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Abstract—It is greatly significant to achieve radar forward-
looking region imaging. Due to the limitation of phase ambiguity
and small Doppler gradient in forward-looking region, synthetic
aperture radar and Doppler beam sharpening cannot work for
forward-looking imaging, while real aperture radar (RAR) has ar-
bitrary imaging geometry. Nevertheless, restricted by the antenna
aperture, azimuth resolution of RAR is coarse, super-resolution
technology is required to improve its azimuth resolution. Exploiting
the sparse prior information of the target, the super-resolution
problem can be transformed into an L1 norm minimization prob-
lem mathematically. Iterative reweighted algorithm can effectively
solve the L1 norm minimization problem by replacing L1 norm
with reweighted L2 norm and computing the weight in each it-
eration. However, it suffers from a large computational load due
to the repeated multiplications and inversions of large matrices.
In this article, a fast azimuth super-resolution imaging method
of RAR based on iterative reweighted least squares (IRLS) with
linear sketching (LS) was proposed to achieve fast super-resolution
imaging of RAR. The LS theory is employed to compress echo
matrix and antenna measurement matrix into much smaller matri-
ces via multiplying them by an embedded matrix. Then, the IRLS
solver was utilized to address the reconstructed objective function.
Much of the expensive computation can then be performed on the
smaller matrices, thereby accelerating the algorithm. Simulations
and experimental data prove that the proposed algorithm can offer
a time complexity reduction without loss of imaging performance.

Index Terms—Iterative reweighted least squares (IRLS), linear
sketching (LS), real aperture radar (RAR), super-resolution
imaging.

I. INTRODUCTION

R EAL aperture radar (RAR) has the advantage of an ar-
bitrary imaging geometry and has been of considerable

interest in applications where traditional synthetic aperture radar
and Doppler beam sharpening are limited, such as airborne
forward-looking ground mapping and aircraft forward-looking
area navigation [1]–[4].
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In order to obtain a high-resolution 2-D image, it is neces-
sary to simultaneously improve range resolution and azimuth
resolution. For the pulse signal, the range resolution is deter-
mined by the time-band product. To get high-range resolution,
the linear frequency modulation (LFM) signal is transmitted
to explore the information, which provides a large time-band
product. Through impulse compression, the range resolution
is improved to ρr = c/2B, in which B is signal bandwidth.
Azimuth resolution is ρa = Rλ/D = Rθ, where R is working
distance, D is antenna aperture, θ is beamwidth. Seen from the
formula, the azimuth resolution is constrained by the antenna
aperture [5]–[7]. Theoretically, increasing physical aperture of
the antenna can improve the azimuth resolution, but it is not fea-
sible due to the limitation of platform resources. Consequently,
the resolution in azimuth is usually much worse than a typical
range resolution. For example, an RAR system whose carry
frequency is 10 GHz, band width is 10 MHz, beamwidth is 4◦,
and working distance is 10 km. We can calculate that its range
resolution ρr after pulse compression is 15 m, but its azimuth
resolution ρa approximates 698 m. Therefore, in applications,
the azimuth resolution needs to be improved first.

Under the Born hypothesis [8], the echo in the azimuth can
be modeled as the convolution of target scattering coefficient
and antenna pattern function. Therefore, the super-resolution
methods based on deconvolution can improve the azimuth reso-
lution in theory. However, due to the low-pass characteristics of
the antenna pattern, antenna measurement matrix is ill-posed.
Mathematically, super-resolution is equivalent to an ill-posed
linear inversion problem.

Some super-resolution methods have been proposed. The
method of truncated singular value decomposition (TSVD) has
been put forward for radar imaging [9]–[11]. The author com-
puted an approximation solution by chopping off those singular
value components that are dominated by the noise. But the
azimuth resolution increasement is slight due to truncation.
In [12], a stable and effective approach based on Tikhonov regu-
larization (REGU) was proposed. After investigated, the REGU
and TSVD approach obtain similar resolution improvements.
The iterative adaptive approach (IAA), which was presented
in the application of passive array processing [13]–[15], was
also applied to azimuth super-resolution [16]. However, since
it requires the computation of the covariance matrix R, R−1,
and weighted least squares estimate for each sampled grid, the
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improved performance of IAA comes at the cost of notably high
computational complexity. In [17], a scheme of super-resolution
based on maximum a posteriori framework is proposed. But
this method finds solution iteratively, involving numerous ma-
trix multiplication and inversion operations. To overcome the
low-pass characteristics of the antenna in the frequency domain,
spectrum extrapolation technology was proposed to recover
the high-frequency components of the target and realize super-
resolution imaging [18]–[21].

Recently, the sparse prior information of the target has been
widely used to realize high-resolution imaging [22]–[26]. Re-
search demonstrates that many targets of the imaging area pos-
sess the sparse scattering characteristic. Hence, based on the
sparse characteristic, radar imaging processes can be deemed
as a sparse reconstruction. For radar forward-looking imaging,
applications such as aircraft forward-looking area navigation,
weapon guidance, and target detection and recognition, require
high resolution to enable quick detection of the target of in-
terest [27]. The targets of interest are sparse compared with
entire imaging region, especially for remote and large-scale
imaging. Exploiting the sparse prior information of the tar-
get, the super-resolution problem both can be transformed into
the L1 norm minimization problem from the REGU frame-
work or the Bayesian framework. Because the L1 norm is
not differentiable, solving L1 REGU issue is a challenging
task. At present, there are several methods to solve the L1

norm minimization issue, such as alternating direction method
of multipliers approach [28], [29], majorization–minimization
(MM) algorithm [30], [31], iterative shrinkage threshold algo-
rithm [32], split Bregman (SB) algorithm [33], [34], and iterative
reweighted algorithm (IRA) [35].

Due to the nonsmooth nature of the L1 norm, the abovemen-
tioned methods suffer a large computational complexity when
solving the objective function. Therefore, in order to achieve
fast solving, researchers have proposed various acceleration
algorithms. The ideas of these acceleration algorithms are basi-
cally divided into the following two types: reducing the number
of iterations and decreasing the computation complexity in a
single iteration. The core of reducing the number of iterations
is to accelerate convergence. For example, Zhang et al. [36]
propose a fast majorization–minimization algorithm to improve
computing efficiency. This method mainly uses the technique of
vector extrapolation to predict the next iteration by the current
and previous iterative information. By vector extrapolation, the
required iterations for convergence are reduced. A fast iterative
shrinkage-thresholding algorithm is employed in [37] and [38].
It is actually applying Nestrerov acceleration to the ISTA algo-
rithm, increasing convergence rate from O(1/k) to O(1/k2) to
cut down iterations. Decreasing the computation complexity in
a single iteration mainly comes from special matrix structure.
In [39], by taking advantage of the Toplitz structure of the
covariance matrix, the author exploits the Gohberg–Semencul
representation to lower computational complexity of the inver-
sion of the variance matrix. In [40], by exploiting the block
tridiagonal structure of matrix, the author applies the divide and
conquer strategy to accelerate the inversion.

As mentioned above, the IRAs, which contains iterative
reweighted norm (IRN) and iterative reweighted least squares

(IRLS), are a group of algorithms for effectively solving the
L1 norm minimization problem. The difference between IRLS
and IRN is that the IRLS method introduces a constantly up-
dated weight matrix based on the results of the least squares,
and the IRN method introduces a constantly updated weight
matrix based on the results of the L2 norm. Least-squares
solutions tend to be quite sensitive to data with large errors,
thus, the IRLS method cannot be directly used to L1 norm
issue because of the ill-posed antenna measurement matrix in
RAR super-resolution imaging. Only the IRN method can be
directly used to solve the L1 norm minimization problem in
RAR super-resolution imaging. However, the IRN method need
to update the weight matrix and target matrix at each iteration,
involving complicated matrix multiplication and inversion oper-
ations. Therefore, in order to reduce computation complexity of
single iteration, this article applies a strategy to reduce the size of
matrices.

A fast sparse azimuth super-resolution imaging method of
RAR is proposed in this article. The linear sketching (LS)
technique is employed to project the high-dimensional antenna
measurement matrix and echo matrix to low-dimensional space,
which reduces the dimension of matrices. LS [41]–[44] tech-
nique comes from numerical linear algebra has attracted the
attention of many researchers because the powerful concept of
randomness has been introduced as a strategy to ease the compu-
tational load. This technology is widely used in robust regression
problems, low rank approximation, and graph sparsification. The
core of this technology is compressing a matrix to a much smaller
one by multiplying it by a random embedded matrix. Much of
the expensive matrix–matrix computation can then be performed
on the smaller matrices, thereby accelerating the solution for the
original problem. Then, based on processed result, L1 sparse
constraint is exploited to reconstruct objective function. Lastly,
due to the ill-posedness of the antenna measurement matrix is
alleviated after LS process, this article utilizes IRLS to solve
the objective function. Compared with the IRN solver, the IRLS
solver can obtain more obvious acceleration effects, as will be
discussed later. Because of the reduction in the dimension of
the matrices, computational complexity of matrix inversion and
multiplications at single iteration decreases, effectively raising
computational efficiency.

The remainder of this article is organized as follows. In
Section II, the azimuth echo convolution model of RAR is
derived. Section III has four the following sections: traditional
IRN sparse super-resolution method and its computational com-
plexity analysis is introduced; then comes antenna measurement
matrix redundancy analysis; following is introduction of the LS
technique; the proposed fast sparse azimuth super-resolution
method and its computational complexity analysis is deduced
at last. In Section IV, the effectiveness of the proposed method
is verified by simulations and experimental data. Section V gives
a brief conclusion.

II. AZIMUTH ECHO CONVOLUTION MODEL

RAR uses a scanning mode to sweep the observation area and
transmits chirps signal at a certain pulse repetition frequency
(PRF). This article focuses on the mode of airborne RAR.
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Fig. 1. (a) Imaging model of airborne RAR. (b) Geometry model of airborne RAR.

As illustrated in Fig. 1(a), an airborne RAR sweeps a nar-
row beam through the entire observation field that obtains
2-D microwave image. V is the platform movement speed and
ω is the beam scanning speed. Fig. 1(b) illustrates the geometry
model of airborne RAR, and target P is located at the forward-
looking area (within the range of ±10◦ in the flight direction).
The initial range between the radar and the target is denoted
by R0, and θ0 denotes the initial spatial azimuth angle. The
pitch angle is β, and grazing angle is α0. When the aircraft flies
with interval time t, the range history between the target and the
aircraft becomes R(t), the spatial azimuth angle changes into θ,
and grazing angle turns into α.

According to the geometrical relationship, the range history
R(t) can be written as

R(t) =

√
R0

2 + V 2t2 − 2R0V t cos θ0. (1)

The second-order Taylor expansion of (1) is

R(t) ≈ R0 − V t cos θ0 +
V 2 sin2 θ0

2R0
t2. (2)

In radar forward-looking imaging, the initial range R0 is
usually very large, and the spatial azimuth angle θ0 is normally
less than 10◦, so the range history can be simplified as

R(t) ≈ R0 − V t. (3)

The transmitted LFM pulse can be expressed as follows:

y(τ) = rect

(
τ

Tp

)
exp(j2πfcτ) exp(jπkτ

2) (4)

where τ is fast time, representing range information. Tp is the
pulsewidth of the transmitted signal. fc is the carrier frequency,
andk denotes frequency modulation ratio. rect(.) is a rectangular

window function: rect = {1, τ ≤ |Tp

2 |
0, other

.

The echo after down-conversion can be denoted as follows:

y(τ, t) =
∑

xw(t)rect

(
τ − 2R(t)

c

Tp

)

exp

(
jπk

(
τ − 2R(t)

c

)2
)
exp

(
−j

4π

λ
R(t)

)
(5)

where t is slow time, representing azimuth information. x repre-
sents the scattering coefficient of target. w(t) is the modulation
of the antenna pattern. 2R(t)

c is time delay. λ = c
fc

is wavelength,

exp[−j 4π
λ
R(t)] is the Doppler shift.

High-range resolution is achieved by pulse compression tech-
nique. Besides, due to movement of the platform, the range walk
correction is required. According to (3), the echo signal can
correct range walk by scale transformation. Echo after pulse
compression and range walk correction becomes

y(τ, t) =
∑

xw(t) sin c

[
B

(
τ − 2R0

c

)]
exp

(
−j

4π

λ
R(t)

)
(6)

where B denotes the bandwidth.
The received signal can be transformed to range-angle do-

main, and the Doppler shift can usually be ignored due to small
Doppler frequency gradient in the forward-looking area

y(R, θ) =
∑

x(R, θ)w(θ − θ0) sin c

(
2B

c
(R−R0)

)

=
∑

x(R, θ)⊗
[
w(θ) sin c

(
2B

c
R

)]
. (7)

The received echo can be considered as the convolution of the
target scattering coefficient and the convolution kernel consist-
ing of the antenna pattern in azimuth and the pulse modulation
function in range direction. Since the range resolution has been
advanced to c

2B by pulse compression technology, only the
azimuth echo is considered here. Next we only consider echo
signal in one range bin. For a fixed range bin, (7) can be expressed
as a 1-D convolution and rewritten in matrix form

y = Ax + n (8)

where y = [y(θ1), y(θ2), . . . , y(θn)]
T is the received echo vector,

x = [x(θ1), x(θ2), . . . , x(θn)]
T is the vector of target scattering
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coefficient, n = [n(θ1), n(θ2), . . . , n(θn)]
T is the noise vector

which satisfies Gaussian distribution. n represents the number
of azimuth sampling points. A denotes the convolution matrix
and can be written as follows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h(θ0) · · · h(θ−l)

...
. . .

. . .

h(θl)

. . . h(θ−l)

. . .
. . .

...
h(θl) · · · h(θ0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
n×n

where [h(θ−l) · · ·h(θ0) · · ·h(θl)] are the samples of the antenna
pattern, the sampling number is determined by PRF, beamwidth,
and antenna scanning velocity ω.

III. PROPOSED METHOD

In this section, we research the traditional IRN sparse super-
resolution method and give its computational complexity first;
second, we explore the redundancy of the antenna measurement
matrix; third, we introduce LS theory; finally, the proposed
IRLS–LS fast sparse super-resolution method and its compu-
tational complexity is deduced.

A. IRN Sparse Super-Resolution Method

Recovering the target scattering coefficient x from the noise-
polluted echo data y is usually an ill-posed problem, thus, the
REGU method is used to relax ill-posedness. The REGU method
replaces the original ill-posed problem with a problem that is
close to well-conditioned by adding different REGU constraints.
The standard REGU function is as follows:

x̂ = argmin
x

1

p
‖y −Ax‖pp + λ

1

q
‖x‖qq (9)

where the value of p, q depends on the norm type you choose.
1
p‖y − Ax‖pp is the data fitting term, 1

q‖Γ(x)‖qq is is the added
penalty term, λ is the positive parameter controlling the REGU
strength.

For sparse super-resolution problem, usually the Lq norm
with 0 ≤ q ≤ 1 is employed as penalty function. We know that
the stronger sparsity needs a smaller q. Finding the globally
optimal solution is NP hard problem when 0 ≤ q < 1. There-
fore, researchers often use the L1 norm to describe the sparse
characteristics of the target. When p = 2, q = 1, the objection
function is constructed as the following:

x̂ = argmin
x

‖y −Ax‖22 + λ‖x‖1. (10)

As mentioned above, in the IRAs, only the IRN method can be
directly used to solve theL1 norm minimization problem in radar
super-resolution imaging. We define the weight matrix W =
diag(|x|−1). Weight matrix W will be updated by the scattering
coefficients x. Hence, the optimal solution is obtained by the
iteration process. The initial value of x0 should be given by
Tikhonov REGU. The iterative process is described as follows:

initialize : x0 = (ATA+ λI)−1ATy

for j = 0, 1, 2, . . . ,M − 1

W j = diag(|xj |−1)

xj+1 = (ATA+ λW j)
−1ATy (11)

In the IRN method, the dimension of A is n× n, and the
dimension of y is n× 1. Table I shows the computational
complexity of the IRN method, where M is the number of
iterations.

B. Antenna Measurement Matrix Analysis

From the abovementioned analysis, we can see that the
traditional IRN sparse super-resolution method has numerou
n× n matrix multiplication and inversion operations, which
is the main reason for slow running speed. In this section, we
analyze the redundancy of the antenna measurement matrix to
lay foundation for the subsequent LS.

Matrix decomposition theory is adopted to analyze the infor-
mation redundancy. The singular value decomposition (SVD)
operation is applied to antenna measurement matrix A

A = UΣV =
n∑

i=1

uiσivi
T (12)

where U = (u1, u2, . . ., un) and V = (v1, v2, . . ., vn) are the

unitary matrices with size n× n, respectively. Σ = (
D 0
0 0

),

D= diag(σ1, σ2 · · · , σn), σi is the singular value of A and
satisfies σ1 > σ2 > σi > · · · > σn.

The following figure is the singular value distribution of A
with different size. From the perspective of matrix redundancy,
the SVD theory holds that the information of the matrix is only
contained in the large singular values and their corresponding
eigenvectors and small singular values and their eigenvectors
contain almost no information. From Fig. 2, the antenna mea-
surement matrix A has most singular values close to zero
whatever the size it is, which shows the redundant property
of antenna measurement matrix A. The small singular values
bring the increasement of the computational complexity and are
the root cause of redundancy. From the perspective of matrix
ill-posedness, the condition number of a matrix measures the
ill-posed nature of this matrix. When the condition number
is large, the estimation error will be big when noise exists.
The condition number is the ratio of the largest singular value
to the smallest singular value of the matrix. As can be seen
from Fig. 2, the condition number of the antenna measurement
matrix, cond(H) = σ1

σn
, is considerably large whatever the size

it is, which shows the ill-posed property of it. Hence, the small
singular values are root cause of matrix ill-posedness.

For example, when the antenna measurement matrix A is
667 × 667, and only 17 dominant singular values are > 1, and
other 650 small singular values are information redundant. If
the information contained in 17 large singular values and their
corresponding eigenvectors can be used to represent the original
antenna measurement matrix, it will reduce its redundancy and
ill-posedness.
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE IRN

Fig. 2. Singular value distribution of A with different size. (a) All singular values distribution. (b) First 200 singular values distribution.

C. Linear Sketching

Due to the redundant property of the antenna measurement
matrix A, this article utilizes the LS method to modify the
redundant property.

The task of LS is to construct a near-optimal basis Q that
captures the action of the matrix A. In other words, we require
a matrix Q for which Q (n× q) has orthonormal columns and
the number of columns is q(q � n)

A ≈ Q(QTA). (13)

For convenience, the matrix QT (q × n) is called as the em-
bedded matrix, which converts the space described by A into
a low-dimension space; and the smaller matrix QTA is named
as the information carrying matrix, which contains the main
information of A and can then be used to compute original
problem.

In order to improve the calculation efficiency, it would like
matrix Q to contain as few columns as possible, but it is even
more important to have an accurate approximation of the input
matrix. There is a tradeoff between the calculation efficiency and
approximation error, so how to choose the number of columns
q is the core problem.

Suppose we are given a matrixA and a positive error tolerance
ε. We seek a matrix Q with q = q(ε) orthonormal columns such
that

∥∥A−Q(QTA)
∥∥ ≤ ε (14)

where ‖ · ‖ denotes the L2 operator norm. The QT is a q × n
dimensional subspace that captures most of the action of A.
Obviously, the larger columns q indicates the smaller error ε.

The SVD furnishes an optimal answer to this problem [45],
[46]. Let σj denotes the jth largest singular value of A. For

each j ≥ 0

min
k≤j

∥∥A−QQTA
∥∥ = σj+1. (15)

That is, for each j ≥ 0, when the columns q = j, the approx-
imation error is σj+1. According to the SVD theory, the main
information of the matrix is contained in the large singular val-
ues and their corresponding eigenvalue vectors, small singular
values and their eigenvectors contain almost no information.
So we can choose the number of dominant singular values
needed as the value of columns q. Hence, this article offers a
reasonable method of selecting parameter q. The columns q can
be equivalent to the truncation parameter k in the TSVD method.
The generalized cross-validation (GCV) is described in [47],
which has been proven to be an excellent method of choosing
a truncation parameter. The optimal truncation parameter k can
be obtained by minimizing the GCV function

k = argmin
k

‖Axk−y‖22
trace(I − AA+

k )
(16)

whereA+
k satisfiesA+

k y = xk. I represents the identity matrix.
trace(·) denotes the sum of the diagonal components inside the
brackets.

The optimal truncation parameter k is determined by the
environment and system parameters, and can be deduced offline
in advance. Therefore, this article assumes that k is known in
advance.

The next task is to build the matrix Q. In order to ensure the
performance and stability, we require the matrixQ to be random
and has orthogonal columns [48], [49]. There are several ways
to construct the matrix Q, such as selecting the q dominant left
singular vectors of A. Q also can be a Subsampled Randomized
Hadamard Transform, which is formulated asQ = P× S×D.
The D is a diagonal matrix with +1,−1 on diagonals. S is the
Hadamard transform. The P is just chooses a random (small)
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Fig. 3. Conceptual architecture of LS preprocessing. First, a matrix Q is
computed in order to derive the embedded matrix QT . Then, the embedded
matrix QT is utilized to deduce the smaller matrix A′ and y′.

subset of rows of S×D. This article introduces a method based
on QR decomposition to obtain Q with orthogonal columns.

1) Generate a n× q Gaussian random matrix Ω with a mean
of 0 and a variance of 1.

2) Form the matrix G = AΩ.
3) Obtain the matrix n× q Q via QR decomposition of G.
This article transposes the generated matrix Q to acquire

the embedded matrix QT , which projects antenna measurement
matrix A and echo matrix y to a low-dimensional space. Thus,
(8) is converted into

QTy = QTAx+QTn. (17)

For convenience, let y′ = QTy, A′ = QTA, n′ = QTn.
The convolution model of (8) is reconstructed as following.

y′ = A′x+ n′ (18)

where y′ is a q × 1 reconstructional echo matrix, A′ is a q × n
reconstructional antenna measurement matrix, and n′ is a q × 1
reconstructional noise matrix. To intuitively illustrate whole LS
process: including how to construct the basis matrix Q, and use
Q to compress the matrix A and y, this article offers a diagram
in Fig. 3.

D. Proposed IRLS–LS Fast Sparse Super-Resolution Method

After LS process, the convolution model is reconstructed
as (18). L1 norm is employed as an REGU term to establish
objective function under REGU framework

x̂ = argmin
x

‖A′x− y′‖22 + λ‖x‖1. (19)

Since the antenna measurement matrix A and echo matrix y
become smaller matrices A′ and y′ after LS. If the IRN method
is still applied to minimize the objective function, we can easily

Fig. 4. Conceptual architecture of the randomized singular value decomposi-
tion (RSVD).

observe that the dimensions of matrix–matrix multiplication
are reduced. However, the dimension of (A′TA′ + λW j)

−1 in
each iteration is still n× n, acceleration effect is not powerful.
Thus, the IRLS method is applied to minimize the objective
function.

As mentioned above, the IRLS method cannot be used di-
rectly to solve L1 norm in RAR super-resolution imaging unless
ill-posedness of antenna measurement matrix is relaxed. In the
following, we analyze its ill-posedness. According to random-
ized singular value decomposition (RSVD) theory [50], [51], we
have

A ≈ Q(QTA) = QA′ = QŨΣV T

= Un×qΣq×qV n×q
T = Aq. (20)

The conceptual architecture of the RSVD is visually illus-
trated in Fig. 4. We can see that the RSVD uses the same way to
obtain matrixA′ as the LS process shown in Fig. 3. Fig. 4 clearly
indicates that A′ only contains q dominant singular values and
corresponding right singular value vectors. The condition num-
ber of A′ is cond(A′) = σ1

σq
, which is considerably lower than

cond(A) = σ1

σn
. Through LS process, a decrease in condition

number indicates that the ill-posedness is relaxed, hence, the
IRLS method can be applied to solve L1 minimization problem
in (19).

The IRLS approach is to replace the L1 objective function in
(19) by solving the following weighted L2 norm problem:

min

n∑
i=1

wi(xi
(j))2, subject to A′x = y′ (21)

where the weights wi are computed from the previous iterate
x(j−1), j is number of iterations. xi

(j) is the ith entry of target
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TABLE II
FLOW CHART OF THE IRLS–LS FAST SPARSE SUPER-RESOLUTION METHOD

scattering coefficient matrix x at jth iteration. So that the ob-
jective in (21) is a first-order approximation to the L1 objective
function. The solution of (21) can be offered explicitly, giving
the next iterate x(j):

x(j) = W (j)A′T (A′W (j)A′T )−1y′ (22)

where W (j) is the diagonal matrix with entries 1/wi =
|xi

(j−1)|. However, the weights wi are undefined whenever
x
(j−1)
i = 0. A common approach for dealing with this issue is

to regularize the optimization problem, by incorporating a small
ε > 0

wi = ((x
(j−1)
i )2 + ε)−

1
2 . (23)

Initialization x(0) is given by least squares result in the IRLS
approach. Hence, the detailed process is shown as follows. To
explain the complete process of the proposed IRLS–LS fast
sparse super-resolution method perspicuously, this article lists
it in Table II

Intialize : x(0) = A′T (A′A′T )−1y′

for j = 1, 2, 3 . . . ,M

W (j) = diag(((x(j−1)
i )2+ε)−

1
2 )

x(j) = W (j)A′T (A′W (j)A′T )−1y′

end (24)

The computational complexity analysis of the proposed algo-
rithm is conducted. We compute the matrix products G = HΩ
to take a running time in O(nnz(H)q), where nnz(H) is
the number of nonzeros in H . A QR-factorization in time
O(nq2) gives Q. Computing y′ = QTy, A′ = QTA takes
O(n2q + nq) time. Hence, the computational complexity of LS
process is O(n2q + (q2 + q)n+ nnz(A)q). In the IRLS–LS
method, the dimension of A′ is q × n, and the dimension of
y′ is q × 1. Table III shows the computational complexity of
the IRLS–LS method, where M is the number of iterations.
Compared with the IRN method shown in Table I, the price paid
by the proposed method is the extra computational load coming
from the LS process. Although LS process brings additional
computational burden, it can reduce the size of the matrices. In

Fig. 5. Antenna pattern for simulations.

addition, due to the IRLS solver, the computational complexity
is significantly reduced when calculating x(0) and x(j). Hence,
the proposed method is better than the IRN method in terms
of computational efficiency, especially when the number of az-
imuth sampling pointsn is large, the advantages of our proposed
algorithm are more obvious.

IV. SIMULATIONS AND EXPERIMENTAL DATA RESULTS

In this section, some simulations and experiments are con-
ducted to prove the superior imaging performance and com-
putation efficiency of the proposed fast l1-IRLSLS algorithm.
Simulation and experiment result are compared with conven-
tional super-resolution imaging methods, including the TSVD
method, IAA, and the l1 sparse REGU method solved by IRN,
which is called the l1-IRN method for convenience next. This
article mainly focuses on the super-resolution performance and
operation time of the various algorithms. For the TSVD ap-
proach, the number of reserved singular value is determined by
the GCV [47]. The REGU parameter of the l1-IRN method is
selected by the L-curve method [52]. In addition, for different
sparse methods, this article also gives a comparison of compu-
tation time curve.

A. 1-D Point Target Simulation

First, this article conducts point simulation. The antenna
pattern for simulations is a sin c2 function illustrated is Fig. 5,
whose main beamwidth is 3.5◦. The scanning region is ±10◦.
The 1-D simulation scene is illustrated in Fig. 7(a), we can
see that there are two point targets whose width are 1◦ with
identical amplitude, and their centers are located at 0◦ and
2◦, respectively. The simulation system parameters are shown
in Table IV. Simulation hardware and software environment
is shown in Table V. In order to simulate the actual working
environment, Gaussian white noise is added. Here, we define
the signal to noise ratio (SNR) as follows:

SNR = 10 log 10
‖x‖22

‖y − Ax‖22
. (25)

In order to quantify and compare the imaging performance,
the difference of peak to valley (DPV) in dB and peak signal
to noise ratio (PSNR) is used in this section. The DPV point in
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TABLE III
COMPUTATIONAL COMPLEXITY OF THE IRLS–LS

TABLE IV
SIMULATION SYSTEM PARAMETERS

TABLE V
SIMULATION CONDITIONS

Fig. 6. Definition of DPV.

dB is interpreted in Fig. 6, and quantifies the ability of super-
resolution algorithm to separate two closely spaced targets. The
DPV in dB is between 0 and −∞, where 0 means the angular
super-resolution method can fully separate two closely spaced
targets. This indicates that the larger value of peak to valley
in dB, the better performance of the proposed super-resolution
method in terms of the super-resolution performance. PSNR
is used to measure the side lobe suppression. The PSNR is
defined as

PSNR = 20 log10
smax

slmax
(26)

where smax and slmax denote the maximum amplitude of signal
and side lobe. When PSNR value is large, it indicates that the
corresponding super-resolution algorithm has strong side lobe
suppression capability.

TABLE VI
ALGORITHM PARAMETERS AND CT OF 1-D SIMULATION

TABLE VII
SUPER-RESOLUTION PERFORMANCE COMPARISON OF

1-D SIMULATION

For each algorithm, the relative parameter values and comput-
ing time (CT) are shown in Table VI. k denotes the truncation pa-
rameter of the TSVD method, a denotes the weighting parameter
in the IAA method, μ is REGU parameter of the l1-IRN method,
q denotes the subspace dimension. λ is the number of iterations
of IAA, the l1-IRN method and the proposed fast l1-IRLSLS
method. Note that the meaning of these symbols runs through
all experiments. Table VII is the super-resolution performance
comparison of various algorithms, which contains DPV in dB
and PSNR.

Fig. 7 shows point simulation results. Fig. 7(a) is the 1-D
simulation scene. Fig. 7(b) is the real-beam echo polluted by
Gaussian noise. From the scanning region, PRF, and scanning
velocity, we can calculate echo size to be 334 × 1. Due to the in-
terval of two point targets is less than the beam width, the echoes
of two targets are overlapped. Fig. 7(c) is the result processed
by the TSVD method. The two targets can be distinguished to a
certain degree, but the sidelobes are raised. Fig. 7(d) is the result
of the IAA method. Compared with the TSVD method, it has
higher resolution and lower side lobes. Fig. 7(e) and (f) is the
result of the l1-IRN method and the fast l1-IRLSLS method, re-
spectively. They have the superior super-resolution performance
than TSVD and IAA method visibly. From Table VII, we can
clearly see that the DPV in dB of these two methods are far
higher than other methods. However, as shown in Table VI, the
l1-IRN method and the IAA method need to take more time than
our proposed fast l1-IRLSLS method.
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Fig. 7. 1-D point simulation result. (a) 1-D simulation scene. (b) Echo in SNR = 25 dB. (c) TSVD method. (d) IAA method. (e) l1-IRN method. (f) Proposed
fast l1-IRLSLS method.

Fig. 8. Definition of BSR.

B. 2-D Area Simulation

In the last section, this article has proven that our proposed
method can achieve super-resolution imaging of 1-D point tar-
gets, and in this section, we will discuss area simulation. The
antenna pattern, and simulation hardware and software environ-
ment are the same with 1-D simulation. The scanning region
is ±5◦. The area simulation scene is illustrated in Fig. 9(a).
The original scene consisted of three groups of adjacent targets
at distances of 9085, 9160, and 9225 m, as well as one island
target at a distance of 9300 m. The size of the simulation scene
is 200 × 200, and the size of each target is 11 × 8, which means
the azimuth width of each target is 0.55◦. The azimuth interval
between adjacent targets at 9085 m is 4.05◦, the azimuth interval
between targets at 9160 m is 2.65◦, and the azimuth interval
between targets at 9225 m is 1.60◦.

In addition, some quantitative indexes are exploited to mea-
sure the super-resolution performance. For the area scene, the

mean square error (MSE) is utilized to evaluate the closeness
between the original scene and super-resolution result. The ideal
MSE is 0, which means the super-resolution result and the
original scene are the same. A smaller value of the MSE indi-
cates a better performance of the approach in terms of imaging
quality

MSE =
1

MN
‖σ − σ̂‖22 (27)

where M and N are the numbers of discretization bins of range
and azimuth, respectively.σ is the original scene, and σ̂ is super-
resolution result.

Beam sharpening ratio (BSR) is defined as follows: the
ratio that the original real beam 3 dB bandwidth divides
super-resolution processing result 3 dB bandwidth, shown in
Fig. 8

BSR =
θr
θs

. (28)

BSR measures the ability of super-resolution, the larger BSR
indicates higher resolution.

Similarly, CT and algorithm parameters are shown in Ta-
ble VIII. And comparison of quantitative indexes results is in Ta-
ble IX. The area simulation results are shown in Fig. 9. Fig. 9(a)
is the simulation scene. Fig. 9(b) is the real beam echo result.
Echo size of the area simulation is 598 × 167, but we resize it
to 200 × 200 when displaying the results. Fig. 9(b) suffers from
coarse azimuth resolution, and it can be seen that all the adjacent
targets could not be distinguished. Fig. 9(c) is the result of the
TSVD method. Although it improves the resolution to a certain
degree, it brings a lot of ghosts, which seriously affects the image
quality. Fig. 9(d) is the result of the IAA method. It has a good
super-resolution performance, but some targets are blurry and
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Fig. 9. 2-D area simulation result. (a) 2-D simulation scene. (b) Echo in SNR=25 dB. (c) TSVD method. (d) IAA method. (e) l1-IRN method.
(f) Proposed fast l1-IRLSLS method.

TABLE VIII
ALGORITHM PARAMETERS AND CT OF 2-D SIMULATION

TABLE IX
SUPER-RESOLUTION PERFORMANCE COMPARISON

OF 2-D SIMULATION

there are some shadows in the result. Fig. 9(e) and (f) is the
result of the l1-IRN method and the fast l1-IRLSLS method,
respectively. Intuitively, they have better imaging quality and
are closer to the simulation scene. To quantitatively verify the
super-resolution performance of the abovementioned methods,
the profiles result of adjacent targets at distances of 9225 m is
illustrated in Fig. 10. It is obvious that the fast l1-IRLSLS method
obtains narrower beam results, which can prove that it has a
better super-resolution performance than other three methods.
From Table IX, it is noted that the proposed fast l1-IRLSLS
method has the largest BSR and the second-lowest MSE value.

Fig. 10. Profiles result of adjacent targets at distances of 9225 m.

For the echo with dimensions of 598 × 167, the computational
efficiency of the proposed algorithm is about 10 times of l1-IRN,
and 8 times of the IAA method seen from Table VIII.

C. Experimental Data

In Sections IV-A and IV-B, we have verified the proposed
l1-IRLSLS can achieve super-resolution imaging for 1-D point
target and 2-D area scene, in this section, we will verify the
performance of it on experimental data.

The experiment is undertaken at Ginkgo Avenue, University
of Electronic Science and technology of China, Chengdu, China.
The optical scene of Ginkgo Avenue is shown in the Fig 11(a),
there are some ginkgo trees on both sides of the road. The
experimental data are collected by anX-band radar. TheX-band
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Fig. 11. Experiment taken on a stationary platform. (a) Experimental optical scene. (b) X-band radar. (c) Imaging geometry (side view). (d) Imaging geometry
(vertical view).

TABLE X
ALGORITHM PARAMETERS AND CT OF EXPERIMENT

radar was fixed on a stationary platform shown in Fig 11(b).
The radar sweeps the forward-looking region with the scanning
speed of 72◦/s and at the PRF = 200 Hz from −45◦ to 45◦. The
antenna pattern for the radar system with the main-lobe width
5.1◦, and working distance of radar is 45 m. The imaging mode
is shown in Fig. 11(c) and (d).

Similarly, we give the parameters and CT of various algo-
rithms in Table X. The range impulse compression is applied to
the recorded data. The experimental result is shown in Fig. 12.
Fig. 12(a) is the real beam result after impulse compression in
range, many trees which are in the same range cell suffer low
azimuth resolution and their echoes are overlapped. Fig. 12(b) is
the result of TSVD. It only has limited resolution improvement,
and many false sidelobe targets appear in the result. Fig. 12(c)
is the result of IAA. The targets in the two red rectangles are
distinguished, but they are not clear. In contrast, the l1-IRN
method and the fast l1-IRLSLS method greatly improve azimuth
resolution, and the targets in the two red rectangles are distinct.

Visually, the l1-IRN method and the fast l1-IRLSLS method
are almost same. It means that the super-resolution performance
does not decrease by our fast l1-IRLSLS method, but the CT has
considerably decreased from 84.588 174 s to 12.123 491 s.

Also in order to intuitively reflect the super-resolution per-
formance of the various algorithms, the profiles of the targets
in the two red rectangles are listed in Figs. 13 and 14. From
Figs. 13 and 14, we can see TSVD method and IAA both can
sharpen real beam to a certain degree, but the l1-IRN method and
the fast l1-IRLSLS method obtain narrower beam. Hence, the
experimental data processing results also prove the effectiveness
of the proposed method.

D. Comparison of Different Sparse Methods

In order to further verify the effectiveness of the fast sparse
method in this article, the proposed fast IRLSLS method is
compared with other sparse methods. Other sparse methods
include MM method, SB algorithm, and IRN approach. The
computational time (CT) of these methods with varying scan-
ning scope from−5◦ − 5◦ to−160◦ − 160◦ will be investigated.
Scanning speed is 30 ◦/s, plus repetition frequency (PRF) is
2000 Hz. Correspondingly, the number of azimuth sampling
points n varies from 667 to 4000. From Fig. 15, we can see
that the CT of MM and IRN rises rapidly with the increase of
azimuth sampling points, and the CT of SB grows relatively
slowly. However, the CT of the proposed IRLSLS method has
hardly grown, the CT savings provided by IRLSLS become more
obvious with the increase of azimuth sampling points.
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Fig. 12. Experimental data result. (a) Real beam echo after impulse compression. (b) TSVD method. (c) IAA method. (d) l1-IRN method. (e) Proposed fast
l1-IRLSLS method.

Fig. 13. Profiles of the targets in the above red rectangle.

Fig. 14. Profiles of the targets in the below red rectangle.

Fig. 15. Computation time of different sparse methods.

V. CONCLUSION

In this article, a fast sparse azimuth super-resolution method
based on LS was proposed. Introducing the sparse constraint
in the REGU framework, we transformed the super-resolution
problem into an L1 norm minimization problem. Exploiting the
LS theory, this article constructed an embedded matrix. Then,
echo matrix and antenna measurement matrix are compressed
into much smaller matrices via multiplying them by this em-
bedded matrix. Finally, the IRLS method is used to solve the
reconstructed objective function, and the obtained solution is
the result of super-resolution imaging. Much of the expensive
computation can then be performed on the smaller matrices,
thereby we reduced computational complexity.
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In order to verify the effectiveness of the proposed algorithm,
this article conducted 1-D point target simulation, 2-D area
simulation, and experimental data. From the results of simu-
lations and experimental data, the proposed method is almost
the same in the super-resolution imaging performance as the
l1-IRN method, better than TSVD method and IAA method.
However, compared with the l1-IRN method, the proposed
method effectively reduces the computational complexity and
improves the real-time capability. In addition, this article also
provides a comparison of the CT between the proposed fast
sparse method and other sparse methods, which is shown in
Fig. 15.
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