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Video SAR Moving Target Detection Using
Dual Faster R-CNN
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Abstract—Video synthetic aperture radar (SAR) has shown
great potentials in detection and tracking of slow ground moving
targets. The classical shadow-aided detection was applied in video
SAR, and most recently, the deep learning approach has been
developed for shadow-aided moving target detection. This article
presents a joint moving target detection approach for video SAR
using a dual faster region-based convolutional neural network
(Faster R-CNN), which algorithmically combines the shadow de-
tection in the SAR image and the Doppler energy detection in the
range-Doppler (RD) spectrum domain, and this new approach can
suppress false alarm sufficiently. Video SAR image and its corre-
sponding low resolution RD spectrum are fed into the developed
dual Faster R-CNN. A correct detection can be achieved if the
shadow of a moving target and its Doppler energy are simultane-
ously detected by paired region proposals, which are obtained by
sharing the region proposals of two independent region proposal
networks (RPNs). Therefore, the performance of moving target
detection can be significantly improved by using diverse features
in different domains. This proposed approach has been verified
by both the simulated and real video SAR data. Compared to
other classical methods, our approach exhibits a great detection
performance in terms of fewer false alarms and acceptable missing
alarms.

Index Terms—Deep learning, ground moving target indication
(GMTI), radar imaging, shadow detection, video synthetic aperture
radar (SAR).

I. INTRODUCTION

V IDEO synthetic aperture radar (SAR) is a high frame rate
imaging system that usually works in spotlight mode. The

resulted sequential SAR images can be used to dynamically
observe the area of interest [1], which have been found useful in
surveillance, forward and backward tracking for ground moving
target indication (GMTI), coherent or noncoherent change de-
tection and 3-D imaging [2]–[4]. An early technical validation
of video SAR was conducted in Ku-band by Sandia National
Laboratory. A video SAR system operated at 235 GHz was
discussed in [5], which was later integrated into the multispectral
aiming system. Some efforts on video SAR image formation
have been released as well [6]–[8].
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The shadow appears due to the obstruction of target on the
incident radar radiation [9]. The subaperture processing strategy
is extensively used in video SAR, which implies a short beam
dwell time. On the other hand, higher operation frequency makes
the Doppler modulation of moving target more sensitive to its
motion, and thus, the Doppler energy of target usually deviates
from its real position. As a result, shadows can be more easily
observed compared to the traditional SAR system [10]. It is very
difficult to directly detect the moving target in SAR images,
especially when its Doppler energy is smeared and shifted,
which may be outside the scene as an extreme case [11]. On the
contrary, the moving target can leave an observable shadow on
its trajectory under the appropriate speed [12], which enables
an indirect detection by finding this shadow. The features of
moving target shadow, such as size, shape, and intensity, are very
useful for target detection, location, and tracking. The shadow
is more reliable for locating target rather than using Doppler
energy [9] since it can approximately represent the real position
of moving target in the short beam dwell time, and thus, the
shadow-based detection can directly locate the moving target
in the high-resolution SAR images, which avoids the complex
relocation operation in classical SAR-GMTI algorithms. In ad-
dition, the multiframe information in video SAR can be used to
obtain a better performance.

The current shadow-based detection methods are mainly
based on classical image processing, including single-frame [13]
and multiframe processing [14]–[17]. Shadow detection based
on classical image processing has received much attention be-
cause of its independency of the number of channels. Liu [13]
presented a local feature analysis method for shadow detec-
tion in a single-frame video SAR image. On the other hand,
video SAR can provide continuous moving target shadows.
Zhang [14] discussed a classical shadow detection approach that
includes adjacent image registration, speckle noise suppression,
background extraction, differential processing, morphological
processing, and connected component detection. Tian [16] used
the track-before-detect (TBD) algorithm to deal with the mov-
ing target detection and tracking in the video SAR sequential
images.

Moreover, the shadow detection combined with the SAR-
GMTI technique has also been concerned. Xu [11] presented a
framework based on enhanced shadow-aided decision for mul-
tichannel SAR-GMTI, which, however, relies on multichannel
returns to estimate the cross-track velocity to correct the azimuth
displacement and achieve the relocation of target.
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The target detection based on the deep convolutional neural
network (DCNN) has achieved a remarkable performance in
optical images [18]–[20], and also in the field of video target
detection [21], [22]. Recently, some target detection and tracking
algorithms based on DCNN have been successfully applied
to radar [23]–[26]. The traditional target detection algorithms
usually suffer a lot from complicate clutter background and low
signal-to-clutter ratio (SCR). Alternatively, DCNN can auto-
matically extract features from data for the use of detection,
recognition, and tracking, which removes some limitations of
traditional methods.

In video SAR images, the moving target shadow is a typical
dim target with low intensity and simple features, which has no
obvious differences from other weak reflectivity areas. In most
cases, the size and intensity of shadow are time-varying due to
target motion and change of observing angle. As a result, false
alarms are very common in the detection. On the other hand,
the generation of shadow strongly depends on target motion,
especially for fast maneuvering target whose shadow boundary
is blurred and exhibits low contrast with the background. Addi-
tionally, the ambiguous or smeared Doppler energy of target
may mask its shadow in some extreme cases. These issues
give rise to the missing alarms in some frames. Furthermore,
practical implementation of deep learning technology in radar
is hampered in many cases by a severe shortage of appropriate
training data, and therefore, the joint detection, which makes full
use of different features becomes a concern in radar applications.

The main contributions of this article are threefold.
1) We propose a new joint detection approach based on the

developed dual faster region-based convolutional neural
network (Faster R-CNN), which benefits from combining
the shadow detection in SAR image and Doppler energy
detection in range-Doppler (RD) spectrum domain.

2) In the designed dual Faster R-CNN, a high resolution SAR
image and its corresponding low resolution RD spectrum
are simultaneously input, and two independent region
proposal networks (RPNs) are used to generate proposals
on SAR image and RD spectrum, respectively.

3) We propose a rule-based azimuth coordinate shift method
to shift proposals from one domain to the other, and thus,
the paired proposals can be obtained, which drive the
network to detect moving targets around the same range of
SAR image and RD spectrum. Hence, a correct detection
can be declared if the shadow of a moving target and its
Doppler energy are simultaneously detected.

This proposed approach has been verified by both the simu-
lated and real video SAR data. Compared to the classical Faster
R-CNN and conventional dynamic programming-based TBD
(DP-TBD) algorithm, our approach exhibits a great detection
performance of moving target with few false alarms and accept-
able missing alarms.

The rest of this article is organized as follows. Section II
briefly discusses the classical Faster R-CNN for detection in
the SAR image and its limitations. The proposed joint detection
approach using dual Faster R-CNN are detailed in Section III.
Section IV presents the detection results of dual Faster R-CNN.
Section V concludes this article.

Fig. 1. Flowchart of the classical Faster R-CNN for shadow detection.

II. SHADOW DETECTION IN SAR IMAGE

A. Faster R-CNN for Detection

R-CNN has achieved a great success in the field of target
detection in optical images [18]. However, it is not an end-to-end
detection network. In order to solve the problems of slow training
speed and inaccurate detection, fast R-CNN uses CNN to extract
features from the whole image and maps region proposals to the
feature maps [19]. However, both R-CNN and fast R-CNN use
selective search algorithm to generate region proposals, which
have the disadvantages of slow generation speed and redundant
features.

Therefore, the RPN is proposed in Faster R-CNN. It uses
the fully convolutional network to provide region proposals and
shares feature maps with the detection network, which greatly
improves the speed and accuracy of the generations of region
proposals [20]. The flowchart of the classical Faster R-CNN for
shadow detection in video SAR is shown in Fig. 1.

B. Limitations of Image Detection

Both the false alarms and missing alarms are important con-
cerns in shadow detection. Moving target shadows are mostly
dim targets in video SAR images, which challenge the Faster
R-CNN. The low resolution makes the features of shadow sim-
ple, and the shadow often appears as dark area with blurred
boundary. Therefore, other weak reflectivity areas, such as the
shadows of fixed targets, add to false alarms.

On the other hand, the size, shape, and intensity of a shadow
are greatly affected by the motion of target. When the target
stops, its shadow becomes difficult to observe. For a fast ma-
neuvering target, the occlusion time of target to the background
becomes shorter in the subaperture integration time, and thus,
the shadow sometimes cannot be observed. In addition, it is
possible for the ambiguous or smeared Doppler energy to mask
its or other shadows in some frames. All these factors may result
in missing alarms.

It has been found that the classical Faster R-CNN has an
acceptable false alarm rate in moving target shadow detection,
provided that large training data are used, particularly when the
testing data have the same distribution as the training data, such
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Fig. 2. Acquisition of sequential video SAR images and RD spectra.

as using the same or similar scenes. However, the missing alarms
are still inevitable. In addition, the generalization ability of the
classical Faster R-CNN is quite poor. For an unknown scene
that is not used in the training dataset, the detection performance
deteriorates seriously, resulting in a large number of false alarms.

III. JOINT DETECTION USING DUAL FASTER R-CNN

We propose an image-based end-to-end dual Faster R-CNN
to improve the shadow-based moving target detection in video
SAR, which jointly utilizes the features of a moving target in
SAR image and RD spectrum for robust detection.

A. Signal Model

Video SAR usually has a long observation time for continuous
surveillance of the scene. As shown in Fig. 2, the complex returns
are arranged as a matrix with M range bins and P pulses.
Assume that there are N (N � P ) pulses in each frame, the
whole complex returns can be divided into T frames by using a
sliding window (SW) whose interval equals to S (S ≤ N ).

The SAR image is obtained from N pulses using the polar
format algorithm (PFA), which is a common image formation
algorithm for spotlight SAR. The PFA reformats the measured
SAR data to Cartesian data location array by interpolation and
uses the 2-D fast Fourier transform to realize image forma-
tion [27].K continuous pulses are extracted around the subaper-
ture center, and the corresponding RD spectrum can be obtained
after range compression and azimuth Fourier transform. Note
that the classical clutter suppression methods are not used in
our simulation, and therefore, the stationary clutter spectrum
is retained. With the sliding of the window, sequential high
resolution video SAR images and corresponding low resolution
RD spectra are obtained.

B. Target Detection Combined Shadow and Doppler Energy

A shadow-aided multichannel SAR-GMTI method has been
proposed [11], which relies on multichannel returns to relocate
the detected targets and then combines with the detected shad-
ows for joint decision. Instead, we propose a DCNN-based joint
detection approach for the video SAR system, and the principle
of this approach is illustrated in Fig. 3.

The video released by Sandia National Laboratories [28]
demonstrates the idea of moving target detection combined
shadow and Doppler energy. For a real moving target, its Doppler
energy can be observed in the RD spectrum. Meanwhile, the

Fig. 3. Schematic diagram of moving target detection combined shadow and
Doppler energy. (a) Slow moving target. (b) Fast moving target.

shadow appears in the SAR image due to obstruction of the
target on the incident radar radiation and Doppler shift, which
makes the defocused moving target image deviates from its real
position. Therefore, a real moving target owns both the shadow
and Doppler energy, which are located around the same range.
Based on this property, a moving target can be jointly detected
in the SAR image and RD spectrum.

In the real SAR video, there is only one moving target in the
scene, therefore, we use two video SAR images corresponding
to the initial and acceleration stages of this moving target to
illustrate the detection principle of slow and fast moving targets,
respectively. For a slow moving target shown in Fig. 3(a), the
occlusion time to the background is longer in the subaperture
integration time. Therefore, the contrast between its shadow and
background is strong and the boundary is clear. In this case, the
region proposalA provided by RPN will have high confidence to
detect this shadow in SAR image. Assume that the position of its
Doppler energy in the RD spectrum is limited by the red dotted
line, we can shift the proposal A into the limited area in the RD
spectrum to search the Doppler energy of moving target. Once it
is detected, a reliable detection is declared. On the other hand, for
the fast moving target shown in Fig. 3(b), the Doppler energy in
the RD spectrum is reliable for target detection, while its shadow
is hard to be detected due to the blurred boundary. The region
proposalB correctly covers the Doppler energy, and the position
of moving target shadow in the SAR image is also limited by
the red dotted line. The joint detection is helpful for detecting
the blurred shadow in this case by driving the neural network to
search moving target shadow in the limited area, which has some
improvements in missing alarm compared to SAR image-based
detection. In addition, suppose that a region proposal C in the
SAR image is a false alarm. Although it is very likely to be
classified as a moving target shadow, the Doppler energy will
not be detected in the RD spectrum, which is limited by the
white dotted line. Therefore, this false alarm can be effectively
suppressed.

C. Design of Dual Faster R-CNN

A dual Faster R-CNN is proposed to simultaneously detect the
moving target in SAR image and RD spectrum, and the specific
structure is given in Fig. 4.

In the preprocessing, all true targets are divided into the fol-
lowing three categories: shadow (visible moving target shadow
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Fig. 4. Structure of the developed dual Faster R-CNN used for the robust
detection of moving target in video SAR.

in image), masked shadow (invisible moving target shadow in
image), and target Doppler (Doppler energy of moving target
in RD spectrum). In the RD spectrum, although the changes in
the velocity of moving target will lead to different broadening
of its Doppler, the Doppler features will not change a lot due
to low Doppler resolution. Therefore, the Doppler energy is
both labeled as target Doppler whether it is inside or outside
the stationary clutter spectrum. On the other hand, both the
visible and invisible moving target shadows should be labeled
in the SAR image. However, in some cases, the shadow will be
masked by the Doppler energy of target in the image, resulting
in changes of shadow features. Hence, the different shadows
are labeled as shadow and masked shadow to distinguish this
difference, respectively.

The high-resolution video SAR image and its related RD
spectrum are fed into the developed dual Faster R-CNN si-
multaneously, and thus, the input is the concatenated image
Ω = {α, β} with the size of H × 2W , where α and β are
video SAR image and RD spectrum with the sizes of H ×W ,
respectively. Subsequently, the concatenated image Ω is divided
into two parts after it is fed into the network. The video SAR
imageα and the ground-truth information of shadow and masked
shadow are transmitted into the image part of the dual Faster
R-CNN while the RD spectrum β and target Doppler are fed
into the RD part.

The deep features ofα andβ are extracted by two independent
feature extraction networks, and thus, SAR feature maps and
Doppler feature maps are obtained, respectively. The popular
VGG-16 network [29] is used as the feature extraction network
in this article.

After the feature extraction, two independent RPNs, namely
image RPN and Doppler RPN, generate a set of rectangular
boxes (anchors). In the designed dual Faster R-CNN, the image
and Doppler RPNs are trained according to their individual
anchors. The loss functions of image and Doppler RPNs are

given by [20]

Limg_rpn =
1

Nrpn_cls

∑

i

Lrpn_cls(pIi, p
∗
Ii)

+
λ

Nrpn_reg

∑

i

p∗IiLrpn_reg(tIi, t
∗
Ii)

Ldop_rpn =
1

Nrpn_cls

∑

j

Lrpn_cls(pDj , p
∗
Dj)

+
λ

Nrpn_reg

∑

j

p∗DjLrpn_reg(tDj , t
∗
Dj) (1)

whereLrpn_cls(·) is a two-class cross entropy loss function (back-
ground versus foreground), pIi is the predicted probability of
anchor i as an object in SAR image, and the ground-truth label
p∗Ii is 1 if the anchor is positive, otherwise it is zero. Lrpn_reg(·)
is a regression loss function, which is activated only for positive
anchors. tIi is a vector representing the translation and scaling
parameters of the predicted bounding box in SAR image and t∗Ii
is that of the ground-truth box (likewise for pDj , tDj , p∗Dj , and
t∗Dj).

Moreover, the image and Doppler RPNs provide ε precise
region proposals to train the subsequent detection network,
respectively. The ith region proposal γi provided by image RPN
and the jth region proposal ηj provided by Doppler RPN can be
expressed as

γi =
[
x1
Ii, y

1
Ii, x

2
Ii, y

2
Ii

]
, i = 1, . . ., ε

ηj =
[
x1
Dj , y

1
Dj , x

2
Dj , y

2
Dj

]
, j = 1, . . ., ε (2)

where (x1
Ii, y

1
Ii) and (x2

Ii, y
2
Ii) represent upper-left and lower-

right coordinates of the ith region proposal in SAR image
(likewise for ηj). Therefore, all region proposals in SAR im-
age and its related RD spectrum are ΛI = {γ1, . . ., γε} and
ΛD = {η1, . . ., ηε}, respectively.

Subsequently, these region proposals are then shifted from
one domain to another based on the property that the shadow of
a moving target and its Doppler energy are located around the
same range. For example, by keeping the range coordinates of
region proposals provided by image RPN unchanged, their cor-
responding region proposals in RD spectrum can be obtained by
mapping the azimuth coordinates. In this way, the paired region
proposals are obtained in SAR image and RD spectrum with the
same range coordinates but the different azimuth coordinates.
Similarly, the region proposals provided by Doppler RPN are
also shifted to the SAR image.

A rule-based azimuth coordinate shift method is used to gen-
erate paired region proposals, which shifts region proposals from
one domain to another. This azimuth coordinate shift method is
implemented by three steps.

First, the differences of range coordinates between γi and all
region proposals in ΛD are calculated. Assume that mth region
proposal ηm has the smallest range coordinate difference, which
can be calculated by

m = argmin
j

[|y1Ii − y1Dj |+ |y2Ii − y2Dj |
]
. (3)
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Second, the region proposal γi in SAR image can be shifted
to RD spectrum as γ′

i by using the azimuth coordinates of ηm
and holding the range coordinates, which can be expressed as

γ′
i =

[
x1
Dm, y1Ii, x

2
Dm, y2Ii

]
. (4)

Third, all region proposals in ΛI are shifted to RD spectrum
using (3) and (4) (likewise for region proposals in ΛD). There-
fore, the paired region proposals used in the designed dual Faster
R-CNN can be expressed as

PI = {γ1, . . ., γε, η′1, . . ., η′ε}
PD = {γ′

1, . . ., γ
′
ε, η1, . . ., ηε} (5)

where γ1 and γ′
1 are a pair of region proposals with the same

range coordinates but different azimuth coordinates,PI contains
2ε region proposals for detection of shadow and masked shadow
in the SAR image (likewise for PD).

Through azimuth coordinate shift, region proposals from two
independent RPNs are shared and paired region proposals are
obtained for joint detection. As a supervised network, it is
necessary to calculate the category label and regression param-
eter label for each region proposal in PI and PD. The overlap
ratios between each region proposal and ground-truth boxes of
each category in the current image are calculated to decide the
category labels [20]. At the same time, the translation and scaling
parameters of the positive region proposals are also calculated
as the regression parameter labels. These labels are used to train
the subsequent detection network.

Two RoI pooling layers are used to extract features with fixed
size from their individual feature maps based onPI andPD. The
fully connected layers are used to classify each pair of region
proposals and to predict the regression parameters of bounding
boxes. The loss function of the detection network can be written
as

Lrcnn =
1

Ncls

∑

i

[Limg_cls(qIi, q
∗
Ii) + Ldop_cls(qDi, q

∗
Di)]

+
λ

Nreg

∑

i

[q∗IiLimg_reg(tIi, t
∗
Ii) + q∗DiLdop_reg(tDi, t

∗
Di)] (6)

where Limg_cls(·) and Ldop_cls(·) are three-class (background,
shadow, and masked shadow) and two-class (background ver-
sus target Doppler) cross entropy loss functions, respectively.
Limg_reg(·) and Ldop_reg(·) are regression loss functions. There-
fore, the total loss of the dual Faster R-CNN can be written as

L = Limg_rpn + Ldop_rpn + Lrcnn. (7)

In the train, some region proposals inΛI andΛD are gradually
concentrated on the real moving target, and thus, the shifted
region proposals are also gradually close to the true target in
the other domain. Therefore, the paired region proposals are
helpful for driving the network to simultaneously detect the
moving target around the same range in the SAR image and
RD spectrum.

In the test, 2ε pairs of region proposals are output after bound-
ing box regression using the predicted regression parameters.
For a pair of region proposals, they can be retained only when

TABLE I
TYPICAL RADAR PARAMETERS FOR SIMULATIONS OF VIDEO SAR DATA

their classification probabilities are both above the detection
threshold. Then, the nonmaximum suppression (NMS) is used to
suppress the redundant region proposals in the SAR image, and
corresponding region proposals in the RD spectrum are dropped
at the same time. Moreover, the NMS is used again in the RD
spectrum to further eliminate the overlapping region proposals.

A successful detection can be declared when the shadow of a
moving target in the SAR image and its Doppler energy in the
RD spectrum are simultaneously detected by a pair of region
proposals. This joint detection approach fully uses the target
features in both the SAR image and RD spectrum, which enables
a good detection performance and significant improvement in
false alarm.

IV. EXPERIMENTAL RESULTS

The joint detection of moving target based on dual Faster
R-CNN is examined both on the simulated and real video
SAR data, and the resulted false alarm and missing alarm are
discussed. Meanwhile, the conventional methods, such as the
classical Faster R-CNN and the conventional DP-TBD algo-
rithm, are used to detect shadows only in the SAR image for the
purpose of comparison.

A. Simulated Video SAR Data

The radar parameters used in the simulations are listed in
Table I. The background returns of single channel circular video
SAR are generated based on the real SAR reflectivity images.
The moving targets are simulated additionally.

The simulation of moving target uses a 2-D model of a real
tank SAR image [30]. Its pixel numbers are resized to match
different target sizes, and the shape is rotated according to the
set motion direction. The moving target echoed signal can be
obtained by calculating the summation of returns from all the
scatterers on the target model. Targets with different sizes and
velocities are used to verify the robustness of the proposed
approach. In each set of video SAR returns, the size of the
moving target is selected in the range of 3–7 m, and the aspect
ratio is adjusted according to the motion direction. Different
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TABLE II
TYPICAL SPEED PARAMETERS USED IN SIMULATIONS

motions have been used to simulate the moving targets with
various speeds. Some typical speed parameters are illustrated in
Table II.

The shadow is simulated as a black area with the same shape
and size as the moving target, which is a good approximation
under large depression angle. It should be pointed out that even
if the sizes of targets are the same, the shapes and sizes of their
shadows generated under different speeds are different. After
the image formation by the well-known PFA in a subaperture,
the length of shadow of a moving target depends on its speed
and length along the speed direction [12]. The shadow will
expand along the motion direction of the target. For a moving
target, the higher the speed, the longer the theoretical length
of its shadow. However, as the speed increases, the contrast
between the shadow and background decreases due to the shorter
occlusion time [10]. A slower target has a more distinct shadow,
and the shadow intensity roughly varies with the occlusion time
linearly. Therefore, in the focused SAR images, the shadow fea-
tures are significantly affected by the motion. Different motion
states also increase the diversities of shadows. On the other hand,
the simulated shadow is different from the real moving target
shadow. The main difference is that the real shadow is composed
of two parts the occlusion of a moving target to background
and the projection of the target with height along radar line
of sight. The simulated shadow is based on the former since
the real shadow is mainly composed of the former under large
grazing angle. In this case, the simulated shadow can reflect most
characteristics of the real shadow.

The real SAR reflectivity images for background simulation
are shown in Fig. 5, where Fig. 5(a)–(c) is used in the training
and testing dataset. The Gaussian complex noise is added into
the background returns according to CNR, and then total video
SAR returns are obtained by adding the returns of target and
its shadow with specified SCR. Each set of video SAR returns
contains 200 subapertures, and each subaperture can be used to
form a high resolution video SAR image and a low resolution
RD spectrum, which are concatenated as one training image. In
the training dataset, 600 sets of video SAR returns are simulated
and 48 K concatenated images are chose as the training images.

The following four cases are considered in the test to examine
the robustness of the proposed approach.

1) Case A: using the used scenes in the training dataset.

Fig. 5. Real SAR images used for background returns. (a)–(c) Scenes used in
the training and testing set. (d) and (e) Scenes only used in the testing set.

TABLE III
PARAMETERS OF TESTING DATASET

2) Case B: using the unused scenes in the training dataset.
3) Case C: using the used scenes in the training dataset with

lower resolutions.
4) Case D: using the unused scenes in the training dataset

with lower resolutions.
Typical parameters of the testing dataset are given in Table III.

Fig. 5(b) and (c) is used as the backgrounds in Case A, which
have been used in the training dataset. There are 400 testing
images in Case A including 1000 moving targets. In Case B,
Fig. 5(d) and (e) is used as the backgrounds. In particular,
these scenes have never been used in the training dataset. Case
B contains 400 testing images and 1800 moving targets. The
backgrounds of Case C and Case D are the same as those of Case
A and Case B, respectively, but using half of the bandwidth,
subaperture length, and Doppler pulse numbers to reduce the
resolutions. Both Cases C and D contain 400 testing images and
1000 moving targets. Finally, there are total 1600 images and
4800 moving targets in the testing dataset. Some testing images
are shown in Fig. 6.

B. Results of Simulated Radar Data

The dual Faster R-CNN is trained using the abovementioned
training dataset of 48 K images. During the training stage, the
learning rate is set to 0.001, which is an empirical parameter used
to train Faster R-CNN in most cases. Meanwhile, the classical
Faster R-CNN is trained only using the video SAR images under
the same dataset and training parameters for comparison.

Both the dual and classical Faster R-CNNs can locate the
positions of shadows in the SAR image using the bounding
boxes, and give the classification probabilities at the same
time. The larger the classification probability, the higher the
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Fig. 6. Some testing images. (a) and (b) Case A. (c) and (d) Case B. (e) and
(f) Case C. (g) and (h) Case D.

confidence of the network to recognize the region proposal as
the specified object. In the classical Faster R-CNN, the region
proposals whose classification probabilities are higher than the
detection threshold are output as the final detection results after
NMS. However, a pair of region proposals are selected only
when their classification probabilities are both higher than the
detection threshold in the dual Faster R-CNN, and the final
detection results are obtained using NMS in the SAR image
and RD spectrum in turns.

Moreover, the conventional DP-TBD algorithm [31] is used
to give the comparison of the detection performance. Since the
subaperture step length S is quite smaller than the subaperture
length N in the simulations, there are slight differences between
two adjacent simulated SAR images, which brings difficulties
to background extraction and shadow detection. Therefore, all
1600 testing images are divided into 32 groups, and 5 sequential
SAR images are selected every 10 frames from a group as
a set of image samples for the experiments. In this way, the
differences between SAR images to be detected are increased
and the moving targets have obvious motions, which is helpful
for target tracking and detection. Before the initial detection,
the stationary clutter is expected to be suppressed. However,
video SAR images are rotated if the spotlight or circular SAR
data are focused by the PFA, which needs additional procedures
to correct this rotation. Therefore, in the first place, the mean
filters are used to suppress the speckle noise and the image
registrations are implemented for the first two frames by using
the well-known scale-invariant feature transform and the random
sample consensus algorithms [14]. In detail, for a set of images to
be detected, the fourth and fifth images are registered to the first
and second images, respectively. Second, the backgrounds of

the first two frames are extracted and the clutter suppressions
are realized by removing the backgrounds. Third, the initial
detection procedures are performed by using a two-parameter
constant false alarm rate detector and the morphological process-
ing. The centers of the connected components are considered as
the detected points. Fourth, the detected points in the first two
frames are matched to obtain candidate targets and to estimate
the initial states. Finally, the classical DP-TBD algorithm is used
to simultaneously detect and track the moving target shadow
over five frames by integrating the merit function. Here, we
used the pixel value as the merit function, and the pixel value is
reversed to change the shadow from dark to bright. The DP-TBD
algorithm declares the presence of moving target shadow if the
integrated merit function exceeds the set threshold in the last
frame.

The detection results using the conventional DP-TBD algo-
rithm, classical Faster R-CNN and the proposed dual Faster
R-CNN are shown in Fig. 7. These testing images are all from
Case B. In each image, the first and second columns show
the detection results obtained from the conventional DP-TBD
algorithm and classical Faster R-CNN, respectively. The third
column gives the detection results both in the SAR image and RD
spectrum using the dual Faster R-CNN. The detection thresholds
equal to 0.6 in both the deep learning-based methods, which are
the standard thresholds set in the Faster R-CNN [20]. Fig. 7(a),
(b), and (f) shows the proposed dual Faster R-CNN has less
false alarms than the classical Faster R-CNN. The dual Faster
R-CNN uses paired region proposals to jointly detect the moving
targets. A target can be considered as a real moving target only
if it is detected in both SAR image and RD spectrum. The
interference areas whose features are similar to the moving target
shadow, such as the shadow of a fixed target, are easy to be
misjudged in the SAR image. However, these areas do not have
Doppler energy zones as moving target at the corresponding
positions in the RD spectrum. Hence, these false alarms can
be effectively suppressed. On the other hand, it can be observed
that the classical Faster R-CNN generates a large number of false
alarms and missing alarms in the testing images come from Case
B due to poor generalization ability. The conventional DP-TBD
algorithm uses the strategy of integrating the energy of shadows
between frames. As shown in Fig. 7(c) and (d), the false alarms
are easily generated in the other areas of weak reflectivity. The
missing alarm occurs in Fig. 7(e) when the moving target shadow
is masked by its Doppler energy.

There are some missing alarms in the detection results of
dual Faster R-CNN. The first reason lies in the fact that the
stationary clutter is not suppressed in the RD spectrum, which
makes it difficult to detect Doppler energy of moving target with
the interference of stationary clutter. For a slow moving target
with low SCR, the missing alarm easily occurs when its Doppler
energy is inside the stationary clutter, as shown in Fig. 7(f). How-
ever, in some cases, the dual Faster R-CNN can correctly detect
slow moving targets based on its powerful feature extraction
abilities. Fig. 7(c) and (d) shows the correct detections of slow
moving targets in the stationary clutter. The second is that when
two detection results are located at the adjacent range, the false
alarm and missing alarm likely occur. In Fig. 7(e), there are a
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Fig. 7. Comparisons of the detection results of the simulated video SAR data. (a)–(f) Detection results of different testing images from Case B. In each image,
the first and second columns show the detection results obtained from the conventional DP-TBD algorithm and classical Faster R-CNN, respectively. The third
column gives the detection results both in the SAR image and RD spectrum using the dual Faster R-CNN. In the deep learning-based methods, a detection threshold
of 0.6 is used to display these results.

false alarm and a missing alarm in the detection results of the
dual Faster R-CNN. The corresponding region proposal of the
false alarm also detects the Doppler energy of target in the RD
spectrum, and its classification probability happens to be higher
than that of the corresponding region proposal of moving target
shadow. In this case, after NMS in the RD spectrum, the false
alarm is retained while the shadow is removed.

However, the paired region proposals are useful for network
to search the moving target around the same range, which has
some improvements in the missing alarm. As shown in Fig. 7(d)
and (f), there are two missing alarms in the detection results of
the classical Faster R-CNN. In our approach, a region proposal
correctly covers the Doppler energy of target in the RD spectrum,
and its corresponding region proposal in the SAR image forces
the network to search potential targets around the same range.
Therefore, the dual Faster R-CNN can successfully detect these
moving targets based on the paired region proposals. The joint
detection can also be implemented by two independent Faster
R-CNNs, which detect shadow and Doppler energy in the SAR
image and RD spectrum, respectively. The preliminary detec-
tion results can be associated for final decisions. However, this
method does not use the paired region proposals in the training
stage, and cannot drive the network to simultaneously detect
the moving targets around the same range. It is obvious that the
method of associating independent detection results can only
suppress false alarms but has no improvement on missing alarms,
which are worse than the classical and dual Faster R-CNNs.

All the detection results of different methods using the sim-
ulated testing dataset are illustrated in Table IV, which gives
the comparisons of the detection performance in terms of false
alarm, missing alarm, average number of false alarms per frame
(NFA) and the probability of detection (PD). The number of
testing images is 1600, which contains 4800 moving targets.

TABLE IV
COMPARISONS OF DETECTION PERFORMANCES OF DIFFERENT METHODS

USING SIMULATED DATA WITH DETECTION THRESHOLD OF 0.6

The bold entities are used to intuitively illustrate the detection performance of our
proposed method.

The detection threshold of 0.6 is used for both the classical and
dual Faster R-CNN. The proposed approach shows much better
detection performance compared to the other methods in terms
of false alarms. The number of false alarms of the conventional
DP-TBD algorithm and the classical Faster R-CNN is about 3.4
and 11.5 times of our approach, respectively, which indicates
our joint detection approach has better control of false alarm
in video SAR moving target detection. The performance of
classical Faster R-CNN is deteriorated due to the poor general-
ization ability. Although the paired region proposals have some
contributions in searching the moving target, our approach has
no noticeable advantage in missing alarms due to the stricter
detection conditions. The number of missing alarms in our
approach is 232, which is more than the classical Faster R-CNN,
however, the detection probability can reach 95.17% with less
false alarms. Therefore, the dual Faster R-CNN is superior to
the other two conventional methods. Furthermore, the influence
of detection threshold is considered, and the comparisons of
detection performances of deep learning-based methods under
different detection thresholds are illustrated in Table V. It can
be seen that with the increase of detection threshold, the number
of false alarms decreases while the number of missing alarms
increases.
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TABLE V
COMPARISONS OF DETECTION PERFORMANCES USING SIMULATED DATA

UNDER DIFFERENT DETECTION THRESHOLDS

Fig. 8. Comparisons of detection results of the real video SAR data. The
first and second columns show detection results obtained from the conventional
DP-TBD algorithm and classical Faster R-CNN, respectively. The third column
gives the detection results both in the SAR image and RD spectrum using the
dual Faster R-CNN. In the deep learning-based methods, a detection threshold
of 0.6 is used to display these results.

A comparison of the computational loads is briefly discussed,
where the experiments are performed on the platform with a
3.4 GHz CPU. The parameters of our method are at least twice
than those of the classical Faster R-CNN due to the dual network
structure, which results in higher computational complexity. The
mean testing time of our method is 2.9666 s for each frame while
the classical Faster R-CNN costs 1.2838 s. The computational
complexity of DP-TBD algorithm mainly comes from the image
registration and background extraction, which costs 14.4685 s
for the first two frames with the sizes of 656 × 875, and the
mean time of subsequent detection for each frame is 2.9358 s.

C. Results of Real Video SAR Data

The real SAR video released by the Sandia National Labo-
ratory [28] has been used to verify the proposed approach. The
real video SAR images are extracted every 10 frames from the
original data, and 314 frames can be obtained where 224 frames
are used as the basic images of training dataset and 90 frames
are used as the testing dataset. The original video SAR images
are cropped into two parts SAR image and RD spectrum. The
frequently used translation has been used to expand the training
data, and 32 256 images are obtained as the training dataset. The
proposed dual Faster R-CNN is trained using the images con-
catenated by the SAR image and RD spectrum, and the classical
Faster R-CNN and DP-TBD algorithm are also experimented on
the SAR image.

There are 90 moving targets in the testing dataset. Fig. 8 shows
the detection results of the real video SAR data. The detection
thresholds are both 0.6 in the dual and classical Faster R-CNNs.

TABLE VI
COMPARISONS OF DETECTION PERFORMANCES OF DIFFERENT METHODS

USING REAL VIDEO SAR DATA WITH DETECTION THRESHOLD OF 0.6

The bold entities are used to intuitively illustrate the detection performance of our
proposed method.

TABLE VII
COMPARISONS OF DETECTION PERFORMANCES USING REAL VIDEO SAR DATA

UNDER DIFFERENT DETECTION THRESHOLDS

The conventional DP-TBD algorithm detects the moving target
shadow in the successive five frames. Since the changes of beam
direction bring difficulties to the DP-TBD algorithm, a common
SW processing is used, and the step of the window equals to 1.
After the detection, a subsequent filter is used to associate tracks
detected in each window [32]. In this article, a simple strategy
is adopted for the subsequent filter. In each frame, among the
repeated states belonging to the same moving target, only the
state with the largest reversed pixel value is retained. Therefore,
the repetitive detections are eliminated.

In video SAR image, the region proposal that covers the
weak reflectivity area may have similar features as that covers
the shadow of moving target, for instance, the intensity, size,
and shape. In this case, the classical Faster R-CNN may cause
misjudgment, which generates a false alarm in Fig. 8(a). On the
other hand, the DP-TBD algorithm fails to detect the shadow
in Fig. 8(b), and simultaneously generates a false alarm and
a missing alarm. In particular, our approach can still maintain
a great detection performance by simultaneously using the fea-
tures of moving target shadow and Doppler energy. The detection
performances of three methods using real video SAR data are
illustrated in Table VI. Note that there is only one moving target
in each testing image, its shadow is clear in the SAR image and
has never been masked, leading to a good detection performance
for classical and dual Faster R-CNNs. However, the changes
of beam direction deteriorate the detection performance of the
DP-TBD algorithm. Table VII shows the comparisons of the
detection performance using real video SAR data under different
detection thresholds.

Moreover, Fig. 9 shows the comparisons of shadow detection
performances of deep learning-based methods varying with the
number of training images. In the testing, 90 real images are
used and the detection threshold equals to 0.6. In the training
of classical and dual Faster R-CNNs, one image is fed into the
network for each iteration and the network is saved every 5000
iterations. Therefore, the training images are reused after 32 256
iterations. Particularly, the detection results of deep learning-
based methods in Fig. 8, Tables VI and VII are obtained by
using 40 000 training images. It can be noticed that false alarms
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Fig. 9. Comparisons of shadow detection performances of deep learning-based
methods varying with the number of training images. In total, 90 real images are
tested and the detection threshold equals to 0.6. (a) False alarms. (b) Missing
alarms.

of the proposed approach are less than that of the classical Faster
R-CNN under different numbers of training images with accept-
able missing alarms. Therefore, the proposed dual Faster R-CNN
is an effective approach for shadow detection.

V. CONCLUSION

This article presents a new joint moving target detection
approach for video SAR using the dual Faster R-CNN, which
algorithmically combines the shadow detection in SAR image
and the Doppler energy detection in the RD spectrum. The
detection performance is significantly improved by using diverse
features from different domains.

A rule-based azimuth coordinate shift method is used in
the dual Faster R-CNN to share the region proposals of two
independent RPNs, and thus, the paired region proposals are
obtained. Therefore, a detection can be declared if the shadow
of a moving target and its Doppler energy are simultaneously
detected in the SAR image and the RD spectrum. Compared to
the classical DP-TBD algorithm and Faster R-CNN for shadow-
based detection, the proposed approach can effectively suppress
false alarm at an acceptable level of missing alarm, which can
be further balanced if necessary.
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