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DE-CycleGAN: An Object Enhancement Network
for Weak Vehicle Detection in Satellite Images

Peng Gao , Tian Tian , Linfeng Li, Jiayi Ma , and Jinwen Tian

Abstract—Vehicle detection is a very important application of
remote sensing. However, suffering from the low acutance and
insufficient color information, the detection of weak vehicles in
satellite imagery still remains a challenge. Image enhancement can
improve the visual effects of remote sensing images. Nevertheless,
most existing image enhancement methods aim to improve the
quality of the entire image without target guidance, which have am-
biguous contributions to the detection performance. Methods based
on generative adversarial networks (GANs) have realized image
enhancement with target guidance by the addition of target-guided
branches, but paired training data is not available in some scenar-
ios. In this article, a novel model of detection-guided CycleGAN
(DE-CycleGAN) is proposed to enhance the weak targets for the
purpose of accurate vehicle detection, where a backbone GAN with
a target-guided branch is learned in the absence of paired images.
Specifically, enhancements of two levels are mutually executed. At
the image level, the color information of the entire satellite image is
enriched by refined CycleGAN, and its sharpness is enhanced by the
gradient enhancement model. At the object level, the target-guided
branch for detection is added to enhance features of the target.
The experimental results validate that the detection performance
has been significantly improved on the images enhanced by the
proposed DE-CycleGAN model, which shows a positive effect on
weak target detection.

Index Terms—CycleGAN, generative adversarial networks
(GANs), object enhancement, target-guided branch, weak vehicle
detection.

I. INTRODUCTION

V EHICLE detection is one of the topics that are being
widely studied for object detection in remote sensing

imagery. Most public vehicle datasets are aerial images of high
quality, such as DLR 3K [1], UCAS-AOD [2], and DOTA [3].
Many vehicle detection works [4] have yielded high detection
scores on these open high-resolution aerial images. However,
in some scenes, some targets in satellite imagery are weak,
poorly defined, and lacking of color information. Self-limited
by imaging conditions of the satellite instrument, filters of
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the imaging instrument inevitably generate blurry images. And
during the denoising process of image prepossessing, details will
be probably lost. For adversarial purposes, targets in some scenes
tend to hide their colors and textures in the background, making
them difficult to be detected. Moreover, the targets in these
scenes are usually small and categories are unevenly distributed.
All of the above have posed a great challenge for weak vehicle
detection in satellite imagery.

A. Image Enhancement Methods

Due to the imaging differences, the same detection model
applied to the satellite imagery usually cannot perform as well
as which on the aerial imagery. How to elevate the detection
performance in satellite images has become an urgent study
in remote sensing applications. Image enhancement aims to
improve image quality of high-level vision tasks, and two kinds
of image enhancement approaches are considered to improve the
performance of weak object detection. One is to improve image
quality through image prepossessing, such as denoising [5],
image sharpening [6], and histogram equalization. The other
is to provide external information through supervised methods,
such as super resolution (SR) [7], high dynamic range (HDR) [8],
and salience enhancement [9]. However, both of them are im-
plemented on the image level, which treats the image as a whole
without target prior knowledge, and therefore results in few
improvement on the detection tasks.

B. GAN for Image Generation

Generative adversarial network (GAN) [10] is a common gen-
eration model which can generate different images for particular
tasks. It uses an adversarial architecture including the generator
and the discriminator to generate images. Many target-guided
branches [11], [12] are proposed with GAN to improve perfor-
mance in detection tasks. Compared with other image enhance-
ment methods, GAN can reconstruct images for specific tasks,
which means that targets can be reconstructed with more salient
features. In the task of weak target detection, many features of
weak targets can be learned during the generation process. Fur-
thermore, features of weak targets can be enhanced by GAN with
a target-guided branch. Many supervised manners can be added
to the generation, and the generation can be adjusted for special
tasks, e.g., the detection task. With target-guided branches, many
GANs have achieved improvements in computing vision tasks
such as image translation and super-resolution. Targets will be
enhanced in the generating process of GAN with the help of
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target-guided branches, and the output images will present more
details, color information, and salience than enhancement results
generated by other methods.

However, the generation process of GAN-based models is
difficult to converge and the training processes are not stable
either. Without the additional constraint imposed by extra super-
vised manners, the detection improvement gained from image
enhancement is not remarkable. Strong regulation beneficial for
target detection is required in the generation process, but this
requires additional paired training samples, which are always
difficult to collect. CycleGAN [13] employs unpaired images
for image-to-image translation, and this valuable character for
image generation has aroused our interests. CycleGAN uses
adversarial loss in the generator and discriminator as the global
style loss, and employs the identity mapping loss and the cycle
consistency loss as the content loss functions. It is more prac-
tical to use CycleGAN for image generation than many other
algorithms which require paired training data.

C. Motivation

From the aforementioned methods, we are motivated to re-
alize the weak vehicle enhancement for target detection using
a framework of CycleGAN with the addition of target-guided
branch. Specifically, we collect two datasets, one is the aerial
imagery of clear land surfaces and the other is the satellite
imagery containing blurry vehicles. Vehicles in the aerial im-
agery are characterized by low noise, rich color information,
and fine textures, whereas targets in the satellite imagery lack
color information and sharp contours. CycleGAN can transfer
blurry targets to clear targets and enrich color information. An
auxiliary target guidance branch is added to the enhancement
model to enrich the target features for detection.

However, some problems need to be solved when we directly
utilize CycleGAN for target enhancement. First, training pro-
cess is hard to converge because CycleGAN only employs a
discriminator to supervise the generator, which makes it hard
to capture the information distribution of the target domain.
Second, the enhanced vehicles may appear distorted and un-
realistic and the color distribution may be not uniform since
CycleGAN is originally designed for style transfer. Third, since
the model adopts single classification in the discriminator as
the regulation, local features are ignored which lead to the loss
of some tiny objects. Finally, false targets will be randomly
generated in the enhanced images, resulting in more false alarms
in the detection process. The above problems reveal that it is
necessary to develop stronger supervised model to control the
image generation process and enrich the spatial information if
CycleGAN is employed as the image enhancement model for
vehicle detection tasks.

D. Proposed Model

In order to address these problems and build an object en-
hancement network for weak vehicle detection, we propose DE-
CycleGAN. It is designed based on CycleGAN with a detection
guided branch. Fig. 1 shows some samples of generated images

Fig. 1. Samples of the image enhancement using DE-CycleGAN. From the
left column to the right column are DLR 3 K images, generated images form
DLR 3 K images, weak satellite images, generated images form weak satellite
images. The rightmost column is used for weak vehicle detection.

using DE-CycleGAN. Two levels of enhancements are done as
following.
� At the image level, vehicles are enhanced by image-to-

image translation. Some improvements for target detection
tasks are made on CycleGAN. Aerial images are chosen as
the reference imagery for their better qualities. Gradient
loss function is replaced by content loss function, and
identity loss function is also introduced to enforce the
global style learning process.

� At the object level, vehicle generation is controlled by the
directed branch. In the object detection task, target branch
for detection is added to guide the generation.

The major implements and improvements we have employed
include the following.
� High spatial resolution aerial images are chosen as the

reference images for learning because of their vivid color
information and plenty details. Aerial images are scaled
so that vehicles in them are similar in size to those in
the satellite imagery, therefore the satellite images with
weak targets can learn the global style beneficial for target
detection. Vehicles in the aerial imagery are similar in
size to those in the satellite imagery, therefore the satellite
images with weak targets can learn the global style bene-
ficial for target detection. Color information and details of
the vehicles in the generated images are enriched by the
process of image transformation.

� More adversarial losses are introduced into the whole
network. In the identity mapping section, L1 loss function
is replaced by the adversarial loss function. Since iden-
tity mapping loss function plays an important role in the
content generation of CycleGAN, this modification affects
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the contents learned by the model, and thus will improve
color distributions of weak objects. In the reconstruction
section, auxiliary adversarial loss is added to learn the
whole distribution of the images. All the above works are
beneficial to train the generator to converge.

� Gradient loss function is added as a content loss function
in the generation and reconstruction sections, besides L1
loss function. Gradient feature preserves the details of tiny
objects and improves the sharpness of targets.

� A target-guided branch for detection is added to Cycle-
GAN. The classification loss function is utilized to de-
fine global style loss in the generator and discriminator.
However, it is a weakly supervised approach compared to
the detection and segmentation approaches, and generated
images are sometimes unpredictable. In our model, we pro-
pose an auxiliary targeted detection branch for CycleGAN
to get better performance on weak object detection tasks.

E. Structure of Article

The first section of this article introduces the background of
our research and highlights of our work. The second section
provides a brief description of the work related to image en-
hancement, image-to-image translation, and vehicle detection.
The third section describes the structure of the model in detail,
lists the loss functions, and explains the architecture. The fourth
section is dedicated to experiments and analysis, listing, and
discussing the results of comparisons. The final section presents
our conclusions.

II. RELATED WORKS

A. Weak Vehicle Detection

Vehicle detection is one of the widely studied topics in the field
of remote sensing. Some models, such as RetinaNet [14], Faster
RCNN [15], and YOYO v3 [16], have turned out to be effective
models in vehicle detection. RetinaNet is one of the one-stage
detection models with a focal loss function. It is proposed to
balance the extreme foreground–background class imbalance
encountered during training of dense detectors. RetinaNet ex-
tracts features with VGGNet or ResNet as the backbone and the
feature pyramid network (FPN) as the neck, and fuses different
levels of the third, fourth, and fifth feature layers to obtain more
local information to obtain accurate proposed anchor results.

With numerous works on object detection, many methods
have been proposed on weak object detection, such as FPNs [17],
attention mechanisms, data argumentation [18], and image en-
hancement [19]. The above methods have improved the perfor-
mance on the weak target detection tasks, but shown limitations
in many scenes due to the poor imaging environments.

B. Image Enhancement Method

Image enhancement is a fundamental part of image processing
and it plays a pivotal role in weak object detection with different
implementations. Image sharpening is a powerful tool to empha-
size image texture using unsharp masks. Image denoising [5]
removes noise and preserves objects. Image smoothing [20] is
often used to reduce noise within an image or to produce an

image with lower pixels. L0 gradient minimization [20] can
smooth the image while sharpening major edges of an image
and eliminating low-level structures. Histogram equalization is
a method of image processing that uses histogram of an image
for contrast adjustment, which provides better image quality
without big loss of information. However, traditional image
enhancement methods are transposed on empirically adjusted
parameters and are limited to a single scene.

C. GAN for Image Generation

Image-generating methods are a very hot topic in the field
of computer vision and image processing. With the generative
models, targets in the generated images can be reconstructed and
enhanced for advanced vision tasks. GAN is a common gener-
ative model in order to generate undistinguished outputs from
inputs based on convolution neural networks. GAN contains two
networks: a generator and a discriminator. The generative net-
work (also known as generator) is used to generate samples. Dis-
criminator network (also known as discriminator) is used to es-
timate the probability that a sample comes from the training data
rather than the generator. Some supervised methods have been
proposed recently based on GANs, such as image deblurring [21]
or image denoising [5], super-resolution [22], high dynamic
range [8], image-to-image translation [13], image classifica-
tion [23], image fusion [24], [25], image generation [26], and do-
main adaption [27]. Structure-preserving super-resolution with
gradient guidance [22] provides a structure-preserving super-
resolution method to reduce distortions introduced by GAN.
HDRNet employs bilateral mesh processing and local affine
color transformations to provide real-time image enhancement
of full-resolution images while still capturing high-frequency
effects. Image-to-image translation maps images in one domain
to other domains so that the synthetic images will display the
similar style to the reference image.

To cope with the problem of insufficient training samples,
some works have been done on vehicle enhancement using
GAN. MC-GAN [28] is a multicondition constrained GAN,
which can efficiently generate samples and improve the perfor-
mance of trained detection for synthetic samples. Li et al. [29]
proposed a vehicle detail enhancement method using GAN with
foreground prior in order to evaluate the performance of aerial
video for small and medium-sized vehicle detection. Zheng
et al. [30] presented a learning method called vehicle synthesis
GANs (VS-GANs) to generate annotated vehicles from very
high-resolution remote sensing images. The above works that
are carried out on very high resolution remote sensing images
provide some motivations on weak vehicle enhancement.

It has been a hot topic that how to incorporate supervised
methods in special vision tasks for better performance. Multitask
networks [31], [32] introduce another parallel task to improve
the main task. In image-to-image translation, in addition to clas-
sification, other supervised methods are introduced for strong
supervision. Feature-guided GAN uses segmentation prior, in-
stance prior, or attention prior to guide the generation for indi-
vidual task-specific performance. Furthermore, detection-based
unsupervised models [12] have been proposed to maintain the
characteristics of object targets during the image generating.
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Fig. 2. Structure of DE-CycleGAN. The blue part is the generation cycle, the purple one is the reconstruction cycle, the light green denotes the identity mapping
cycle, and the red one denotes the detection targeted-guided branch.

A segmentation task branch is added into the domain adaption
with GAN by Shi et al. [27].

However, there are many drawbacks for exploiting those pro-
posed GANs into the high-vision tasks directly. First, generation
process is difficult to force and paired training data is needed
for those supervised manners. However, paired training data is
not available in some scenarios and more extra labeling works
need to be done. CycleGAN [13] employs unpaired images as
inputs and translates the image from source domain to reference
domain effectively. It designs a cyclic consistency loss func-
tion to maintain consistency between input and output images.
Thus, generation task with CycleGAN instead of GAN is a
more efficient approach since there is no more work to collect
paired images with annotations. Since CycleGAN uses unpaired
images, more supervised methods need to be introduced into the
training process in order to converge. More classification loss
functions and gradient loss functions are considered and the
training process is adapted. XGAN [33] divides the generation
into two parts: the encoder part and the decoder part. By reducing
the input and output variance through the encoder–decoder part,
XGAN obtains a stable generation model. DRIT [34] is an
example of CycleGAN untangling structure. DRIT trains two
branches of the encoder model: content adversarial part and
style adversarial part. Content information domain is shared
across unpaired domains, while the style information domain
is preserved within each domain. Moreover, those GANs with
task-oriented branches are designed to generate images with
more efficient target features, while no more work is done

for advanced vision tasks such as detection, salience detection,
and instance segmentation. Targets in the synthetic images are
salient, but they are evaluated by human perceptual psycho-
physical similarity, not by detection or segmentation metrics.
Therefore, these enhancement models are not suitable for direct
application to detection or segmentation tasks. There are more
works to be done for GAN with task-guided branches to generate
more salient objects for high-vision tasks.

III. METHOD

The structure of the DE-CycleGAN is illustrated in Fig. 2,
and the entire model is divided into two parts: one part is the
generation model, where a GAN used for generating images for
weak vehicle enhancement is designed based on CycleGAN. It
is designed to enhance targets on the image level. And the other
part is the detection model which introduces a target-guided
branch to the generation part for the detection task. It is designed
on the object level. The former adds refinements to CycleGAN
to enforce the image generation process and enrich the target
details. CycleGAN is divided into three parts: the generation
cycle, the reconstruction cycle, and the identity mapping cycle.
The generator in the generation cycle is responsible for gener-
ating satellite images from the aerial images that are difficult to
distinguish from real images. The reconstruction cycle makes
synthetic satellite images similar to the inputs. The identity
mapping cycle is used to regulate the style of the generated
targets. All of three parts are redesigned and more loss functions
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are introduced into our model. The detection part introduces
a detection-guided branch, which is used to control the image
generation process of GAN so that targets in the synthetic image
are suitable for detection tasks. The detection part adopts the
RetinaNet model with annotations as the ground truth for target
detection.

The generation cycle includes two generators and two dis-
criminators: the first generator generates fake DLR 3 K images
from weak images and the second generator generates fake
images from DLR 3 K images. Both fake DLR 3 K images
and DLR 3 K images are distinguished in the first discriminator
and both of weak images and fake images are brought to the
second discriminator. The generation cycle and the identity
cycle share the same generator, and these cycles are designed
to keep the image generated by the generator consistent with
the input. The reconstruction cycle contains two generators
and a discriminator: the generator shared with the generation
cycle generates fake DLR 3 K images and the second generator
translates it into the reconstructed images. Both weak images
and reconstructed images are fed into the discriminator to be
distinguished from each other. The detection targeted-guided
branch includes a detection model, and detection annotations
are employed as the ground truth. Two kinds of generators and
discriminators are designed in our model. One generator is used
to generate fake DLR 3 K images from weak images and the
other is used to generator fake images from DLR 3 K images. The
former is shared in the identity cycle and the latter is shared in
the reconstruction cycle. One discriminator is used to distinguish
the fake DLR 3 K images and DLR 3 K images, and the other
is used to distinguish the fake images and DLR 3 K images.
The latter is shared in identity cycle and reconstruction cycle.
The difference between the two generators, as well as the two
discriminators, is marked in Fig. 2.

A. Generation Model

CycleGAN chooses the adversarial loss in the generator and
discriminator as the style loss, and utilizes the identity mapping
loss and cycle loss as the content loss. We perform image
translation from two unpaired datasets using refined CycleGAN.
The weak vehicle imagery is translated to the fake DLR 3 K
imagery in order to enhance the targets. We introduce gradient
loss to the content loss to enrich target details and add an adver-
sarial loss into the reconstruction cycle to force reconstruction.
Furthermore, we apply the gradient loss and adversarial loss
instead of the L1 loss as the identity mapping loss to adjust the
style of synthetic images for detection tasks.

1) Gradient Loss: We add Structural SIMilarity (SSIM) loss
as the gradient loss to L1 loss as our content loss. We compute
the content loss function between two pairs: input and synthetic
images, and input and reconstructed images. The gradient loss
function based on SSIM loss contributes to learning more details
compared to the L1 loss. In addition, sliding windows used in
the SSIM loss function learn more local target features.

L1 loss is denoted as follows:

Lpixel (X,G(X)) = E [‖ M(X)−M(G(X))‖1] (1)

where M is the gradient calculation model, and G is the gener-
ator. SSIM loss function is formulated as follows:

SSIM (X,G(X)) =
2μxμG(x) + C1

μ2
x + μ2

G(x) + C1
× 2σxG(x) + C2

σ2
x + σ2

G(x) + C2

(2)
where C1, C2 are constants and μx, μG(x), σ, σG(x), σxG(x)

denote the mean, standard deviation, and cross-covariance of
the image pair (X,G(X)).

Two gradient loss functions are computed as follows.
For the generation cycle:

Lgg(X,G) = Lpixel (M(X),M(G(X)))

+ SSIM (M(X),M(G(X))) (3)

where Lgg(X,G) is the gradient loss function in the generation
cycle. X is the input of the weak vehicle images, G is the
generator, and G(X) is the synthetic fake DLR 3 K image.

For the reconstruction cycle:

Lgr(X,G,F ) = Lpixel (M(X),M (F (G(X))))

+ SSIM (M(X),M (F (G(X)))) (4)

where Lgr(X,G,F ) is the gradient loss function in the recon-
struction cycle, F is the opposite generator, and F (G(X)) is the
reconstructed images similar to input X.

2) Adversarial Loss: CycleGAN employs adversarial loss in
the generation cycle, and we introduce another adversarial loss
to the reconstruction cycle in order to force the whole image
generation. The composite of the gradient loss function and the
adversarial loss function replaces the L1 loss function to capture
more features for our detection model.

For generator G : X → Y and its discriminator DY , adver-
sarial loss formulation is as follows:

LGAN (G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+ Ex∼pdata(x)[log(1−DY (G(x)))]
(5)

where x ∼ pdata(x) and y ∼ pdata(y) are the data distribution of
theX andY . GeneratorG tries to generate images G(x) that are
similar to the images from the domain Y , while discriminator
DY aims to distinguish between translated samples G(x) and
real samples y. A similar adversarial loss for the generator F :
Y → X and its discriminator DX as well.

Especially, for the generation cycle

Lg (G,DY , X, Y ) = Ey∼pdata(y) [logDY (y)]

+ Ex∼pdata(x) [log(1−DY (G(x)))]
(6)

Ld (F,Dx, X, Y ) = Ey∼pdata(y) [logDX(x)]

+ Ey∼pdata(y) [log(1−DX (F (y)))]
(7)

where Lg(G,DY , X, Y ) is the adversarial loss for generator,
Ld(F,Dx, X, Y ) is the adversarial loss function for discrimi-
nator, X is the weak vehicle datasets, and Y is the DLR 3 K



3408 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

datasets. The whole loss function in the generation cycle is

Lag (G,F,Dx, DY , X, Y ) = Lgg(X,G) + Lg (G,DY , X, Y )

+ Ld (F,Dx, X, Y ) (8)

where Lag(G,F,Dx, DY , X, Y ) is the adversarial loss in the
generation cycle.

Especially, for reconstruction cycle

Lg (G,DX , X,X) = Ex∼pdata(x) [logDX(x)]

+ Ex∼pdata(x) [log(1−DX (F (G(x))))]
(9)

Ld (F,Dy, Y, Y ) = Ey∼pdata(y) [logDY (y)]

+ Ey∼pdata(y) [log(1−DY (G(F (y))))]
(10)

where Lg(G,DY , X, Y ) is the adversarial loss for genera-
tor, and Ld(F,Dx, X, Y ) is the adversarial loss function for
discriminator.

The whole loss function in reconstruction cycle is

Lar (G,F,Dx, DY , X, Y ) = Lgr(X,G,F )

+ Lg (G,DX , X,X)

+ Ld (F,Dy, Y, Y ) (11)

where Lar(G,F,Dx, DY , X, Y ) is the adversarial loss in the
generation cycle.

3) Identity Mapping Loss: Identity mapping loss in Cycle-
GAN is used to maintain consistency between the input image
and the generated image. Given a DLR 3 K image as the input,
CycleGAN uses the generator of L1 loss function (weak image
to DLR 3 K image) to keep outputs the same as inputs. If
there is no identity mapping cycle, the learned style will be
changed. In other words, L1 loss function affects the style of
generated images. Therefore, we can change the style of outputs
by designing the identity loss function.

With a gradient loss function and an adversarial loss function
added in the generation cycle and reconstruction cycle, the style
learned by CycleGAN is changed. In order to refine the style
learned by the generator, we apply an adversarial loss function
instead of L1 loss function as the identity mapping loss. In this
way, the style of vehicles in the synthetic images is changed,
which will be suitable for detection tasks.

For the identity mapping cycle

Lg (G,Dx, X,X) = Ex∼pdata(x) [logDX(x)]

+ Ex∼pdata(x) [log(1−DX (G(x)))]
(12)

Ld (F,Dx, X,X) = Ex∼pdata(x) [logDX(x)]

+ Ex∼pdata(x) [log(1−DX (F (x)))]
(13)

where Lg(G,Dx, X,X) is the loss in the generator, and
Ld(F,Dx, X,X) is the loss in the discriminator.

The whole loss function in the identity cycle will be

Li (G,F,Dx, DY , X, Y ) = Lg (G,DX , X,X)

+ Ld (F,Dy, Y, Y ). (14)

B. Detection Model

With the learned global style, it is also necessary to add a
supervisory branch to train the generator to get result guidance
by the detection task. With a targeted detection branch, the syn-
thetic images by GAN will become more suitable for detection
tasks. We add a detection model pretrained with weak images
to the discriminant section. The generation model refreshes
parameters with its own parameters fixed in order to optimize the
image generation process. We also design a model that refreshes
the detection model during the training step to obtain better
performance of the detection task. We use RetinaNet as the
detection model because it has been proven to be a suitable
detection model in vehicle detection. RetinaNet exploits focal
loss function to solve the class imbalance problem for positive
and negative samples.

The loss function of the refreshed detection targeted branch
is

Ldetection(g, p) = Lregression(g, p) + FL(pt) (15)

where Lregression(g, p) is L1 loss function computing the annota-
tions and the predicted boxes, where g is the annotation and p is
the detection predicted boxes. FL(pt) is the focal loss function,
and pt is the refined classification prediction. The inputs are the
outputs of the former generations.

In conclusion, the whole loss function in the DE-CycleGAN
becomes

min

G,F, g, p

max

Dx, DY
L = λ1Lgg(X,G)

+ λ2Lag (G,F,Dx, DY , X, Y )

+ λ3Lgr(X,G,F )

+ λ4Lar (G,F,Dx, DY , X, Y )

+ λ5Li (G,F,Dx, DY , X, Y )

+ λ6Ldetection(g, p) (16)

where λ1, λ2, λ3, λ4, λ5, and λ6 are the coefficients of different
components.

IV. EXPERIMENTS

Two datasets are utilized in our experiment. One is the open
Munich DLR 3 K vehicle imagery in 2015 with 20 aerial images.
It contains 14 235 vehicles with a ground sampling distance of
0.13 m. The other is a weak vehicle target imagery that we collect
from a wilderness area including wild and urban area via Google
Earth. Weak scenes contain a lot of valuable targets. Train
datasets contains 150 satellite images with a spatial resolution
of less than 0.5 m and 12000 vehicle objects divided into nine
classes: cars, pickups, trucks, armored vehicles, tanks, trailers,
artillery, pickups, and tent. Trucks, armored vehicles, tanks,
trailers, and tents are large-scale targets with a size of about 40×
60 pixels. Pickup trucks are medium-scale targets with a size of
about 20 × 30 pixels. Cars and cannons are small-scale targets,
measuring approximately 10 × 20 pixels. Test datasets contain
2100 vehicles, of which 1204 are trucks, 500 are pickups, 150
are artillery, 210 are pickups, and 38 are tents. There are large
differences in the number of vehicles in different categories,
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TABLE I
SPEED AND RESULTS OF DIFFERENT COEFFICIENTS FOR λ6

The bold entities indicate the best results compared to other numbers in each row.

which lead to a large impact on the detection results. Trucks,
armored vehicles, tanks, trailers, pickups, and tents are large
targets, while cars, pickups, and cannons are small targets.
Truck, small truck, pickup, artillery, and tent are selected as
evaluation indicators for the amount of rest of vehicle categories
in both train and test datasets are small. Vehicle categories are
judged by both visual interpretation and prior knowledge. Prior
knowledge is used to select weak scenes containing both military
vehicles and civilian vehicles. And visual interpretation is used
to judge the vehicle categories. Two scenarios are included in the
experiments such as the parking lot and road. Satellite images
which should contain those types of vehicles are collected.
Urban and wild areas containing wild scenes, parking lot, road,
and buildings are included in our datasets.

Targets in two datasets are similar in size and shape. How-
ever, weak field scenario datasets differ from the aerial datasets
greatly. Vehicles in the Munich DLR 3 K can be divided into
multiple components, whereas vehicles in the weak vehicle
datasets lack detail and cannot be divided into local components.
Targets in the Munich DLR 3 K are rich in color information
and have high image acutance compared to targets in the weak
vehicle datasets. Vehicles also have different color distributions
and spatial resolutions.

We used RetinaNet based on pretrained ResNet-101 weights
as a baseline for comparison with the image-enhanced detec-
tion model. Three comparisons were performed to evaluate the
effectiveness of our model. We set λ1, λ2, λ3, λ4, and λ5 as 1
and λ6 as 5 in formula (16) to strengthen the detection-guided
performance in the synthetic images. The coefficients affect the
speed of convergence and the result. λ1, λ2, λ3, λ4, and λ5 are
set to the same value, and λ6 is chosen from 1, 3, 5, 7, and 10
empirically. A too small or too large λ6 will result in difficulties
on training convergence. The speed and results were tested in
the experiments of RetinaNet with DE-CycleGAN and listed
in Table I. The weights with the best target detection results in
training are saved.

A server with GPU of 1080Ti is used in our experiment.
The learning rate of GAN is 0.001 and it reduces to 0.1 times
every 10 epochs. The learning rate of detection model is 0.0001
and it reduces to 0.1 times every 10 epochs. The optimizers
of GAN and detection model are Adam optimizer. The batch
size of GAN without detection branch is 8 and the batch size
of DE-CycleGAN is 4. The image size in the GAN is 256
and the image size in detection branch is 416. For other target
detection tasks, we choose the mean average accuracy (mAP) as
the metric for target detection results, which is the mean value

of the average accuracy with IoU from 50 to 95. It is the most
popular evaluation metric used in the detection tasks.

A. Effects on Different Detection Models

Three quantitative comparisons are executed with three com-
mon detection models (RetinaNet, Faster RCNN, YOLO V3)
to evaluate our target enhancement model. Three models are
trained and tested in source and enhanced images, respectively.
Detection scores are listed in Table II.

RetinaNet achieves the highest scores compared with other
two detection models in the raw images while Faster RCNN
suffers the lowest scores in four kinds of vehicles. Our weak
vehicle datasets contain a class imbalance distribution of dif-
ferent kinds of vehicles. Trucks have the most samples and the
other categories are much less. RetinaNet exploiting focal loss
can solve this class imbalance problem for positive and negative
samples. All the above demonstrate that RetinaNet is suitable
to be used in our weak vehicle datasets. Since targets have been
enhanced by the proposed DE-CycleGAN, all of three detection
models achieve improvements on detection performance.

Table II shows that target enhancement algorithm achieves
performance improvement of all three detection models. Reti-
naNet based on focal loss achieves the highest detection results
in four categories of targets and obtains the highest improvement
in the detection of two categories of targets, while Faster RCNN
achieves the most categories of three. Faster RCNN achieves
the greatest performance on the artillery, and the artillery has
smaller and less targets compared to other kinds of vehicles in
the test dataset. The RPN used in Faster RCNN suffers from
small target miss detection and has a low raw detection rate
for artillery. Once artillery is enhanced by GAN, Faster RCNN
with DE-CycleGAN can distinguish the wrong anchor points
and keep more accurate proposals to improve the detection
performance.

B. Comparison Against Different Image Enhancement Models

Five image enhancement algorithms are compared with our
target enhancement model to evaluate the effectiveness of our
model. Raw input is used as baseline. Three of them are un-
supervised methods (histograms equalization, L0 smooth, and
sharpening) and the other two are supervised methods (SPSP,
MirNet). Parameters of unsupervised methods are manually con-
figured empirically. SPSR is pretrained using DLR 3K dataset
and MirNet is not retrained due to lack of paired high-light and
low-light images. Target-guided GAN-based image generation
algorithm lacks publicly available source code and weights, so
it is not selected as a comparison model. Results are listed in
Table III, and samples of enhanced images are illustrated in
Fig. 3.

Fig. 3 visualizes examples of different image enhancement
methods for weak vehicle images, from left to right: origi-
nal image, histogram equalization, L0 smoothing, sharpening,
SPSR, MirNet, DRIT, and DE-CycleGAN. Supervisory-based
method achieves a higher improvement on the detection task
compared to unsupervised image enhancement methods, while
DE-CycleGAN obtains the best results on the detection task
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TABLE II
PERFORMANCE OF DIFFERENT DETECTION METHODS FOR WEAK OBJECT DETECTION

The bold entities indicate the best results compared to other numbers in each row.

TABLE III
SCORES OF DIFFERENT IMAGE ENHANCEMENT METHODS IN WEAK OBJECT DETECTION

Green numbers are results below the baseline and italic numbers are the highest scores in the Table.

Fig. 3. Examples of different image enhancement methods for weak vehicle images; from left to right: original image, histogram equalization, L0 smoothing,
sharpening, SPSR, MirNet, DRIT, and DE-CycleGAN.
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TABLE IV
DETECTION RESULTS IN THE DIFFERENT MODELS: RETINANET, CYCLEGAN, DE-CYCLEGAN WIHOUT DETECTION PART, DE-CYCLEGAN, AND DE-CYCLEGAN

WITH UPDATED RETINANET WEIGHTS.

The bold entities indicate the best results compared to other numbers in each row.
Green numbers are results lower than the baseline.

for four of all target categories. MirNet performs the best on
the tent detection. Without any adaptions for detection task,
DRIT suffers the lowest detection scores in the comparison
experiments.

Six image enhancement samples are illustrated in Fig. 3.
Histogram equalization introduces noise while making image
sharper. L0 smooths and flattens the image, and blurs details of
the object. Sharpening and SPSR have little effect on the whole
image. MirNet exposes the image and enhances sharpness. DE-
CycleGAN colors the vehicle, and enhances sharpness while
reducing noise.

C. Ablation Study for DE-CycleGAN

The third comparison includes RetinaNet, CycleGAN, mod-
ified CycleGAN, modified CycleGAN with target detection-
guided branch, and modified CycleGAN with updated RetinaNet
weights. RetinaNet with ResNet-101 is baseline. Modified
CycleGAN refers to CycleGAN with refinements. Modified
CycleGAN with detection-guided branch refers to our DE-
CycleGAN without detection model weights refreshed in
the training. Target-enhanced model with updated RetinaNet
weights refers to our DE-CycleGAN with detection model
weights refreshed in the training. RetinaNet is trained in the
source images and is used as detector in enhanced images.
The weights of RetinaNet are updated in the model of the
target-enhanced model with updated RetinaNet weights.

The detection scores of five detection models are listed in
Table IV. Samples generated by the five models are illustrated
in Fig. 4. Table IV shows that refinements against CycleGAN
in our target enhancement model have a positive effect on
weak vehicle target detection. The whole target enhancement
model obtains the highest detection performance among five
models. CycleGAN shows a decrease in two classes of vehicles
compared to the baseline model. Modified CycleGAN decreases
degradation in detection performance compared with Cycle-
GAN. Two models with detection-guided branches are improved
in all five categories of weak vehicle target detection.

Global style learned of vehicles and detection results of
vehicles in the synthetic images vary in different generation
models as shown in Fig. 4. In the generated image, the color
of vehicles is changed and the acutance is improved. Compared
to original inputs, outputs of CycleGAN, modified CycleGAN,
modified CycleGAN with detection-guided branch, and modi-
fied CycleGAN with updated RetinaNet weights own more color

information. Compared to CycleGAN, the latter three models are
able to maintain a gradient distribution similar to the input image,
with more vehicle detail and less noise. There is a degraded
detection performance in both artillery detection and small car
detection for most of five detection models. Both targets are
small. Compared to the ground truth, CycleGAN suffers the
most false alarms and omissions, while modified CycleGAN,
modified CycleGAN with detection-guided branch, and modi-
fied CycleGAN with updated RetinaNet weights achieve fewer
false alarms and omissions. Our DE-CycleGAN with updated
detection weights has the fewest omissions.

D. Evaluations on Different Scenarios

Four scenarios are considered in our experiments. The first
scenario is a parking lot, which contains many densely packed
vehicles of different types. A variety of targets are densely
parked in this scenario, making it easy to miss targets or mis-
classify. The second column of images in Fig. 4 shows that the
modified CycleGAN with updated RetinaNet weights achieves
the best detection performance, which is improved over the
modified CycleGAN without updated RetinaNet weights. The
improvement in the detection of parking lots proves the effective-
ness of our detection of branches. The second scenario is the road
containing some small vehicles which will be missing detection
easily. The third and fifth columns in Fig. 4 provide the detection
improvement from the original image to the image enhanced
by CycleGAN, which demonstrates that the model with GAN
can improve the detection performance of weak vehicles on the
road. The third scenario is a residential area which contains
some buildings similar to vehicles that will cause false alarms.
The first and fourth columns in Fig. 4 show the decrease of
false alarms by modified CycleGAN. The fourth scenario is
wild area which contains fewer and smaller vehicles, which are
difficult to be detected. The sixth column in Fig. 4 shows the
decrease of miss detection by CycleGAN and modified Cycle-
GAN. From the experimental results, we can see that our method
can improve the image quality and target detection for different
scenes. Besides, CycleGAN and modified CycleGAN achieve
a larger detection improvement on parking lot, road, and wild
scenes, which demonstrates the effectiveness of the generating
models by GAN in the image enhancement. An improvement
on buildings introduced by modified CycleGAN with updated
RetinaNet weights shows the value of the detection branch.
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Fig. 4. Detection results of five models. From left to right: raw images, enhanced by CycleGAN, enhanced by modified CycleGAN, enhanced by modified
CycleGAN with detection-guided branch, and enhanced by modified CycleGAN with updated RetinaNet weights. Green boxes are predicted boxes and red boxes
are annotation boxes.
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V. DISCUSSION

The increase in detection score has demonstrated that our
model has a positive effect on improving weak vehicle detection
performance. Three reasons are elaborated as follows.
� Compared with enhanced methods on the images, image-

generating methods, such as GAN, are able to enhance
target features from end to end for detection tasks. More
features are learned during the reconstruction of images in
the generator of GAN. Global style learned from reference
imagery contributes to detection tasks, and color of targets
is enriched and sharpness is heightened. Image-to-image
translation plays a positive role of target enhancement in
the detection tasks. Furthermore, extra adversarial loss
introduced in the reconstruction cycle and identity mapping
cycle forces the learned style of generated images.

� More details of the objects are preserved by gradient loss,
which helps to improve detection performance. Compared
with CycleGAN, gradient loss function utilized in the DE-
CycleGAN is beneficial to keep the details of targets, and
is beneficial for the detection tasks.

� Detection target branch acts as a detection guidance for the
training of image generation. Extra supervised information
is introduced into the generation of GAN, and the detection
prior contributes to the detection tasks for the target en-
hancement. In addition, detection refreshed model achieves
the best results on the detection task, demonstrating the
effectiveness of the target detection branch.

VI. CONCLUSION

In this article, we propose a novel weak vehicle enhancement
model, named DE-CycleGAN, to improve the performance of
weak vehicle detection in satellite images. Compared to other
object enhancement algorithms, our model achieves a better
enhancement performance for weak vehicles via GANs without
paired training data and better training convergence compared
to other GAN-based models. We select DLR 3 K imagery as the
reference datasets and collect weak vehicle images as the source
imagery. The enhancement of weak vehicles is implemented on
two levels. On the image level, image sharpness and color infor-
mation are enhanced by the refined CycleGAN. On the object
level, vehicle generation is enforced by the target branch, which
will facilitate the detection results. Experimental results have
validated that our model achieves the best performance com-
pared to other image enhancement methods and significantly
improves the detection accuracy for all three common detection
models. The performances of the proposed DE-CycleGAN have
shown us the potentials of image enhancement by means of
image transformation network for the purpose of weak vehicle
detection. In the future work, object enhancement with adver-
sarial networks in more scenarios will be further studied.
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