The forecasted results of the machine-learning model after
two semidiurnal tidal cycles are shown in Fig. 7. Fig. 7(a)
and (b) shows that the machine-learning model’s predicted IW
locations were consistent with cloud-free satellite observations.
However, Fig. 7(c) shows more significant location discrepancy.
We believe that the more complicated topography in the northern
Andaman Sea may lead to considerable changes in the parame-
ters of IWs, such as the PP distance.

IV. DISCUSSION

A. Influence of Different Model Run Time Steps

Since the machine-learning forecast model can run iteratively
to predict IW locations, the time difference between the input
and output of IW locations is defined as the time step. The time
step of the model affects the forecasted results, especially in
the IWs propagating across the isobaths. An example showing
the influence of running the model with different time steps is
shown in Fig. 8. We ran the model with time steps set to 1/4,
1/3, 1/2, and the full semidiurnal tidal cycle, i.e., 3.11, 4.14,
6.21, and 12.42 h, and compare the model results with satellite
observations. When IW1 propagates to IW2 in Fig. 8, the water
depth changes from more than 2000 m to less than 1000 m. The
more substantial time step of 12.42 h shows worse results than
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Fig. 6. Comparison of the machine-learning model’s forecasted IWs to those observed in MODIS images in Fig. 5. Labels of IWs are the same as Fig. 5. Cases
1, 2, 3, and 4 correspond to Fig. 5(a)– (d). Solid red lines represent satellite observations of IWs and black dashed lines represent model-predicted locations of IWs
after 6.71 h. Solid black lines represent machine-learning model predictions after one semidiurnal tidal cycle (12.42 h).

Fig. 7. Same as Fig. 6 but for the machine-learning model’s forecasted results after two semi-diurnal tidal cycles. MODIS images were collected on 30 July 2019
(a), 19 August 2019 (b), and 30 September 2019 (c), respectively.
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Fig. 8. Same as Fig. 6 but for different time steps. Time steps are set to 12.42
(a), 6.21 (b), 4.14 (c), and 3.11 h (d).

those with smaller time steps. Using a more modest time step can
be considered as the bathymetry changes more gradually. When
time steps were 4.14 and 3.11 h, the model results were almost
the same, and the discrepancy with the time step of 6.21 h was
also minimal. Thus, when the topography changes significantly,
the IWs propagate across the steep isobaths; a smaller time step
may improve the forecast result.

B. Influence of Errors in Input Parameters

Eight parameters, which served as inputs of the machine-
learning forecast model (see Fig. 2), were extracted from la-
beled IW crests. The machine learning forecast model built
the relationship between the input parameters and predicted IW
locations. The error introduced in the input parameters affected
the model’s predicted results. When we ran the forecast model
iteratively to predict IW locations after multiple tidal cycles, all
the input parameters were updated except the PP distance and
initial PD. The initial PP distance and PD always served as inputs
in the following tidal cycles. When IWs evolved in the ocean,
their properties, such as the LWC and the PP distance, changed.
Errors were also introduced to the PP distance when IWs were
not observed clearly due to the high wind or waves, clouds or
the geometry of observations. The influences of errors in the PP
distances and initial PDs to the forecasted results were tested
in four regions of the Andaman Sea. The results are shown in
Fig. 9.

The spatial resolutions of MODIS and OLCI images used in
this study are 250 and 300 m. An error of one pixel leads to a PP
distance error of about +/− 300 m. Thus, the PP distances were
set to three values: PP-300 m, PP (the actual PP distance), and

Fig. 9. Same as Fig. 6 but for different PP distances and initial main PDs.
Solid black lines represent the results with normal PP distances (initial main
PDs) and solid blue (green) lines represent the results with smaller (larger) PP
distances (initial main PDs).

PP+300 m to test the influences on the machine-learning model’s
forecasted results. The time step of the machine-learning fore-
cast model was set to 6.21 h. Two regions with large and small
water depth changes in the Andaman Sea were tested, and the
results are shown in Fig. 9. Although different errors are included
in the PP distance parameters, the forecasted IW propagations
after one tidal cycle were still close to each other and satellite
observations.

The errors in IW’s initial main PDs were tested like the PP
distance cases. To evaluate the influences on the forecast results,
we used three PDs as inputs: MP-10°, MP (the real initial PDs),
and MP+10°. The forecast model’s time step was set to 6.21 h,
and the results are shown in Fig. 9. With different initial PDs, the
machine-learning model’s forecasted IW locations were close to
each other and satellite observations.

The results shown in Fig. 9 verify that we can run the model
iteratively over multiple tidal cycles to predict IW positions
even without updating these two input parameters. The results
indicate that the machine learning forecast model has a enormous
tolerance for errors included in input parameters, such as the
PP distance and initial PD. Since eight parameters determined
the IW propagation (see Fig. 2), small errors in some input pa-
rameters did not deteriorate the model performance. The model
still obtained results close to the satellite observations. One
should realize that errors associated with the input parameters
will accumulate with the iterative running of a model. However,
test results shown in Fig. 7 indicate that the model’s forecasted
results were still reliable after two tidal cycles. We believe that
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Fig. 10. Same as Fig. 6 but for IW propagation during different seasons. The upper panels show forecast results in different seasons, the corresponding buoyancy
frequency is shown in lower panels. Blue lines represent the forecast (buoyancy frequency) results of the dry season and black lines represent the results of the
rainy season.

two tidal cycles is long enough to predict trans-meridional IW
propagation characteristics in the Andaman Sea.

C. Influence of Seasonal Variations

IW propagations have seasonal variations because the ocean
stratification changes dues to solar heating, ocean mixing, pre-
cipitation, and other factors. The Andaman Sea has a dry season
from January to April and a rainy season from May to November
controlled by the Indian monsoon. To examine the influences of
seasonal variations on IW propagation, we ran the machine-
learning forecast model to predict IW propagation during the
dry and rainy seasons in four regions of the Andaman Sea.

The four cases shown in Fig. 6 were selected to examine
the IW propagation after one tidal cycle in different seasons.
These cases cover the four regions labeled in Fig. 3. We chose
March and August to represent the dry season and rainy season,
respectively. The input parameters are the same as those in Fig.
6, with the density profiles derived from the climatology data
of March and August and a time step of 6.21 h. Variations
of the mixed layer depth and density difference were apparent
in the two seasons. The machine-learning model’s forecasted
results are shown in Fig. 10. In Cases 1-2, 2-1, and 4-2, the
model-predicted IW locations after one tidal cycle were close to
each other and the satellite observations. IW predictions in Case
3-1 had more substantial discrepancies between the results in the
dry and rainy seasons. The results indicate that IW propagations
in Regions A, B, and D show little seasonal variations, while in

Region C, discrepancies in the dry and rainy seasons exist. The
IWs propagate faster in the rainy season.

The buoyancy frequency values of the four regions in the
dry and rainy seasons are shown in Fig. 10. The distribution of
buoyancy frequency in Cases 3-1 and 4-2 had more substantial
discrepancies than that in Cases 1-2 and 2-1. In the dry season,
Cases 3-1 and 4-2 had one more significant peak and one smaller
peak, while there was only one peak in the rainy season. The
peak values of the buoyancy frequency of Case 3-1 had the most
significant difference, which indicates that the most considerable
variations of ocean stratification were in Case 3-1 (Region
C). A higher peak value of the buoyancy frequency indicates
stronger ocean stratification and a more considerable density
difference between the upper and lower layers of the ocean.
The propagation speed of IWs is proportional to the density
difference [41]. This result explains why IW propagated faster
in the rainy season in Case 3-1, while the peak values in Case
4-2 were close in the dry and rainy seasons.

D. Comparison With the Classic Korteweg–De Vries
Equation Results

The Korteweg-de Vries (KdV) equation is widely used in the
estimation of IW propagation velocities. We compared the prop-
agation velocities from the BPNN model and the KdV equation.
The PD module was used to provide the PD for the KdV equation
forecast. The nonlinear propagation velocity described by the
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Fig. 11. Forecast of IW propagations in the Andaman Sea using the developed
model and the KdV equation after two semidiurnal tidal cycles. The left image
shows the results of the developed model, and the right image shows the results
of the KdV equation.

KdV equation is expressed as [15], [42]

Cp = C0 +
α

3
A0 (1)

α =
3C0

2

h2 − h1

h1h2
(2)

where C0 is the linear PS, α is the nonlinear coefficient, and A0

is the amplitude of IW. The amplitude of IW in the Andaman
Sea was set to 60 m in this study [15]. IW propagation after two
semidiurnal tidal cycles was also tested; the results are shown
in Fig. 11. We found that the KdV results had more significant
deviations after one and two semidiurnal tidal cycles.

The amplitudes of the IWs ranged from tens to hundreds of
meters. Amplitude retrieval from satellite images has been stud-
ied in the literature [43], but the amplitude retrieval algorithm’s
accuracy still needs further investigation. We can briefly evaluate
the influence of amplitude error on the forecast results. Here we
considered an average water depth of 2000 m (see Fig. 3), a
mixed layer depth of 100 m (see Fig. 10), average densities
of the upper and lower layer of 1021 and 1025 kg/m3, and an
average linear propagation speed is estimated to be 1.90 m/s. If
we assumed an amplitude error of 20 m, it led to a nonlinear
propagation velocity error of 0.18 m/s. During one semidiurnal
tidal cycle, the phase velocity error will lead to a location
error of 8.10 km. If significant errors are introduced to the IW
amplitude, the forecast IW locations may have large deviations.
Compared to the KdV equation, the developed model had better
performance and was more robust when errors were introduced
to the input parameters.

E. Influence of Initial Main PDs

Cross-propagating IWs have been observed in the Andaman
Sea, which is different from IW characteristics shown in the
Sulu-Celebes Sea [35]. To find the influence of initial main
PDs on the forecast results, we trained the model 30 times. As
shown in Fig. 12, models with an initial main PD had better
performance. The RMSE was smaller and more stable on an
independent test dataset for models with an initial main PD

Fig. 12. Model test results with (blue lines) or without (red lines) the initial
main PDs for 30 tests. The green circles indicate the best performance in the 30
tests. The upper panel shows the errors on the test datasets, and the lower panel
shows the correlation coefficients during the 30 tests.

than models without an initial main PD. On tests 13 and 27, we
found extra-large errors and lower correlation coefficients for
the model without an initial main PD. This fact shows the lower
generalizability of the model. When applied to the IW forecast,
models without an initial main PD are more likely to produce
results with large deviations. Therefore, the introduction of the
initial main PD to the forecast model is necessary for situations
with cross-propagating IW patterns. Previous discussions have
also shown that the model has a large tolerance for errors
introduced to the initial main PD, which makes the proposed
forecast model robust.

V. CONCLUSION

In this article, we developed a BPNNF model for the analysis
of IWs in the Andaman Sea. The model was trained with IW
samples extracted from MODIS and OLCI images. The IW
propagation speed and direction samples were determined using
the locations and time differences of IWs on different satellite
images or the location differences of IWs on a single satellite
image under the assumption that the semidiurnal tide primarily
generated them. The model includes two modules to estimate
the propagation speeds and directions of IWs. The RMSE of the
PS and PD module were 0.20 m/s and 8.72°. Based on satellite
images, propagation characteristics of IWs in four subregions
of the Andaman Sea were analyzed. The propagation speeds of
IWs ranged from 0.50 to 4.10 m/s, and the dominant PD of IWs
was 60°-90° with respect to north.

Test cases covering different regions and water depths in the
Andaman Sea were used to test the developed machine-learning
model. The model-predicted results of IWs after one and two
semidiurnal tidal cycles are compared with satellite observa-
tions. The model results generally agreed well with the satellite
observations. For one semidiurnal tidal cycle forecast, the largest
RMSE was 6.10 km, the smallest RMSE was 1.79 km, and the
total average RMSE was 3.21 km. Two factors, the correlation
coefficient, and the Fréchet Distance were adopted to evaluate
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the model results. The overall average correlation coefficient
was 0.95, and the average Fréchet Distance was 11.46 km. The
results indicate that the developed machine-learning model is
accurate enough for the IW forecast in the Andaman Sea. An
IW propagating in the near-shore area is shown in Case 1-1 of
Fig. 6, where the northern part of the IW was locked by the
shallower water depth while the southern part kept propagating
east. This interesting phenomenon is also predicted well by the
forecast model.

The period of the semidiurnal tidal cycle was assumed to be
12.42 h. Although the semidiurnal tidal period may be slightly
different in different oceans, the difference did not affect the
accuracy of the developed model. Because the distance between
IWs was extracted from satellite images, the IW propagation
speed was calculated using the derived distance divided by the
semidiurnal tidal period. When forecasting IW propagations, the
calculated propagation speed was integrated over the assumed
semidiurnal tidal period. Therefore, the assumption did not
affect the accuracy of the forecast results.

The influence of the time step of the model on the forecast
results was analyzed. When IWs propagate across isobaths, a
smaller time step is preferred. Errors are most likely introduced
to the measurements of the PP distances. When one runs the fore-
cast model iteratively, only the PP distance and initial PD are not
updated in the following forecasts. The influence of errors in the
PP distance and the initial PD on model forecast results were also
analyzed finding that the developed machine-learning model had
a large tolerance for errors included in the input parameters.
Errors of −/+300 m introduced to the PP distance and −/+10°
introduced to the initial PD did not influence the model results
significantly (as shown in Fig. 10), implying that the developed
forecast model is robust. Because the proposed forecast model
has eight input parameters, some errors introduced to one input
parameter did not affect the results greatly. Finally, the influences
of seasonal variation on the IW propagation were analyzed. The
results indicate that the IWs in Regions A, B, and D had little
seasonal variation. Simultaneously, in Region C, discrepancies
were found due to the seasonal variations of ocean stratification.
The PS module of the developed model was also compared with
the KdV equation; the results show that the BPNNF model had
better forecast results and was more robust.

The machine learning forecast model does not require in-
formation on the generation location of IWs. In the Andaman
Sea, IWs are generated at seven sites and cross propagate each
other, limiting the empirical model’s applicability. The earlier
developed ZL model [35] is also not applicable for studying
cross-propagating IWs in the Andaman Sea. The proposed fore-
cast model in this study can be applied to other ocean areas where
IWs show cross-propagating patterns. The only information
needed to run our forecast model is the initial location of an
IW wave crest.

Considering the complicated propagation characteristics of
IWs in the Andaman Sea, we used parameters from IWs and
ocean environments to establish the forecast model for predict-
ing IW locations. Machine-learning techniques adopted in this
study show excellent potential for multi-dimensional informa-
tion processing and forecasting in oceanographic research.
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