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Sandwich Convolutional Neural Network for
Hyperspectral Image Classification Using
Spectral Feature Enhancement

Hongmin Gao

Abstract—Recently, convolutional neural networks (CNNs) have
been used to extract spectral and spatial features of hyperspectral
images (HSIs) for hyperspectral image classification (HSIC) be-
cause of their excellent performance in extracting and analyzing
complex data. However, due to the limited labeled samples and ex-
isting mixed pixels, it is difficult to extract features effectively, which
further leads to the problem of overfitting of the model. On the other
hand, to improve the extraction ability of the CNN, the depth of the
model, and the complexity of the convolution kernel often need to be
increased. In this article, a sandwich CNN based on spectral feature
enhancement (SFE-SCNN) is proposed for HSIC. The proposed
method, SFE-SCNN, introduces the spectral feature enhancement
operation, which makes the data reflect more discriminative spec-
tral feature details to suppress the interference of mixed pixels. Fur-
thermore, according to the preprocessed data structure features, a
lightweight sandwich convolution neural network is proposed. To
fully extract the spectral features, the spectral feature re-extraction
operation is used for the first time. Experimental results on three
real hyperspectral datasets demonstrate that the proposed method
achieves better classification performance than other state-of-the-
art methods.

Index Terms—Convolutional neural network, hyperspectral
image (HSI) classification, lightweight sandwich convolution
neural network, spectral feature enhancement, spectral feature
re-extraction.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) possess hundreds of
H continuous spectral bands so that it contains rich spectral
information while containing spatial information [1], [2]. It
is precisely because of these characteristics that HSIs have
been widely valued in environmental monitoring, agriculture,
military, and other fields. Especially, the research of HSI classi-
fication (HSIC) technology has been a hot topic in the field of
HSI processing [3].

In general, HSIC is based on the rich detail features of the
HSIs in the spectral domain and the spatial characteristics of
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ground objects to achieve the classification of each pixel in the
images. In the early stage of the development of hyperspectral
classification technology, HSIs have attracted the attention of a
large number of researchers due to the rich features reflected by
their high spectral resolution. Therefore, many HSI classifiers
have been proposed, which are designed by analyzing original
spectral features. Such as multinomial logistic expression [4],
k-nearest neighbor [5], weighted Markov random Fields [6],
and support vector machine (SVM) [7]. Then, in order to further
improve the classification performance of traditional SVM, the
subspace-based support vector machines (SVMsub) [8] were
proposed. Experiments have proved that by analyzing the spec-
tral information of HSIs, these methods have achieved some
performance in classification. However, since the phenomenon
of the same material may present spectral dissimilarity and
different materials may have indistinguishable spectral features,
it is very difficult to realize the accurate classification of objects
only by using the original spectral features [9]. In addition, the
lack of consideration of the spatial correlation of individual
pixels is also a significant defect in traditional classification
algorithms [10].

In the last decades, a series of targeted methods have been
proposed to address the shortcomings of the aforementioned
traditional algorithms. Especially, for the feature redundancy
and Hughes phenomenon caused by the higher spectral dimen-
sion of HSIs, a series of dimensionality reduction and band
selection methods have been proposed [11]-[13]. In addition to
effectively solve the problems caused by high-dimensional data,
these methods can also increase the difference between classes.
To further improve the classification performance, some clas-
sification methods based on joint extraction of spectral-spatial
features have been proposed gradually [14]-[18]. For instance,
due to the spectral-spatial information of HSIs in a neighboring
region can be coalesced into a sparse model, sparse representa-
tion [14] method was introduced to improve the classification
performance. In [15], multiple morphological operations were
applied for assembling spectral-spatial features of HSIs. Mul-
tiple kernel learning [16] based on spectral-spatial information
also demonstrates to be a potent tool for improving the SVM
classifier. Zhang et al. [17] proposed a new feature selection
and extraction algorithm which can map spectral-spatial features
into a common feature space, so as to find a low-dimensional
representation of joint features in the spectral and spatial
domain. Furthermore, Liu et al. [18] introduced a kernel
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low-rank representation method, where the similarity of local
features was used to improve the performance of classification.

Inrecent years, deep-learning (DL) based methods, especially
deep convolution neural networks (CNN), have shown unique
superiority in feature extraction, which makes them widely stud-
ied in many fields (e.g., image classification [19], [20], natural
language processing [21], target location [22], medical diagnosis
[23]). Compared with the hand-crafting features extracted by tra-
ditional methods, deep learning provides an end-to-end solution
to automatically extract deep features. Different from shallow
machine learning methods, the deep network structure of deep
learning has better feature mining performance. Therefore, many
researchers have applied CNN to HSIC and demonstrated that
CNN can show exceedingly promising performance [24]-[36].
For example, in [24], the spatial and spectral features of the
original HST are simultaneously extracted by 3D-CNN. Then, to
make full use of spatial information to improve the recognition
of the target spatial structure, Zhang et al. [25] proposed diverse
region-based neural networks, and Sun ef al. [26] introduced an
attention mechanism in neural networks. However, overattention
to the boundary of the ground object may cause classification
noise within the same category in the face of low spatial reso-
lution and mixed pixels. In [27] and [28], the residual structure
was applied to the feature extraction network to alleviate the
vanishing gradient caused by the network over depth. Inspired
by the residual structure, Zhang et al. [29] and Yang et al. [30]
proposed the use of densely connected networks to improve the
model’s utilization of features. Recently, to ensure that spectral
and spatial features are extracted while maintaining a small scale
of the model, Roy ez al. [31] proposed a hybrid model for feature
extraction, which is composed of 2D-CNN and 3D-CNN. More
recently, Li et al. [32] proposed a new dual-channel spectral-
spatial features extraction fusion network, through which the
local and global information of the target pixel points can be
extracted and fused. In addition, in order to mine the contribution
of the spatial position of the objects in remote sensing images
to the classification task, graph convolutional network [33] and
global spatial based [34] classification method were proposed.
Then, invariant attribute profiles [35] are proposed to improve
the recognition capacity of the same object in different scenes or
locations. Furthermore, Hong ef al. [36] proposed a multimodal
deep learning framework, which can effectively improve the
classification accuracy and classification refinement of HSIs.
In general, the current task of HSIC faces the following two
challenges: 1) The credibility of original spectral information
is damaged by mixed pixels; and 2) Overcomplicated models
more often than not have poor computational efficiency.

To address the above issues, in this article, a novel 3-D data
preprocessing method based on HSI data structure features is
proposed, and a new network structure based on the preprocessed
data features is designed, which is called sandwich convolutional
neural network (SCNN). Different from the traditional way
of data augmentation methods (i.e., flip, rotation, and noise)
applied in the daily images, due to the 3-D characteristics of
HSI, the spectral information can be structurally exchanged with
the spatial information dimensions to realize spectral feature
enhancement (SFE). Then, being motivated by the procedure of

3007

pretreatment, higher spectral discriminative features in HSIs can
be effectively extracted by SCNN with only fewer parameters.

The main contributions are summarized as follows.

1) To reduce the limitation of mixed pixels on classification
performance, the data preprocessing method of SFE is
proposed, which can enhance the recognition of spectral
features of heterogeneous ground objects.

2) A novel SCNN is proposed to extract the spectral-spatial
features from processed HSI cubes. It uses a series of small
convolution kernels of different sizes to achieve multi-
scale extraction of 3-D features, which greatly reduces the
number of parameters. Therefore, the model can achieve
a faster classification.

3) To extract more useful abstract features, multiscale point-
wise convolution is used in spatial feature extraction, and
then the spectral feature re-extraction mechanism is used
for the first time to extract more abstract features after
spatial feature extraction and fusion.

The rest of this article is summarized as follows. Section II

describes the proposed method. Section III analyzes the experi-
mental results. Finally, the conclusion is drawn in Section I'V.

II. PROPOSED METHOD

Fig. 1 shows the architecture of the proposed HSIC model.
First, principal component analysis (PCA) will be applied to the
original hyperspectral data to extract the major features from
the spectral dimension to reduce its dimension. Second, the
neighborhood data cubes of the target pixels are acquired and
the SFE operation is applied to them. Third, the proposed SCNN
model is used to extract the features of the preprocessed training
set to train the model parameters. Finally, the unlabeled test
pixels are predicted by the model and classified by the softmax
function.

A. Data Preprocessing for Spectral Feature Enhancement

In general, the spectral-spatial information of HSI can be
extracted simultaneously by using the neighborhood pixel block
centered on the target pixel as the input of the neural network.
However, for some images with low original spatial resolution
and the deterioration of spatial resolution caused by pooling and
strides convolution operation [37], the actual improvement of
spatial information on the classification effect is lower than the
theoretical level. In contrast, the spectral information of HSI
is quite rich. Therefore, to further improve the classification
performance of HSIC, it is necessary to enhance the mining
of HSI spectral information and reduce the damage of spatial
resolution. Inspired by Gao et al. [38], a method of SFE is
proposed, which not only enhances spectral feature but also
preserves spatial information. Let C € RP*@*B represent the
original HSI cube, where P and Q represent the spatial dimension
of the data cube, and B represents the number of bands of HSI.
Furthermore, ¢ € R'*? represents the information of each
pixel and X" € RW>*W>B represents the neighborhood cube
centered on, where W and n € (1,..., N) represent the patch
size of neighborhood cubes and the number of samples.
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Schematic of the proposed SFE-SCNN. “SFE” denotes spectral feature enhancement, and “+”denotes concatenation. “GAP” refers to global average

pooling operation. For convenience, the structure of Spectral Block2 is omitted, which is the same as the structure of Spectral Block.

Fig. 2. Illustration of the SEF operation.

Fig. 2 shows the flowchart of the SFE operation. First of all,
PCA will be applied to the original HSI to extract main compo-
nents in the spectral dimension and realize dimension reduction
to obtain C' € RP*@*R where M represents the number of
principal components. To meet the needs of spectral feature
enhancement, M is the square number. It can be represented
as follows:

M =W? (1)

where M is the number of main components. Second, obtaining
the neighborhood data cube X € RW>*W*M of the target pixel,
which includes both spectral and spatial information. Third, the
spectral data x* € RV*1*Mof each pixel in the neighborhood
cube is converted to x* € RW>*Wx! where i,i' € (1,...,M).
Fourth, these 2-D data are reassembled into a new neighborhood
cube T € RW*W>M “where the spectral data and spatial data
exchange the spatial location compared with X™ . The advantage
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Fig. 3. Illustration of the validity of SEF operation.

of doing so can be seen from Fig. 3 that when the spectral infor-
mation changes from 1-D to 2-D, the complexity of the spectral
information of a single pixel increases, which can reflect more
characteristics so that the separability of interclass is ameliorated
and the intense correlation of interband is weakened to a certain
degree.

B. Proposed SCNN Model for HSIC

The 3-D convolution kernel enables the network to effec-
tively extract spectral-spatial features synchronously, which is
very useful for improving classification performance. However,
conventional 3-D convolution is more complex than 1-D and
2-D convolution and requires consumption of more computing
resources. Therefore, according to preprocessed data features,
by designing a multiscale 3-D step-by-step feature extraction
strategy and spectral feature re-extraction mechanism, the pro-
posed SCNN can ensure that the spectral and spatial features
are efficiently extracted while having higher computational ef-
ficiency.

Spectral block 1: There are three 3-D convolution opera-
tions in the spectral block to extract spectral information and
each convolution operation contains batch normalization and
relu function. Specifically, the convolution kernel structure of
the spectral block is k x k x 1(Height x Width x Channel)
, Where K is the size of the extraction window. The stride
of convolution is 1 x 1 x 1, and the number of convolution
kernels is 32. Moreover, to obtain more distinguishable features,
convolution kernel structures with different sizes of extraction
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window are applied to the spectral dimension to ensure that
features of different scales are extracted.

Spatial block: After the preliminary extraction of spectral
features, the spatial feature extraction block will be applied to
extract the spatial features of hyperspectral data. Different from
the convolution kernel structure used in the spectral block 1, the
pointwise convolutional strategy is used to extract the spatial
information in hyperspectral data blocks, which convolution
kernel structure is 1 x 1 x S, and the stride of convolution is
1 x 1 x 1. Especially, considering that different sizes of spatial
information may include different features, a multiscale feature
fusion mechanism is adopted in the spatial block.

Spectral block 2: This block is consistent with spectral block
1 in composition and structure. When extracting the spatial
information, the pointwise convolution makes the spectral infor-
mation of space objects in different locations will be weighted
fusion and more abstract features will appear. Therefore, it is
necessary to extract the spectral information of these multi-
position fusions, which are exploited by the spectral block 2.
The experimental results in Section III show that the SCNN
which uses the spectral information re-extraction mechanism
can achieve better performance.

When the features of HSI are extracted by SCNN, 3-D average
pooling and dropout operations will be used to reduce the
redundancy of extracted features. The size of the pool kernel is
2 X 2 x 2 and the ratio of dropout is 0.1. Then, the 3-D spectral-
spatial feature map is transformed into a 1-D feature vector by
global average pooling (GAP). Finally, we use softmax function
to get the classification result vector Y = (01, U2, -, 9L, |,
where L is the number of categories of land-cover and Yisa
one-hot label vector.

III. EXPERIMENTS AND DISCUSSION

In this section, three real hyperspectral datasets with different
characteristics (unbalanced training data, high spatial resolu-
tion, and small sample data) will be used to corroborate the
dependability of the proposed method. In addition, to effectively
evaluate the classification results, the overall accuracy (OA),
average accuracy (AA), and kappa coefficient (k) are used as the
indicators of classification accuracy. Especially, the F1_score is
used to evaluate the performance of methods on the imbalanced
dataset. This is because the F1_score takes into account the
accuracy and recall of a few categories, so it can measure the per-
formance of the model under unbalanced data. All experiments
are carried on a desktop computer with NVIDIA GeForce 1660
graphical processing unit (GPU) and 16 GB RAM.

A. Dataset Description

The first dataset is Indian Pines (IP), which contains 145 x 145
pixels of 16 categories. Specifically, excluding the contaminated
20 bands, it contains 200 spectral bands and its spatial resolution
is 20 m. The single band map, ground truth map, and color code
board are displayed in Fig. 4. The number of samples in the
training set and testing set is listed in Table I.
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Fig. 4.
board.

IPs dataset. (a) Single band map. (b) Ground truth map. (c) Color code

TABLE I
NUMBER OF TRAINING SAMPLES AND TESTING SAMPLES ON THE IPS DATASET

Class Name Training Num Testing Num
1 Alfalfa 4 42
2 Corn-notill 144 1248
3 Corn-mintill 83 747
4 Corn 23 214
5 Grass-pasture 48 435
6 Grass-t 73 657
7 Grass-p-m 2 26
8 Hay-w 48 430
9 Oats 2 18
10 Soybean-notill 98 874
11 Soybean-mintill 247 2208
12 Soybean-clean 59 534
13 Wheat 20 185
14 Woods 127 1138
15 Buildings-g-t-d 38 348
16 Stone-s-t 9 84
Total 1025 9924

The second dataset is Salinas Valley (SA), which contains
512 x 217 pixels and can be divided into 16 ground-truth classes.
Ithas 224 effective spectral bands and 20 water absorption bands,
which spatial resolution is 3.7 m. Fig. 5 shows the single band
map and a corresponding reference map of the SA image. The
number of samples in the training set and testing set is listed in
Table II.

As shown in Fig. 6, the third dataset is Kennedy Space Center
(KSC), which contains 512 x 614 pixels with a resolution of
18 m by a pixel. In total, 13 feature types included in this
dataset, and the number of effective bands in KSC is 176. The
number of samples in training set and testing set is listed in
Table III. More specifically, different data partition strategies
are used for different datasets to verify the generalization ability
of the proposed model. For the IP dataset, we randomly select
10% of the samples of each of the 16 classes in the dataset as the
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SV dataset. (a) Single band map. (b) Ground truth map. (c) Color code

TABLE II
NUMBER OF TRAINING SAMPLES AND TESTING SAMPLES ON THE SV DATASET

Class Name Training_Num Testing Num
1 Brocoli_ g w_1 40 1969
2 Brocoli_g w_2 75 3651
3 Fallow 39 1937
4 Fallow_r p 28 1366
5 Fallow_s 53 2625
6 Stubble 79 3880
7 Celery 72 3507
8 Grapes_u 226 11045
9 Soil v d 124 6079
10 Corn_s g w 66 3212
11 Lettuce r 4wk 21 1047
12 Lettuce r Swk 38 1889
13 Lettuce r 6wk 18 898
14 Lettuce r 7wk 21 1049
15 Vinyard_u 146 7122
16 Vinyard v_t 36 1771

Total 1082 53047

(a) (b)

Unknown Swap

Scrub Graminoid-marsh
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Fig 6. KSC dataset. (a) Single band map. (b) Ground truth map. (c) Color
code board.
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TABLE III
NUMBER OF TRAINING SAMPLES AND TESTING SAMPLES ON THE KSC
DATASET
Class Name Training Num  Testing Num
1 Scrub 6 755
2 Willw_s 6 237
3 CP_h 6 250
4 Slash-pine 6 246
5 Oak/Broadlea 6 155
6 Hardwood 6 223
7 Swap 6 99
8 Graminoid m 6 425
9 Spatina_m 6 514
10 Cattail m 6 398
11 Salt m 6 413
12 Mud f 6 497
13 Water 6 921
Total 78 5133
TABLE IV
PROPOSED NETWORK ARCHITECTURE
Blocks Layers Kernel Size Filters
1-2 3x3x1 32
Spectrall
3 5x5x1 32
1x1x3 16
Spatial 4
1x1x5 16
5-6 3x3x1 32
Spectral2
7 5x5x%x1 32
AvePool 8 2X2X%X2 -
Drop_layer 9 - -
GAP 10 - -
FC 11 - -

Total Trainable Parameters: 84,432

training set, and the remaining 90% as the test set. Because the IP
dataset itself has the problem of data imbalance, under the above
data division method, some classes have only two samples as
training samples, which poses certain challenges to the learning
capacity of the model. For the SA dataset, the percentages of
the training set samples and the test set samples for each class
are 1% and 99%, respectively. For the KSC dataset, we only
select six samples for each class as the training set samples to
further verify the classification performance of the model under
the condition of small samples.

B. Experiment Setting

In our experiments, the detail of our proposed network ar-
chitecture is shown in Table IV. The hyperparameters of the
proposed model are set as follows. The influence of the size of
sample patches (S) on the proposed method is shown in Fig 7.
When S is 7 x 7,9 %9, and 11 x 11 , respectively, the OAs
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TABLE V
CLASSIFICATION ACCURACIES (IN PERCENTAGES) ON IP DATASET USING PROPOSED METHOD AND STATE-OF-THE-ART METHODS

Class Method
3D-CNN DRN HybirdSN SSRN DFFN SFE-SCNN
1 100+0 97.73+0.04 100+0 95.45+0.34 08.12+1.41 97.62+0.59
2 91.49+1.91 95.43+0.27 97.77+1.33 97.90+1.37 97.73+1.56 99.30+0.05
3 95.66+0.94 98.20+0.89 96.85+1.21 98.33+1.42 97.24+1.75 99.20+0.09
4 64.35+0.37 94.59+0.04 97.67+1.13 91.89+5.55 100+0 99.53+0.65
5 84.86+1.29 97.79+0.19 96.42+2.42 96.46+4.26 92.314+3.45 95.86+0.41
6 96.194+0.35 99.414+0.05 99.25+0.34 99.41+0.15 96.4+2.34 99.244+0.30
7 100+0 66.67+3.34 61.54+3.56 74.07+4.31 100+0 100+0
8 100+0 100+0 100+0 100+0 99.61+0.26 100+0
9 100+0 63.16+2.67 56.25+2.16 78.95+3.47 72.3+£5.37 100+0
10 93.64+0.70 95.16+5.19 97.14+1.34 96.70+2.14 97.51+0.32 96.454+2.18
11 94.844+2.28 98.34+0.04 98.19+0.69 98.39+0.31 98.70+1.14 99.32+0.29
12 71.18+1.85 89.91+0.59 95.49+2.67 90.99+0.79 94.34+2.39 99.44+0.10
13 94.97+0.20 100+0 100+0 1000 94.16+1.67 100+0
14 99.27+1.33 99.75+0.06 1000 99.41+0.18 1000 100+0
15 97.33+0.99 98.61+0.13 96.25+1.62 1000 97.66+0.22 97.70+2.81
16 81.32+1.90 100+0 100+0 100+0 97.62+0.43 98.81+0.61
AA(%) 91.56+0.36 93.42+0.52 93.30+1.27 94.87+0.27 95.85+0.19 98.90+0.20
OA(%) 92.67+0.49 97.25+1.39 97.86+0.39 97.74+0.56 97.63+0.24 98.93+0.53
kx100 91.63+0.53 96.86+1.64 97.56+0.51 97.43+1.08 97.31+0.27 98.78+0.59
F1 score 92.724+0.51 97.55+0.87 97.88+0.64 97.82+0.35 97.72+0.23 98.94+0.37
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Fig7. Effect of the size of sample window on classification accuracies in the
case of IP, SA, and KSC.

of the proposed method are optimal. For training settings, the
initial learning rates selected for IP, SA, and KSC are 0.00025,
0.00015, and 0.001, and the learning rate decreases by 0.00001,
0.00001, and 0.0001, respectively, for each update of the Adam
optimizer. The training batch is 16, and each experiment trained
200 epochs.

C. Classification Results

In this section, several DL-based classification methods in-
cluding 3D-CNN [21], SSRN [24], DRN [25], HybridSN [28],
and DFFN [29] are used for comparison. For a fair comparison,
the parameter settings of these methods are consistent with the
default values of their original works. Figs. 8 =10 show the
classification maps of different state-of-the-art methods with the

corresponding accuracy scores (OA). Tables V —VII show the
classification results in terms of class-specific accuracy, OA,
AA, and Kappa coefficient.

The first experiment is conducted on the IP image. Because
of the serious data imbalance in the IPs image, 10% of the
labeled data was randomly selected for model training, and the
rest for testing (“Oats” and “Grass_pasture_mowed” have only
two samples for training.). From Table V, it can be observed
that the proposed method outperforms the compared methods
in the IP database. Specifically, the proposed method achieves
OA 98.93%, with the gains of 6.26%, 1.68%, 2.60%, 1.19%,
and 1.30% over the 3D-CNN, DRN, HybirdSN, SSRN, and
DFFN method, respectively. In addition, it is worth noting
that for the category with only two training samples (Class 7
and Class 9). When faced with only two training samples in
IP, other methods have relatively serious classification errors.
Conversely, the proposed method shows superior performance
in the “Oats” and “Grass_pasture_mowed,” which demonstrated
that the SFE-SCNN can more fully extract the characteristics
of these two samples. In addition, according to the F1_score
in Table V, it can be observed that the proposed method can
still achieve competitive results when the dataset is imbalanced.
Fig. 8 shows the classification map of IP. Visually, the proposed
method produces less internal noise in the Classification map,
which is closer to the reference classification results.

The second experiment is conducted on the SA image. For SA,
2% and 98% of labeled data were randomly selected for model
training and testing, respectively. Table VI presents detailed
classification results of different methods. Similarly, the results
on the SA dataset also indicate that the proposed SFE-SCNN
is in the first place comparing to other methods. It is notable
that compared with the IP dataset, the SA dataset has a higher
spatial resolution. Therefore, it can be seen from SSRN, DFFN,
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Fig. 8.

Classification maps for IP. (a) Single band map. (b) Ground truth. (c)—(h) Predicted classification maps for 3D-CNN (OA = 92.67%), DRN

(OA = 97.25%), HybirdSN(OA = 97.86%), SSRN(OA = 97.74%), DFFN(97.63%), and proposed SFE-SCNN(OA = 98.93%).

Fig. 9.

Classification maps for SA. (a) Single band map. (b) Ground truth. (c)—(h) Predicted classification maps for 3D-CNN (OA = 94.29%), DRN (OA =

97.93%), HybirdSN(OA = 98.19%), SSRN(OA = 98.27%), DFFN(98.83%), and proposed SFE-SCNN(OA = 99.58%).

and SFE-SCNN that spatial information fusion can improve the
classification results obviously. Fig. 9 shows the classifica-
tion map obtained by the proposed method and state-of-the-art
methods. Obviously, the proposed method can achieve better
classification performance.

The third experiment is performed on the KSC image. To test
the performance of the model under the condition of the small
sample and low spatial resolution, for KSC, we only randomly
select six samples from each category for model training. In ad-
dition, due to the low spatial resolution of the KSC dataset itself,
it brings great challenges to the classification work. Actually, it
can be clearly seen from Table VII that when facing a few shots
training set and low-spatial resolution situation, compared to

other methods, the 3D-CNN get the worst performance because
of its shallow architecture and robust feature extraction method.
Contrariwise, according to Table VII, the proposed SFE-SCNN
yields outperforming results than other methods in most cate-
gories. The main reason is that the proposed method has a better
ability to extract the spectral information. The classification
maps of the proposed method and state-of-the-art methods can
be compared in Fig. 10 visually. Evidently, the proposed method
gains a superior visual result on the KSC dataset.

It is generally known that DL-learning HSIC methods often
contain a large number of parameters to be trained, which
requires a large number of computational resources. From Ta-
ble VIII, it can be seen that the proposed SFE-SCNN has better
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Fig. 10
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Classification maps for KSC. (a) Single band map. (b) Ground truth. (¢)—(h) Predicted classification maps for 3D-CNN (OA = 84.51%), DRN (OA =

92.48%), HybirdSN(OA = 96.26%), SSRN(OA = 95.48%), DFFN(95.73%), and proposed SFE-SCNN(OA = 97.76%).

TABLE VI
CLASSIFICATION ACCURACIES (IN PERCENTAGES) ON SA DATASET USING PROPOSED METHOD AND STATE-OF-THE-ART METHODS

Class Methods

3D-CNN DRN HybirdSN SSRN DFFN SFE-SCNN

1 100+0 100+0 100+0 99.92+0.56 100+0 1000

2 1000 100+0 99.86+0.13 100+0 98.56+1.14 1000

3 1000 100+0 100+0 99.87+0.24 99.16+0.26 1000
4 98.55+0.01 98.77+0.38 99.93+0.21 98.91+0.88 94.32+1.75 99.89+0.04
5 99.28+0.07 99.85+0.42 99.06+0.34 99.43+022 98.21+1.14 99.94+0.08
6 1000 100+0 99.92+0.06 100+0 99.63+0.70 99.99+0.03
7 1000 100+0 100+0 100+0 99.50+0.62 99.99+0.03
8 75.81+0.23 95.05+0.77 94.31+1.43 96.94+1.26 99.12+0.31 99.61+0.17
9 1000 100+0 100+0 99.87+0.13 99.63+0.32 99.83+0.19
10 94.51+0.43 94.27+2.29 95.68+0.51 97.23+0.98 99.69+0.26 99.42+0.31
11 99.62+0.73 99.81+0.07 99.81+0.17 95.79+1.46 97.42+1.41 99.08+0.12
12 100+0 93.87+0.94 99.90+0.09 99.55+1.46 95.37+1.56 99.26+0.06
13 96.91+1.52 99.89+0.14 99.45+0.11 98.00+0.64 92.32+0.84 96.72+0.16
14 97.83+0.58 93.87+0.15 99.62+0.14 95.07+0.30 98.73+0.55 96.55+0.37
15 99.36+0.38 96.14+0.48 98.39+1.46 95.50+5.62 98.13+0.62 99.36+0.13
16 97.76£0.11 99.83+0.12 98.55+0.33 100+0 99.57+0.16 99.43+0.09
AA(%) 97.47+1.28 98.59+0.70 99.02+0.35 98.29+0.08 98.08+0.19 99.27+0.44
OA(%) 94.29+0.40 97.93+0.33 98.19+0.23 98.27+0.49 98.82+0.24 99.58+0.27
kx100 93.67+1.42 97.69+0.77 97.77+0.46 98.07+0.10 98.68+0.27 99.53+0.31

classification performance and higher computational efficiency.
This is due to the lightweight feature of the proposed network
and the efficient feature extraction capability.

D. Efficiency of SFE and Spectral Feature Re-extraction
Operation

To verify the effectiveness of SFE operation, we compared the
performance of the proposed model without SFE operation to the
version with SFE operation and the effectiveness of spectral fea-
ture re-extraction operation. The results are shown in Table IX.

Clearly, for three datasets, the SFE-SCNN model performs better
than the SCNN model in terms of OA. Among them, SFE
has a more obvious improvement on the dataset with a lower
spatial resolution (IP and SA). This is because SFE operation
can effectively improve the spectral feature recognition of the
data and reduce the dependence on spatial information to some
extent to improve the classification performance. Furthermore,
the effectiveness of spectral feature re-extraction operation is
shown in Table IX. Obviously, for three datasets, the SFE-
SCNN model also outperforms the SFE-CNN model in terms
of OA.
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TABLE VII
CLASSIFICATION ACCURACIES (IN PERCENTAGES) ON KSC DATA SET USING PROPOSED METHOD AND STATE-OF-THE-ART METHODS

Class Method

3D-CNN DRN HybirdSN SSRN DFFN SFE-SCNN

1 99.60+0.32 95.634+0.16 100+0 99.60+0.06 99.56+0.39 100+0

2 98.73+0.67 82.28+0.98 94.514+0.33 77.64+1.24 99.53+0.08 100+0

3 80.00+3.46 93.2044.11 1000 98.80+0.17 1000 1000
4 54.47+5.47 63.41+5.88 74.804+5.29 62.60+2.21 83.56+7.8 72.364+2.60

5 75.48+6.45 77.42+3.33 98.06+0.35 80.65+0.43 1000 1000

6 49.78+4.43 68.61+7.85 100+0 78.03+0.15 99.51+0.31 100+0
7 100+0 1000 100+0 100+0 99.19+0.64 97.98+1.72
8 83.06+£3.96 97.18+0.62 80.09+£3.51 100+0 85.29+3.63 93.18+0.23

9 97.28+1.95 99.22+0.76 100+0 100+0 84.13+1.59 100+0

10 80.65+3.08 92.9640.80 100+0 100+0 99.24+0.63 100+0
11 84.50+£2.42 100+0 99.60+0.17 100+0 99.21+0.48 96.134+0.89

12 49.70+6.57 88.93+1.30 1000 99.60+0.01 97.44+1.51 100+0

13 100+0 100+0 100+0 100+0 99.59+0.46 100+0
AA(%) 81.01+0.81 89.14+0.60 95.4542.08 92.07+0.39 95.86+0.34 96.89+0.39
OA(%) 84.51£1.01 92.48+1.03 96.26+1.41 95.48+0.57 95.73+0.63 97.76+0.31
kx100 82.65+0.90 91.614+0.66 95.87+1.36 94.96+0.43 95.24+0.37 97.50+0.44

TABLE VIII REFERENCES
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