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Abstract—In this article, we propose a novel deep domain adap-
tation method based on graph neural network (GNN) for multi-
temporal hyperspectral remote sensing images. In GNN, graphs
are constructed for source and target data, respectively. Then the
graphs are utilized in each hidden layer to obtain features. GNN
operates on graph structure and the relations between data samples
can be exploited. It aggregates features and propagate informa-
tion through graph nodes. Thus, the extracted features have an
improved smoothness in each spectral neighborhood which is ben-
eficial to classification. Furthermore, the domain-wise correlation
alignment (CORAL) and class-wise CORAL are jointly embedded
in GNN network to achieve a joint distribution adaptation per-
formance. By introducing the joint CORAL strategy in GNN, the
extracted features can not only be aligned between domains but
also have a superior discriminability in each domain. This domain
adaptation network is named as joint CORAL-based graph neural
network. Experiments using multitemporal Hyperion and NSF-
funded center for airborne laser mapping datasets demonstrate
the effectiveness of the proposed method.

Index Terms—Classification, domain adaptation, graph neural
network (GNN), hyperspectral remote sensing.

I. INTRODUCTION

MULTITEMPORAL hyperspectral remote sensing images
are increasingly available for data analysis and applica-

tions [1]. For hyperspectral remote sensing image classification
[2], it is cost and difficult to collect labels. If there are labeled
data available from other related images and they can be reused
to classify a new image, the classification can be achieved with-
out further labeling cost. Multitemporal hyperspectral images
are well related and thus it is appealing to reuse the labeled
knowledge of a previously acquired image for classification
of a new image. However, a classifier directly trained by the
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labeled data from one image would present poor performance
on a new image, since there exists spectral shift between the two
images. Spectral properties are affected by a lot of factors for
hyperspectral images, such as the changed season, soil mois-
ture, vegetation composition, topography, illumination, and the
acquisition angle of the sun [3]–[5]. Domain adaptation is able to
solve the problem. It aims to align distributions across domains
and obtain an adaptative classifier for the target image by trans-
ferring knowledge from previous images. The previous image
with abundant labeled data is called source domain, and the new
image with few or no labeled data are called target domain.

Over the past few years, many shallow domain adaptation
approaches have been proposed in the remote sensing com-
munity, and most of them can be classified into three major
categories including instance-based methods, classifier-based
methods and feature-based methods. The instance-based meth-
ods bridge source and target domains by reweighting data in-
stances [6]–[8]. The classifier-based methods attempt to learn
a classifier which has good performance on target domain by
transferring labeled information from source domain [9]–[11].
The feature-based methods are the most popular strategy for
shallow domain adaptation. They aim to learn a shared feature
representation where spectral drift between domains can be
minimized [12]–[16].

Recently, deep learning has been applied to domain adap-
tation because of its excellent feature representation ability.
Compared with shallow domain adaptation approaches, end-to-
end deep domain adaptation approaches transfer more effective
knowledge by embedding adaptation modules in the network
architecture. Maximum mean discrepancy (MMD) is a popular
distribution alignment strategy, which is utilized in many deep
domain adaptation methods. Tzeng et al. [17] proposed the
deep domain confusion method, which firstly regularizes the
single adaptation layer of deep neural network (DNN) using
linear-kernel MMD. Similar to MMD, correlation alignment
(CORAL) could also measure the distribution distance between
domains, and it attempts to align the second-order statistics
of the source and target features. Sun et al. [18] extended the
CORAL to deep architectures and proposed the CORAL for deep
domain adaptation (D-CORAL) approach, so that a nonlinear
transformation that aligns the correlations of features between
the two domains is obtained. Besides, adversarial learning is
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another increasingly popular deep domain adaptational strategy
and it learns the domain-invariant features in a two-player game
inspired by generative adversarial networks (GANs) [19]. Ganin
et al. [20] first introduced adversarial learning into deep domain
adaptation and proposed domain adversarial neural network
(DANN), where a domain discriminator is used to obtain the
domain-invariant features.

Deep learning has also been applied for domain adapta-
tion of hyperspectral remote sensing images. Wang et al. [21]
proposed a domain adaptation method by learning the mani-
fold embedding and matching the discriminative distribution in
source domain with neural network. Chen et al. [22] employed
the criterion of cycle consistency to achieve features that are
both domain-invariant and discriminative. Liu et al. [23] pro-
posed a class-wise adversarial networks and achieved a superior
feature-alignment performance. Gross et al. [24] proposed a
nonlinear feature normalization alignment approach for domain
adaptation of multitemporal hyperspectral images, which is able
to mitigate nonlinear effects in hyperspectral data and transfer
spectral features from one domain to another. Saha et al. [25]
exploited a cycle-consistent GAN to learn deep transcoding
between multisensory and multitemporal domains.

Deep domain adaptation methods usually utilize full con-
nected network for feature extraction of hyperspectral data
[21]–[23], [26], which cannot exploit the relations between data
points. Some domain adaptation networks that utilize CNN for
feature extraction are able to extract spatial spectral information
[24], [25]. However, CNN is conducted on small patches, which
are usually squared spatial windows, and thus the ability in
modeling the relations between data points are still limited [27].
Moreover, the classification of pixels on the boundary between
different classes may be affected. For the pixel on the bound-
ary, the patch around this pixel contains signals from multiple
classes. Thus, the CNN-extracted features cannot accurately
represent the class of the central pixel, but are mixed features
from multiple classes.

Recently, graph neural networks (GNNs) have been received
significant attentions. GNN operates on graph structure and is
able to aggregate features and propagate information through
graph nodes. Compared to CNN that exploits the local spatial
information, GNN utilizes graph to model the data relations
in a larger range. The connected samples in the graph are
spectral neighbors that have similar spectral properties and may
not spatially adjacent, and thus GNN can model longer-range
spatial relations than CNN, and the edge information can also
be well preserved [27]–[29]. Moreover, GNN not only feeds
pixelwise samples into network which is very suitable for pixel
level hyperspectral image classification [28], but also feeds a
graph into network to exploit the relations between data. The
new feature of a node is a weighted sum of its neighboring
nodes on the graph. Therefore, the nodes in a neighborhood are
more likely to have similar features, and the smoothness of each
spectral neighborhood is improved [29].

GNN was first proposed by Gori et al. [30], and the early study
propagated the information of neighboring nodes via a recurrent
neural architecture in an iterative manner, which is computa-
tionally expensive. To overcome these problems, many methods

considered to re-define the GNN architecture by adopting the
principle of convolution recently. Bruna et al. [31] proposed the
definition of graph convolution based on spectral graph theory
and updated the representation of graph by utilizing the graph
Fourier transform. Defferrard et al. [32] adopted the Chebyshev
polynomial to reduce the computational complexity of graph
convolution in [31] and considered the K-localized spectral filter,
which provided a faster forward propagation. Kipf et al. [33]
proposed a first-order approximation of spectral graph filter and
designed a simple layer-wise propagation rule, which achieved
excellent performance in the semisupervised classification task
of graph structure data.

Lately, some works applied GNN for hyperspectral remote
sensing data analysis. Mou et al. [29] proposed a semisupervised
nonlocal GNN for hyperspectral data classification. Tong et al.
[35] introduced an attention-weighted graph into the GNN for
hyperspectral image few-shot classification. Hong et al. [28]
developed a minibatch GNN, and then combine the convolu-
tional neural network and GNN with several fusion strategies.
The proposed method allows us to train a large-scale network
in a minibatch fashion and achieves out-of-sample extension
without retraining network. Wan et al. [27] proposed a multiscale
dynamic GNN, where the graph is dynamically updated during
the training process. They further proposed a context-aware dy-
namic GNN that can capture the long-range contexture relations
in hyperspectral data [36].

Due to the advantages of GNN [27]–[29], [34], [36], we ap-
plied GNN for feature extraction of multitemporal hyperspectral
remote sensing images in this article, which is able to effectively
exploit spectral relational information in images. However, GNN
can extract features but is incapable of reducing domain shift
or conducting domain adaptation. Therefore, domain adapta-
tion strategy should be introduced to make the GNN network
generate domain-invariant features. In the proposed domain
adaptation network, we exploit GNN as a feature extractor to
generate features for both source and target data, and employ
the CORAL domain adaptation strategy for knowledge transfer.

It is worth noting that CORAL strategy only focuses on
minimizing the domain-level distribution discrepancy, without
considering the class-level information among source and target
domain. For multitemporal hyperspectral remote sensing data,
different land cover types may have different spectral shift.
Adaptation of the domain-level distribution is not equivalent to
aligning their class conditional distributions. Since the domain-
wise CORAL cannot explore the class-level relations between
the source and target domains, the class-wise CORAL is utilized
to further reduce the distribution discrepancy on a per-class
basis, which is able to adapt the conditional distributions across
domains. Combining the two alignment strategies can achieve
a joint distribution adaptation performance. The CORAL con-
ducted on each class is called class-wise CORAL. We jointly
conduct domain-wise CORAL and class-wise CORAL to ob-
tain marginal and conditional distribution adaptation results.
Our transfer network that exploits joint CORAL-based GNN
is denoted as JCGNN in this article.

The main contributions of the proposed JCGNN method are
summarized as follows.
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Fig. 1. Schematic depiction of the GNN.

1) To our best knowledge, this is the first attempt to introduce
GNN and class-wise CORAL into unsupervised domain
adaptation of multitemporal hyperspectral remote sensing
images.

2) We apply GNN as the feature extractor for domain adap-
tation, which considers not only the information among
spectral bands, but also the relations among neighboring
points. It is able to obtain an improved smoothness in each
spectral neighborhood and is beneficial to classification.

3) We introduce joint CORAL domain adaptation strategy
to the GNN to achieve both domain-level and class-level
domain adaptation performance.

The remainder of this article is organized as follows. Sec-
tion II provides introduction of unsupervised domain adapta-
tion and GNNs. Section III describes the proposed JCGNN in
detail. Section IV discusses the related works. Experimental
results are shown in Section V and the conclusion is drawn in
Section VI.

II. BACKGROUND

A. Unsupervised Domain Adaptation

Unsupervised domain adaptation approach assumes there are
abundant labeled data in source domain, but no labeled data
in target domain. Due to the domain shift across domains, a
classifier that directly trained by source domain data would have
an unsatisfactory classification performance for target domain
data. In this article, we aim to align the data distribution across
domains by jointly conducting domain-wise CORAL and class-
wise CORAL to obtain marginal and conditional distribution
adaptation performance. The joint CORAL domain adaptation
strategy is introduced to GNN to achieve unsupervised domain
adaptation.

Supposed the source domain data is denoted as Xs ∈ RNs×d

with labelsYs ∈ RNs×1 and the target domain data is denoted as
Xt ∈ RNt×d without labeled information, where Ns and Nt rep-
resent the number of source and target features, respectively, d is
the feature dimensionality. Xs and Xt are distributed differently,
and the domain adaptation aims to obtain the domain-invariant
features of the two-domain data. Then the classifier trained on
the source data in the comment feature space can be directly
applied for classification of target data.

B. Graph Neural Networks

The network structure of GNN is illustrated in Fig. 1 [37],
where three hidden layers are used. GNN employs graph to cap-
ture the relations between data points, and the graph is utilized

in each hidden layer to obtain features. Softmax classifier is
applied to the features from the last hidden layer to conduct
classification.

In GNN, graph construction is first conducted before the
network training [38]. LetX ∈ RN×d represent a dataset, where
N denotes the number of data points and d represents the dimen-
sionality. The graph constructed on X is denoted as G = (X, E,
A) with N nodes, where each node corresponds to a data point
xi�X, eij = (xi, xj)�E is the set of edges and A ∈ RN×N is the
graph adjacency matrix.

The graph construction process generally contains two steps:
determination of graph adjacency relationships and calculation
of graph edge weights. For graph adjacency construction, we
utilized k nearest neighbors method to obtain a sparse graph.
For each data point xi�X, we calculated the Euclidean distances
between xi all the other data points in X, and then selected its k
nearest neighbors with the shortest Euclidean distances. In graph
G, node xi is only connected to its k nearest neighbors with edges
and a sparse graph is thus achieved. For edge weight calculation,
Gaussian kernel function is adopted to measure the similarity
between two connected nodes. Suppose xi and xj are connected
neighbors, and the edge weight between them is defined as [39]

Aij =

{
exp−

dist(xi,xj)

σ2 , xj ∈ N(xi) or xi ∈ N(xj)
0, otherwise

(1)

where N(xi) denotes the k nearest neighbors of xi, Aij denotes
the element of adjacency matrix A in row i and column j. σ
is the Gaussian diffusion kernel parameter, and dist(xi,xj) de-
notes the Euclidean distances between xi and xj which is calcu-
lated as

dist(xi, xj) =

√√√√ d∑
k=1

(xik − xjk)
2. (2)

It is worth noting that the adjacency matrix A represents
the relational information of spectrum between pixels and the
construction process do not need any labeled information.

Based on the constructed graph, the features extracted in the
(l + 1)th layer of GNN is denoted as [33]

H(l+1) = g
(

ÂH(l)Θ(l)
)

(3)

where H(l) ∈ RN×Fl is the features in the lth layer and H(0)=
X, Fl is the number of nodes in the lth layer and F0 = d, Θ(l) ∈
RFl×Fl+1 is the network parameters. g( · ) denotes the ReLU
activation function. Â is the normalized graph adjacency matrix,
which is defined as [33]

Â = D̃−
1
2 (A + IN ) D̃−

1
2 (4)
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Fig. 2. Schematic depiction of the JCGNN.

where D̃ is a diagonal matrix and D̃ii = 1+
∑

j Aij . IN is the
identity matrix.

It can be seen from (3) that each GNN layer firstly generates a
new feature representation by performing ÂH(l) and then feed
the features to a fully connected layer characterized by Θ(l).
The new feature is denoted by [29]

T(l) = ÂH(l). (5)

For the ith node, the lth layer feature and the new feature are
denoted as Hi

(l) and Ti
(l) respectively, and the indices of the

ith node and its k nearest neighbors are denoted as Ni. Its new
feature Ti

(l) is calculated as

T(l)
i = ÂiH(l) =

∑
j∈Ni

ÂijH(l)
j (6)

where Âi denotes the normalized weights between the ith node
and all the nodes in the graph. The new feature of the ith node is a
weighted sum of its neighboring nodes on the graph. Therefore,
the nodes in a neighborhood are more likely to have similar
features, and then classified as the same category, which can
reduce the within-class differences and thus improve the feature
discriminability [29].

Supposing the features of the ith data point from the last
hidden layer is denoted as zi, the softmax activation function
is applied for classification [33]

pic = softmax
(
zic

)
=

exp
(
zic

)
∑C

j=1 exp (z
ij)

(7)

where zic represents the cth feature of zi, i ∈ {1, . . . , N}, and
pic is the probability of zi that belongs to the cth class.

III. PROPOSED METHOD

The architecture of the proposed JCGNN is shown in Fig. 2,
where three-layer GNN is employed for feature extraction. Gf

denotes the feature extractor. GNN conducts full-batch network
learning. The input of GNN for domain adaptation contains

the source labeled data Xs ∈ RNs×d with its normalized graph
adjacent matrix Âs ∈ RNs×Ns and the target data Xt ∈ RNt×d

with its normalized adjacent matrix Ât ∈ RNt×Nt . The source
labeled data Xs is used to train the classifier, and both Xs and
Xt are employed to obtain the domain-invariant features. Two
feature extractors with shared weights are applied to source
data and target data, respectively, which can also be regarded
as one feature extractor with two inputs. All the four graphs in
the first row denote the source graph, where the orange nodes
represent source data points and the spectrally similar points
are connected by edges. Similarly, the four graphs with green
nodes in the second row denote the target graph. The produced
domain invariant features are denoted as Zs ∈ RNs×C and
Zt ∈ RNt×C for source data and target data, respectively. Zs=
[Zs

1,Zs
2, …,Zs

C], where Zs
i denotes the source data of the ith

class in the feature space. Target data can also be divided into C
classes according to their pseudo labels. Zt= [Zt

1,Zt
2, …,Zt

C],
where Zt

i denotes the target data that are predicted as the ith
class. With the softmax classification, Ps ∈ RNs×C denote the
predicted probability results of source domain andPt ∈ RNt×C

denote the predicted probability results of target domain. The
domain-wise CORAL strategy and class-wise CORAL strategy
are combined to constrain the output features between domains
to be well aligned.

A. Feature Extraction and Classification by GNN

We apply GNN for feature extraction and classification of
source data and target data respectively. For source data Xs and
target data Xt, the graphs Gs and Gt are first constructed. Then
two feature extractors with the shard weights are applied to the
two-domain data. The three-layer-GNN-generated features are
denoted as

Zs = ÂsReLU(ÂsReLU(ÂsXsΘ
(0))Θ(1))Θ(2) (8)

Zt = ÂtReLU(ÂtReLU(ÂtXtΘ
(0))Θ(1))Θ(2) (9)
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Algorithm 1: JCGNN Approach

Input: Source domain data Xs ∈ RNs×d with labels
Ys ∈ RNs×1

target domain data Xt ∈ RNt×d.
epochs_1 and epoch_2 are the numbers of iteration.

Output: The target probability prediction results Pt.
Initialization:

Randomly initializing the parameters of GNN.
Calculating the normalized adjacency matrix As and At

by (1).
Training:
stage 1: pre-train and domain-level alignment:

for i = 1→ epochs_1 do
Generating embedding of both domains: Zs ← (8)

Zt ← (9).
Calculating loss function LDCGNN using (15).
Updating the parameters of feature extractor Gf by
backpropagating through LDCGNN.

end for
stage 2: class-level alignment:

for i = 1→ epochs_2 do
Generating embedding of both domains: Zs ← (8)

Zt ← (9).
using predicted probability result Pt to assign pseudo
labels for target domain data.
Calculating loss function LJCGNN using (16).
Updating the parameters of feature extractor Gf by
backpropagating through LJCGNN.

end for

where Θ(0) ∈ Rd×F0 , Θ(1) ∈ RF0×F1 and Θ(2) ∈ RF1×C

are the parameters of the three GNN layers, F0, F1 are the num-
ber of nodes in the first two hidden layers, and C is the number of
classes. The softmax activation function in (7) is finally applied
to the features Zs and Zt respectively for classification [33].

Source labeled data are used to calculate the classification loss
in this article, which is obtained by the cross-entropy error over
all source labeled data

LClassification = − 1

Ns

Ns∑
i=0

C∑
c=1

yics · log pics (10)

where yics is the one-hot encoding of the class label for the ith
source data point, and pics is the cth output features of softmax
activation function.

B. Feature Alignment by Joint CORAL

The domain-wise CORAL reduces the distribution discrep-
ancy among domains by aligning the covariance of the source
and target features [18]. The loss measured by domain-wise
covariances is defined as

LDomain−wiseCORAL =
1

4d2
||Cs − Ct||2F (11)

where || · ||2F is the squared matrix Frobenius norm, and Cs and
Ct denote the covariance matrices of the two-domain data which

can be estimated as

Cs =
1

Ns − 1

(
ZT
s Zs − 1

Ns

(
1T Zs

)T (
1T Zs

))
(12)

Ct =
1

Nt − 1

(
ZT
t Zt − 1

Nt

(
1T Zt

)T (
1T Zt

))
(13)

where 1 is an all-ones column vector.
Since different classes may have different spectral drifts,

the marginal distribution adaptation cannot guarantee the dis-
tribution adaptation of each specific class. To achieve better
alignment, CORAL is generalized on a per-class basis, which
is called class-wise CORAL. The class-wise CORAL loss is
defined as

LClass−wiseCORAL =
1

4d2C

C∑
i=1

∥∥Ci
s − Ci

t

∥∥2
F

(14)

where C denotes the number of class. Ci
s and Ci

t denote the
covariance of ith class in the source domain and target domain,
respectively, which can be estimated similarly with (11) using
class-specific samples in the corresponding domains.

C. Two-Stage Training Procedure

The class-wise CORAL requires the labeled information to
calculate the covariance matrix of each class. However, there is
no labels in target domain for unsupervised domain adaptation.
Therefore, we utilized pseudo labels of target data to obtain
covariance matrix of each class. Due to spectral drift, the network
trained on source domain data without any domain adaptation
would have a poor performance on target domain data, resulting
in inferior predicted labels of target data. Since domain-wise
CORAL does not require labels and is able to reduce the global
distribution difference, it is used to obtain a more accurate
pseudo labels of target data than the prediction method without
using any domain adaptation strategy. Then the source data with
labels and target data with pseudo-labels are used to compute
the covariance matrix for each class, respectively.

In this article, we adopt a two-stage training procedure: Firstly,
we train a domain-wise CORAL-based graph neural network
(DCGNN), by defining the loss function as follows:

LDCGNN = LClassification + λ1LDomain−wiseCORAL. (15)

Using DCGNN, the target data are predicted and the pseudo
labels are utilized to obtain the covariance matrix of each
target class. Second, with the initial pseudo labels obtained
by DCGNN, the joint CORAL-based graph neural network
(JCGNN) is trained with the loss function composed of joint
CORAL loss and classification loss, which is expressed as

LJCGNN = LClassification + λ1LDomain−wiseCORAL

+ λ2LClass−wiseCORAL (16)

where the first term denotes the classification loss on source
labeled data, the second term denotes the domain-wise CORAL
loss and the third term denotes the class-wise CORAL loss. λ1

and λ2 are trade-off parameters to balance the contributions of
different losses.
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Since the joint CORAL can further improve the prediction
accuracy, the pseudo labels of target data are updated during
each iteration of the training process. The training procedure of
JCGNN is summarized in Algorithm 1.

IV. RELATED WORK AND DISCUSSION

The relationships between the proposed JCGNN and several
related works are described as follows.

1) Deep Adaptation Network (DAN) [40]: The DAN
achieves domain adaptation by exploring multikernel MMD
for matching different distributions. In the proposed JCGNN,
we achieve domain adaptation by using domain-wise CORAL
strategy and class-wise CORAL strategy to extract domain
invariant features. The MMD strategy and CORAL strategy are
all distribution measurement methods of the data, where MMD
utilizes first-order statistic and CORAL exploits the second-
order statistic. Moreover, DAN only considers the domain-level
distribution discrepancy without exploring the class-level infor-
mation. Our proposed JCGNN jointly takes domain-level and
class-level distribution discrepancy into account.

2) Multiple Adversarial Domain Adaptation (MADA) [23]:
The MADA is a domain adaptation approach based on ad-
versarial learning and it considers class-level information by
using multiple domain discriminators. Our proposed JCGNN
jointly embeds domain-wise CORAL strategy and class-wise
CORAL strategy in GNN. Both the domain-level information
and class-level information are considered.

3) Moving Semantic Transfer Network (MSTN) [41]: Both
the MSTN and the proposed JCGNN consider the class-level
information. However, MSTN aims to align exponential moving
average centroids with the same label but different domains,
while our proposed JCGNN adopts CORAL strategy and aims
to align the per-class covariance matrix of features.

4) Correlation Alignment for Deep Domain Adaptation (D-
CORAL) [18]: The D-CORAL embeds CORAL strategy in
the deep architecture and aims to align the covariance matrix
of features that extracted by DNN. The CORAL adopts the
second-order statistics as in our approach. However, it calculates
the covariance matrix by utilizing all the input data in a do-
main, without considering the distribution discrepancy between
classes. Moreover, The D-CORAL ignores the interdependence
among the spectrum during feature extraction. The proposed
JCGNN applies GNN for feature extraction, and adopts CORAL
strategy on both domain-level and class-level.

V. EXPERIMENTS

A. Datasets Description

The performance of the proposed JCGNN is evaluated by
comparing with several state-of-art domain adaptation methods
on two real-world multitemporal hyperspectral remote sensing
datasets, including Botswana (BOT) multitemporal Hyperion
dataset and the Houston multitemporal dataset.

1) Botswana Multitemporal Hyperspectral Dataset: The
BOT dataset consists of three multitemporal images that were
acquired by NASA EO-1 Hyperion instrument in May, June

and July 2001 over the Okavango Delta, Botswana. All im-
ages contain 242-band data at a 30-m spatial resolution and
cover the 357–2576 nm spectral portion in 10 nm spectral
resolution. Removal of uncalibrated and noisy bands leaves
145 bands for experiments. The three images include nine
identified classes and any two of them can be selected as the
source and target data, and thus six data pairs are available.
The images and labeled information are shown in Fig. 3. The
class names and the number of samples of the image are given
in Table I.

2) Houston Multitemporal Hyperspectral Dataset: The
Houston images were collected by NSF-funded Center for Air-
borne Laser Mapping (NCALM). The dataset consists of two
multitemporal images that were acquired over the University of
Houston campus and its neighboring area in 2012 and 2017,
respectively. The 2012 Houston data has 144 bands but the 2017
Houston data only has 48 bands. The spectral range of both
images is 380–1050 nm. Every three bands in 2012 Houston
data were averaged as a new band [45], and then the number of
the spectral band in the 2012 Houston data becomes 48, which
is consistent with the dimensionality of the 2017 Houston data.
We used the 2012 Houston data and 2017 Houston data with
four classes as source and target data respectively. The images
and labeled information are shown in Fig. 4. The class names
and the number of samples of the image are given in Table I.

B. Setup

We compared the proposed method with several state-of-the-
art deep learning domain adaptation methods, including DAN
[40], DANN [20], MADA [23], MSTN [41], and D-CORAL
[18]. In addition, the performance of the DNN, the GNN that
were trained on source data without embedding domain adap-
tation strategy were also employed for comparison. JCGNN
achieves distribution alignment by applying the joint CORAL
to the GNN architecture. For a better understanding of the pro-
posed JCGNN, we conducted experiments using DNN with joint
CORAL (JCDNN), and GNN with only domain-wise CORAL
(DCGNN).

The proposed JCGNN was implemented on pytorch frame-
work and composed of two hidden layers (350 units for BOT
and 128, 32 units for Houston dataset). The ReLU activation
function was employed in the hidden layers and the softmax
activation function is employed in the output layer. The dropout
strategy was also used in each hidden layer to prevent over-
fitting. For a fair comparison, all the compared networks adopted
the full-connected network with the same hidden units and
activation function as JCGNN. GNN and DCGNN adopted the
GNN with the same hidden units and activation function as
JCGNN.

In the proposed JCGNN, we used Adam to optimize the net-
work and the weight decay was set to be 5e-4. The learning rate
was annealed by η = η0

(1+αi)p
, where η0 was the initial learning

rate and i was the training step updating from 0 to 1. Decay
parameters α and p were set to be 10 and 0.75, respectively.
The dropout rate was set to be 0.9. We set the initial learning
rate as 0.0008 in BOT “May-June,” “June-May,” 0.005 in BOT
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Fig. 3. BOT images in May, June, and July. (a) BOT image in May. (b) Ground truth of image in May. (c) BOT image in June. (d) Ground truth of image in June.
(e) BOT image in July. (f) Ground truth of image in July. (g) Class legend.

TABLE I
CLASS NAME AND NUMBER OF SAMPLES OF BOT AND KSC IMAGES

“May-July,” “July-May,” “June-July,” “July-June,” and 0.001 in
Houston dataset. We adopted a two-stage training procedure.
In the first stage, the number of iterations was set to be 1000
for BOT data and 500 for Houston dataset. In the second stage,
the number of iterations was set to be 4000 for BOT and 2000
for Houston dataset. It is worth noting that all the source and
target data were directly forwarded into the network without
mini-batch strategy in GNN, DCGNN and JCGNN. Besides,
the number of adjacency nodes k was fixed as eight for all data
pairs. More analysis about parameters would be provided in the
sensitivity analysis section.

There are two parameters in the loss function of the proposed
JCGNN approach, where λ1 controls the weight of domain-wise
CORAL loss and λ2 controls the weight of class-wise CORAL
loss. JCGNN also has the parameter σ of the Gaussian diffusion
kernel. In the experiments, parameter λ1 were tested with ten
different values (0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5),
parameter λ2 were selected from (0.5, 1, 1.5, 2, 2.5, 3, 3.5,
4, 4.5, 5), and the parameter σ were chosen from (0.1, 0.5,
0.8, 1, 3, 5, 7, 9, 15, 20). We selected the best value of each
parameter on the condition that the other parameters were fixed.
The detailed parameter analysis is described in the sensitivity
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Fig. 4. Houston images. (a) 2012 Houston image. (b) Ground truth of 2012 Houston image. (c) 2017 Houston image. (d) Ground truth of 2017 Houston image.
(g) Class legend.

TABLE II
OA% OF DIFFERENT DOMAIN ADAPTATION METHODS

analysis section. For the comparative methods, DAN, DANN,
MADA, MSTN, D-CORAL, JCDNN, and DCGNN have the
weight parameter for the domain adaptation loss. The weight
of domain-wise CORAL loss and class-wise CORAL loss in
D-CORAL, JCDNN, and DCGNN adopted the same parameter
as in the proposed JCGNN for a fair comparison, and other
parameters were chosen as the recommended values in [20],
[23], [40], and [41].

Before training the JCGNN, each spectral band of both source
and target data was normalized to have a standard normal
distribution N(01). Such data preprocessing method was also
applied to all the compared methods. Since the initial network

parameters were chosen randomly, all experiments were con-
ducted ten times and the average classification was used for
evaluation.

C. Results of JCGNN

The overall accuracy (OA) and kappa coefficients of all the
compared methods and proposed JCGNN are given in Tables II
and III. The DNN without any adaptation strategy can achieve
satisfactory performances on these data pairs which have a small
spectral drift, such as BOT “June-July” and “July-June.” On
the contrary, if the data pairs have a big spectral drift, such as
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TABLE III
KAPPA COEFFICIENT OF DIFFERENT DOMAIN ADAPTATION METHODS

BOT “July-May”, Houston dataset “2012–2017,” the accuracies
of DNN are low. Almost all the domain adaptation methods
obtain higher accuracies than DNN, demonstrating their positive
transfer learning ability. The GNN outperforms DNN on almost
all the data pairs, which demonstrates that GNN could achieve
more effective feature extraction ability by utilizing spectral
neighborhood information. The D-CORAL can obtain higher
accuracies than DAN, indicating the advantage of CORAL
strategy compared to MMD. The MSTN and MADA performed
better than DAN, DANN and D-CORAL, which demonstrates
that the exploration of class-level knowledge would facilitate
producing superior alignment performance. Compared to all the
compared methods, JCGNN yields the best performances on
all the data pairs. The JCGNN performed better than MSTN
and MADA, which demonstrates the advantage of embedding
class-wise CORAL strategy and domain-wise CORAL in GNN
architecture. It is worth noting that the JCGNN improves the
classification performance significantly on the “difficult” data
pairs like BOT “July-May” and Houston dataset “2012–2017,”
and it also achieves comparable performance on the “easy” data
pairs. Moreover, the accuracies of the JCGNN obtained almost
5%–10% improvement with respect to all the compared methods
on BOT dataset. These observations demonstrate that the GNN,
domain-wise CORAL and class-wise CORAL can cooperate
well for domain adaptation of remote sensing images.

The JCGNN achieves distribution alignment by applying the
domain-wise CORAL loss and class-wise CORAL loss to the
GNN architecture, where domain-wise CORAL loss aims to
reduce the global distribution discrepancy across domains and
class-wise CORAL loss aims to align the distribution on a per-
class basis. The GNN architecture is adopted rather than the
DNN because the GNN makes use of spectral neighborhood
information for better classification performance. For a better
understanding of the proposed JCGNN, we also compared the
results of JCGNN with JCDNN and DCGNN.

As given in Tables II and III, JCGNN performed better than
JCDNN on almost all data pairs, which demonstrates GNN
has a better performance than DNN in domain adaptation task.
JCGNN outperformed DCGNN, indicating the necessity of dis-
tribution alignment on a class-level basis.

D. Analysis of JCGNN

The performances of the five algorithms were also reported
for comparison on a per-class basis. As given in Table IV about
the results of BOT “June-May,” the JCGNN obtained the highest
accuracies for almost all the classes. For difficult classes such as
class 2 (DNN: 55.47%, GNN: 56.34%, and DCGNN: 81.8%),
JCGNN achieved remarkable performance (JCGNN:96.25%).
Moreover, JCGNN also achieved comparable performance on
these classes which are easy to be well classified, such as class 1
(DNN: 99.76%, JCGNN: 100.00%) and class 8 (DNN:97.28%,
JCGNN:99.16%).

E. Alignment Performance of JCGNN

To illustrate the effectiveness of the proposed JCGNN, we
employed t-SNE embeddings [42] to set the high-dimensional
features as two-dimensional (2-D) for visualization. Fig. 5,
shows classes in “May-June” “June-May,” and “July-June” data
pair of the BOT dataset in different colors, and represents
scatters from source and target domain by hollow circles and
pentagrams, respectively. Compared with the visualizations ob-
tained by DNN without any adaptation in Fig. 5(a), (d), and (h),
the visualizations obtained by GNN without any adaptation in
Fig. 5(b), (e), and (i) become more compact and better separated.
For instance, the features of class 35,9 from “July-June” are
gravely overlapped in Fig. 5(h), but they are tightly clustered in
Fig. 5(i). This observation demonstrates that the GNN outper-
forms DNN in classification task. However, GNN is incapable
of reducing the domain shift and conducting domain adaptation.
Therefore, it is necessary to embed alignment strategy in the
architecture of GNN to conduce domain-invariance features.
Fig. 5(c), (f), and (j) illustrates the performance of the JCGNN,
where features from different domains are aligned well after
adopting domain-wise CORAL loss and class-wise CORAL loss
in GNN architecture.

To further illustrate the alignment performance of each class
to verify the effect of domain-wise CORAL and class-wise
CORAL. Fig. 6 plots the features from second and ninth output
units of GNN for “June-May” in BOT datasets, where the red
scatters represent one class data from source domain and blue
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TABLE IV
CLASSIFICATION ACCURACY OF EACH CLASS OF BOT “JUNE-MAY” DATA PAIR

scatters represent the data from same class of target domain.
Classes 12 and 8 are selected for illustration. From Fig. 6(a),
(d), and (h), it can be seen that the distributions between source
and target domain features are different due to spectral drift.
Fig. 6(b), (e), and (i) show the effectivity of domain-wise
CORAL, where the features of two domains are closer than the
previous features after introducing the domain-wise CORAL
loss. The visualization of JCGNN were shown in Fig. 6(c), (f),
and (j). With the refined adaptation of class-wise CORAL, the
covariance of same class from different domains have been well
aligned. Class-wise CORAL can achieve more effective align-
ment performance than domain-wise CORAL due to considering
the class-level information.

F. Classification Results of the Whole Image by the JCGNN

To classify the whole target image, we firstly divided all
the target data into subsets, where each subset is with 5000
pixels. Then each subset and its graph adjacency matrix are fed
into the network. By combining the classification results of all
the subsets, the classification map of the whole target image
can be obtained. Fig. 7 shows the classification results of the
BOT images, where “June-May” and “July-June” data pairs are
chosen for demonstration. Fig. 7(a) and (d) shows the DNN
classification results without any adaptation for “June-May”
and “July-June,” respectively. Fig. 7(b) and (e) denotes the
classification results of proposed JCGNN. Due to lack of ground
truth on the whole images, the classification results of classifier
that trained on the target labeled data are used as “reference,”
and the whole images of “reference” are shown in Fig. 7(c) and
(f). In Fig. 7(a) and (c), we could observe that the results of
DNN without any adaptation is significantly different from the
results of “reference.” After adopting the adaptation strategy, the
results of JCGNN are highly similar to “reference,” which could
demonstrate the advantage of our proposed domain adaptation
approach.

To better demonstrate the effect of our proposed methods, we
chose two local regions for further analysis. All local regions are
shown in the pink windows in Fig. 7 and enlarged in Fig. 8. The

wetland and upland define the two major ecosystems included in
BOT dataset [43]. For BOT “June-May” data pair, a wetland area
is selected. The selected wetland local region mainly contains
class 1 (water, black), class 2 (primary floodplain, yellow), and
class 5 (island interior, dark blue). As shown in Fig. 8(a)–(c),
we can clearly see that class 2 (primary floodplain, yellow) and
class 5 (island interior, dark blue) are easily misclassified as
class 6 (woodlands, purple) in the results of DNN without any
adaptation. Fortunately, our proposed JCGNN could effectively
prevent the occurrence of misclassification, so that the results of
JCGNN is much similar to “reference”. For BOT “July-June”
data pair, an upland area is selected, which mainly contains
class 6(woodlands, purple), class 7 (savanna, light blue) and
class 9 (exposed soils, orange). As shown in Fig. 8(d)–(f), the
results of DNN without any adaptation assigned many false
predictions, and many pixels of class 3(Riparian, light green)
were misclassified as class 2 (primary Floodplain, yellow) and
class 3(riparian, light green). After using the JCGNN, most
pixels belonging to class 2 (primary Floodplain, yellow) and
class 3(riparian, light green) are correctly classified.

G. Parameter Sensitivity

We conducted sensitivity analysis for the three parameters in
the JCGNN: λ1 , λ2, σ. The parameters λ1 and λ2 are the trade-
off parameters where λ1 controls the weight of domain-wise
CORAL loss and λ2 controls the weight of class-wise CORAL
loss. The parameter σ is the Gaussian diffusion kernel. We used
six BOT data pairs to show the results, and similar trends could
also be obtained on the other data pairs. To find a best domain
adaptation performance, each parameter was adjusted on the
condition that the other parameters are fixed. For parameter λ1,
ten different values (0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5) were
tested. The optimal parameter values of λ2 and σ were fixed as
(1, 3, 1, 0.5, 1, 1) and (1, 1, 0.7, 1, 0.5, 1) for the six data pairs,
respectively. The classification results were shown in Fig. 9(a).
We can observe that the proposed approach was not sensitive
to this parameter in this range, suggesting that this parameter
should be set in this range. Fig. 9(b) shows the classification
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Fig. 5. The t-SNE visualization of BOT dataset. (a) DNN for “May-June” data pair (b) GNN for “May-June” data pair. (c) JCGNN for “May-June” data pair.
(d) DNN for “June-May” data pair (e) GNN for “June-May” data pair. (f) JCGNN for “June-May” data pair. (h) DNN for “July-June” data pair (i) GNN for
“July-June” data pair. (j) JCGNN for “July-June” data pair.

results with parameter λ2 from (0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
5). The optimal parameter values of λ1 and σ were fixed as (1.5,
1.5, 1, 0.5, 1.5, 1) and (1, 1, 0.7, 1, 0.5, 1) for the six data pairs,
respectively. For BOT “May-June,” “June-May,” “May-July,”
“June-July,” “July-June,” different values of this parameter yield
similar classification performance. In addition, we can observe
that almost all data pairs can achieve satisfactory performance
when λ2 was equal to 1. We suggested that the value of λ2 should
be set around 1. In Fig. 9(c), we tested different values of param-
eter σ from (0.1, 0.5, 0.8, 1, 3, 5, 7, 9, 15, 20), with the parameter

values of λ1 and λ2 being fixed as (1.5, 1.5, 1, 0.5, 1.5, 1) and (1,
3, 1, 0.5, 1, 1) for the six data pairs, respectively. When the value
of σ increases from 0 to 1, the accuracies on these “easy” data
pairs increase and reach the best atσ = 1. However, when theσ
was too large, the accuracy would drop significantly. For these
“difficult” data pairs, such as BOT “July-May,” the accuracy
would grow with an increasing value of σ. We suggested that
the parameter σ should not more than 1 when data pairs with
little spectral drifts. When there was large spectral drift across
domains, the parameter σ should be greater than 10.
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Fig. 6. Alignment performance for BOT “June-May” data pair (a) Class 1 of DNN results. (b) Class 1 of GNN with only domain-wise CORAL. (c) Class 1 of
JCGNN (d) Class 2 of DNN results. (e) Class 2 of GNN with only domain-wise CORAL. (f) Class 2 of JCGNN (h) Class 5 of DNN results. (i) Class 5 of GNN
with only domain-wise CORAL. (j) Class 5 of JCGNN.

H. Computational Time

The computational time of all the compared domain adap-
tation approaches was given in Table V. All the experiments
were implemented with the deep learning framework and were
executed on NVIDIA GeForce RTX 2080 GPU with 16-GB
memory. The GPU was used to accelerate the training pro-
cess. As given in Table V, the training time of GNN is longer
than DNN because the training process of GNN did not adapt

mini-batch strategy. The MSTN and MADA were slower
than DAN, DANN D-CORAL, and DCGNN, which indicated
that achieve class-level distribution alignment was more time-
consuming than achieve domain-level distribution alignment.
The JCGNN that combined both class-level and domain-level
distribution alignment costed more time than most compared
domain adaptation approach, but the computational time was
still within acceptable limits.
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Fig. 7. Classification results of the target image in BOT “June-May” and “June-July” data pairs. (a) DNN result without any adaptation for “June-May” data
pair (b)JCGNN result for “June-May” data pair. (c) Reference obtained by using target labeled data as training data for “June-May” data pair. (d) DNN result
without any adaptation for “July-June” data pair. (e) JCGNN result for “July-June” data pair. (f) Reference obtained by using target labeled data as training data
for “July-June” data pair. (g) Class legend.

Fig. 8. Classification results of local regions. (a) DNN result without any adaptation for “June-May” wetland area. (b) JCGNN result for “June-May” wetland
area. (c) Reference obtained by using target labeled data as training data for “June-May” wetland area. (d) DNN result without any adaptation for “July-June”
upland area. (e) JCGNN result for “July-June” upland area. (f) Reference obtained by using target labeled data as training data for “July-June” upland area.

TABLE V
COMPUTATIONAL TIME(S) OF DIFFERENT METHODS
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Fig. 9. Sensitivity analysis of parameters in our adaptation using BOT data pairs. (a) Parameter λ1. (b) parameter λ2, and (c) Parameter σ.

VI. CONCLUSION

In this article, we proposed a new unsupervised domain
adaptation method for multitemporal remote sensing images,
which adopted GNN for feature extraction to utilize spectral
neighborhood information. Features from two domains are then
aligned by jointly exploiting CORAL on both domain-level and
class-level. Experiments on two multitemporal hyperspectral
remote sensing images datasets demonstrated that the proposed
JCGNN method offers the classification performance superior
to other state-of-the-art deep domain adaptation methods for
multitemporal images, because GNN can be used to extract
representative features from spectral neighbors in multitemporal
images. Moreover, the JCGNN outperformed DCGNN, indi-
cating the advantage of the class-level distribution alignment.
Since the construction of adjacent matrix plays an important
part in GNN [31] and [44], we will consider to update the
adjacent matrix in the feature extracting process to learn more
domain-invariant features in our future work.
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