
3052 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Guided-Pix2Pix: End-to-End Inference and
Refinement Network for Image Dehazing

Libin Jiao , Changmiao Hu, Lianzhi Huo , and Ping Tang

Abstract—Haze removal is still an essential prerequisite for
image processing and computer vision tasks, and joint inference
and refinement of transmission maps remain challenging in the
physical scattering model-based haze removal methods. In this ar-
ticle, we propose an end-to-end learnable dehazing network, which
is referred to as Guided-Pix2Pix, to jointly estimate and refine
the transmission map and further dehaze images by the physical
scattering equation. Instead of a two-stage model of predicting
and postprocessing the transmission, Guided-Pix2Pix concatenates
the trainable Pix2Pix backbone and differentiable guided filter
as an embedded layer, which enables generating refined trans-
mission maps in one feed-forward step, and then it substitutes
these potential refinements into the physical scattering equation
to restore dehazed images. To verify that our Guided-Pix2Pix can
be embedded in both training and inference, we demonstrate that
the guided filter layer is differentiable and capable of propagating
both features forward and gradients backward. Furthermore, ex-
plicit derivatives with respect to the input of the guided filter are
given, and the relationship between our derivation and that in the
guided filter is also explored. Experiments show that our network
is effective and robust in image dehazing, can alleviate the halo
artifacts along edges, and has great generalization capability.

Index Terms—Differentiable guided filter, end-to-end refinement
of transmission map, image dehazing.

I. INTRODUCTION

OUTDOOR images are usually contaminated by the turbid
medium in the atmosphere [1], [2]. Optically, the light

from the atmosphere or the surface of an object can be absorbed
or scattered by the floating particles, which leads to the degra-
dation of visibility. Consequently, the contrast and color fidelity
are decayed within the degraded images. On the other hand,
haze-free visibility is essentially required by automatic systems,
including surveillance, intelligent vehicles, and outdoor object
recognition [3], which makes dehazing an inevitable preprocess-
ing. Therefore, haze removal is necessary for image processing
and computer vision applications [1], [2].

Simply, the haze contamination can mathematically be de-
scribed in (1), which is referred to as the physical scattering
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equation

I(z) = J(z)t(z) +A(1− t(z)) (1)

in which J denotes the scene radiance, t ∈ [0, 1] the medium
transmission map, A the global atmospheric light, z the pixel
coordinate, and I the observed intensity. The transmission map t
describes the light portion that is not scattered and finally reaches
the camera. t can be described by (2) if the atmospheric light A
is homogenous

t(z) = e−βd(z) (2)

in which β is the scattering coefficient of the atmosphere and d
is the function of the scene depth.

Apparently, haze removal for a single image is a challenging
issue because estimating the two factors in the physical scat-
tering equation is notoriously ill-posed. Atmospheric light can
be simply estimated from the hazy image; for example, it can
be given by the pixel with the highest color intensity [3]. But
transmission maps are highly relevant to the precise or rough un-
known depth information [1]. Therefore, many common meth-
ods focus on additional information or prior knowledge. For
example, the dark channel prior [1], [2] assumed that there is
at least one channel that is very dark in an outdoor image, and
Fattal’s method [4] assumed that the transmission and surface
shading can be locally decomposed. The prior-based methods
can be physically sound but may fail once the assumption is
violated.

On the other hand, learning-based methods have made a strik-
ing achievement because of the utilization of large-scale labeled
datasets and advanced informative feature extraction [5]–[7].
Many CNN-based structures [8]–[11] capture hierarchical rep-
resentative features and impressively restore images; they have
shown promising generalization capability. Either directly trans-
lating hazy-to-clear images or jointly estimating atmospheric
light and transmission maps, learning-based methods can usu-
ally perform acceptably compared to hand-crafted prior-based
methods if they have been well-trained on the high-quality
hazy/clear datasets.

In addition, spatial refinement is necessary for dehazing meth-
ods when the transmission map is coarsely predicted. Transmis-
sion maps should match the spatial structure of hazy images, i.e.,
they should share similar contours and edges. Spatial refinement
as postprocessing has been commonly used and is popularized
by edge-preserving filters [12] and MRF-based methods [3],
[13]. End-to-end refinement has been preliminarily explored
in DCPDN [5] by minimizing gradient discrepancy. Therefore,
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jointly estimating and refining transmission maps can be further
explored.

An end-to-end learning-based dehazing model is expected as
it facilitates fitting the haze distribution and the spatial structure
of the hazy image. To this end, we propose an end-to-end
CNN-based network in this article to achieve learning-based
image dehazing, in which transmission maps can be jointly
estimated and refined, and further dehazed images can be ac-
cordingly restored by the physical scattering equation. The
dehazing network is derived from the deep guided filter [14],
but the perceptual and adversarial losses are employed to train
the network, which is our distinct contribution. In practice, we
customize the Guided-Pix2Pix network that concatenates the
trainable Pix2Pix backbone and differentiable guided filter as an
embedded layer. In particular, coarse transmission maps can be
generated by the trainable Pix2Pix backbone, and to achieve the
end-to-end refinement, a differentiable guided filter is embedded
into the network as a layer, which has been proved to be capable
of propagating features forward and gradients backward. The
atmospheric light is predicted by the pixel with the highest color
intensity, and the dehazed image can be finally restored by the
physical scattering equation, given the transmission map and
the atmospheric light. In the training phase, the L1 loss is
used as the perception loss, and the Markovian discriminator
is employed in adversarial training to improve the visual quality
of the dehazed images. Furthermore, explicit derivatives with
respect to the input of the guided filter are given, and the
relationship between our derivation and that in the guided filter
is also explored. Our method can improve the visibility of hazy
images, alleviate the halo artifacts along edges, and is robustly
generalized to other hazy images, in terms of our thorough
experiments. Therefore, our main contributions in this article
are listed as follows.

1) An end-to-end transmission map estimation and haze
removal network is proposed. Our network can jointly
generate transmission maps and dehazed images instead
of directly yielding clear images, which is able to alleviate
halo artifacts in terms of visual assessment.

2) End-to-end transmission map refinement is embedded into
the network. A differentiable guided filter is employed as
a layer to refine the transmission map estimation yielded
by the backbone network, which significantly improves
the visual dehazing performance and enhances the gener-
alization of the network. The perceptual and adversarial
losses are employed to promote the net to generate real-
istic images, which is the distinct contribution against the
vanilla guided filter [12] and the deep guided filter [14].

3) Explicit derivatives with respect to the input of the guided
filter layer are given in this article. Furthermore, the rela-
tionship between our derivation and that in [12] is explored
in appendix, which is supplementary for [12].

The rest of the article is organized as follows. Section II
reviews related work regarding prior-based and learning-based
dehazing methods. The proposed Guided-Pix2Pix is described
in Section III. Section IV presents the experiments on several
benchmark datasets, including RESIDE-SOTS indoor/outdoor,
RICE, and I/O-HAZE datasets, and visual and quantitative
evaluations are thoroughly performed, including comparisons

against state-of-the-art methods, the effect of the guided filter
layer, the hyperparameter sensitivity test with respect to radius r
and ε, and the generalization capability of the method. Section V
concludes this article.

II. RELATED WORK

We review the haze removal techniques in this section, which
can be categorized as image prior-based and learning-based
methods. Additionally, we also review some typical methods
of refining the transmission.

A. Image Prior-Based Methods

Dehazing methods attempt to remove haze by maximizing
the color contrast and restraining the oversaturation of the color
intensity in the hazy image. Image prior-based methods tend
to decomposite the physical scattering equation and remove
the haze under the predefined assumption. Typical dehazing
methods focus on adjusting the color intensity or estimating
the transmission. Fattal [4] estimated the scene albedo and
further inferred the medium transmission by decomposing the
transmission and surface shading. The dark channel prior (DCP)
method [1], [2] assumed that at least one channel had very
low color intensity at some pixels and inferred the transmission
accordingly, and the color ellipsoid prior method [15] formally
explained the color intensity distribution of DCP. Tan et al. [3]
maximized the local contrast to remove haze and build an MRF
to smooth the estimation. Kratz and Nishino [16] inferred the
scene albedo and the depth field with a factorial MRF. Color-
line [17] was proposed to dehaze in terms of the 1-D color dis-
tribution within a small patch. Berman et al. [18] characterized
haze-free images by a nonlocal patch prior. Prior-based methods
can usually achieve promising results but they can work under
their strict assumptions, which leads to unstable performance.

B. Learning-Based Methods

Learning-based methods build a mapping between hazy and
haze-free images by brewing trainable models. They usually
tend to optimize the model globally or locally on the labeled
dataset. Typical learning-based methods can be categorized as
hazy-to-clear methods and physical model-based methods in
terms of directly generating clear images or estimating factors in
the physical scattering equation (transmission maps and the at-
mospheric light). Hazy-to-clear methods attempt to disentangle
dehazing from the physical scattering model, and they directly
output clear images: end-to-end trainable CNN-based models
employ a variety of state-of-the-art convolutional techniques
to achieve desirable results, including DehazeNet [19], gated
fusion network [20], and EPDN [7]. On the other hand, some
learning-based methods aim to jointly estimate transmission
maps and atmospheric light or only the former and remove haze
by the physical scattering equation. Ren et al. [21] proposed
a multiscale network image to yield transmission maps. Yang
et al. [22] used physics-based disentanglement and adversarial
training. DCPDN [5] predicted atmospheric light and trans-
mission map together with two individual components, while
AOD-Net [23] jointly estimated one factor merging atmospheric
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light and transmission map. Proximal Dehaze-Net [24] unfolded
the optimization of the dark channel and transmission priors to a
network by proximal operators. LAP-Net [6] progressively de-
hazed images by fusing haze results at different stages. Naturally,
learning-based methods depend definitely on the large-scale
labeled dataset that affects positively the quality of dehazing.

Interestingly, generative adversarial nets (GAN) [25] have
been commonly used in image processing, including image-
to-image translation [10], [11], [26], single image super-
resolution [27]–[31], and image inpainting [32]–[35]. Particu-
larly, adversarial training based on the minimax game of GAN is
able to improve the visual quality of counterfeited photo-realistic
images, which has been an essential property used in image
generation tasks. Some typical improvements on GAN focus
on stabilizing its training, including LSGAN [36], Wasserstein
GAN [37], [38], improved Wasserstein GAN [39], and SN-
GAN [40]. Progressive GAN [41] trained GAN in a progressive
fashion, which enabled high-resolution image generation with
high visual and quantitative quality. BigGAN [42] was trained on
a large-scale dataset and applied orthogonal regularization to the
generator, which achieved the state of the art in class-conditional
image synthesis. Accordingly, the Markovian discriminator [10]
is employed in our method to improve the visual quality of
dehazing images.

C. Transmission Map Refinement

Refining transmission is necessary for the physical model-
based methods as the coarse transmission without refinement
can cause a mismatch on the edges within the images. Methods
of transmission refinement aim to convey the spatial structure
of hazy images to the transmission. He and Siu [2] applied the
soft matting algorithm [13] to the DCP method, and further, they
tested the performance of the guided filter [12] in the refinement.
A Markovian random field [43] was employed in [3]. Learning-
based methods also involve similar strategies, including gradient
discrepancy DCPDN [5] and the deep guided filter [14]. Our dif-
ferentiable guided filter is derived from DGF [14] and embedded
into the dehazing model to perform end-to-end dehazing.

III. METHODOLOGY

We introduce the overview of our physical scattering model-
based dehazing network, its backbone net, feed forward and
backward propagation of the differentiable guided filter layer,
and adversarial training in this section.

A. Overview of the Dehaze Model

The haze contamination within an image can be mathemati-
cally formulated by

I(z) = J(z)t(z) +A(1− t(z)) (3)

in which J denotes the scene radiance, t ∈ (0, 1] the medium
transmission map, A the global atmospheric light, z the pixel
coordinate, and I the observed intensity.

The ultimate goal of haze removal is to directly restore the
haze-free image J from the given I or to restore J by (4) after

estimating t and A

J(z) =
I(z)−A(1− t(z))

t(z)
=

I(z)−A

t(z)
+A. (4)

As shown in (4), physical model-based haze removal is highly
ill-posed because the number of unknown variables (t, A, and
J) is much more than the number of given variables (I). For
brevity, the atmospheric light A can be roughly obtained from
pixels that have the highest intensity in I , as is described in [3].
Specifically, the Y channel of the image is calculated from the
RGB channels in I , described in

Y (z) = 0.299R(z) + 0.587G(z) + 0.114B(z). (5)

The index of the pixel with the highest intensity is selected
from the Y channel, described in

z∗ = argmax
z

Y (z). (6)

The atmospheric light A is obtained at the pixel z∗

A = [R(z∗), G(z∗), B(z∗)]� . (7)

There exist typical approaches to learn the mapping between
the pairs of hazy and dehazed images, or hazy and transmis-
sion images. The approach building the haze-to-transmission
mapping requires 1) estimating transmission maps from hazy
images, and 2) refining the transmission maps to fit the spatial
structure of hazy images. We, therefore, formulate the afore-
mentioned model by an end-to-end model, which consists of the
backbone net and the following differential guided filter.

B. Backbone of Dehaze Net

The estimator of transmission maps is derived from
Pix2Pix [10], which consists of blocks of “convolution—
instance normalization—leaky ReLU” in the encoder and blocks
of “transposed convolution—instance normalization—Dropout
(in the first three blocks)—ReLU” in the decoder. Skip connec-
tions are built between the encoder and decoder by concatenating
feature maps with the same dimension, as is used in U-Net [44].
For brevity, we refer to the Pix2Pix backbone asG0. Please refer
to [10] for more details.

C. Revisit Feed-forward Propagation of Differentiable
Guided Filter

As shown in Fig. 1, the differentiable guided filter follows the
backbone net of Pix2Pix as a layer in our model, which enables
refinement of the coarse estimations of transmission maps in a
one-stage way. It is noted that the differentiable guided filter
layer is derived from the guided filter [12] and the deep guided
filter [14] but without any learnable parameters. Therefore, no
corresponding gradients need to be given for this layer. The
differentiable guided filter is notably different from its counter-
parts in [14] and [12]: the deep guided filter introduced trainable
parameters into the guided filter. The vanilla guided filter is not
differentiable and is usually employed as a postprocessing tool
to refine the spatial structure. On the contrary, the differentiable
guided filter in our model is appended to the backbone, which
forms an end-to-end dehazing model and leads to dehazing in
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Fig. 1. Framework of Guided-Pix2Pix. G0 and fguided denote the Pix2Pix backbone and the differentiable guided filter layer, which will be fully described in
Sections III-B, III-C, and III-D. In the feed-forward propagation of the training phase, our model first estimates the transmission maps with coarse spatial structures
and then refines them with the differentiable guided filter layer. Dehazed images are later restored by the physical scattering equation. Joint L1 loss and adversarial
loss between the dehazed and haze-free images are used to promote visual perception and genuineness of dehazing performance. In the backward propagation,
the derivatives of the learnable parameters are propagated through the physical scattering equation, the differentiable guided filter layer, and reach the Pix2Pix
backbone finally. In the inference phase, the transmission map is estimated, refined, and used in the scattering equation for dehazing.

a one-stage way. Experiments illustrate that our methods can
effectively alleviate the halo artifacts between the edges of bright
and dark pixels, in comparison against given common methods.
Additionally, our dehazing model is quite tolerant to the ad-
versarial training, demonstrated by the hyperparameter test. We
briefly revisit the feed-forward propagation of the differentiable
guided filter in this section.

We assume that given the input x and the guidance I , the
output y should subject to a local linear model in a window ωk

centered at the pixel k

yi = akIi + bk, ∀i ∈ ωk. (8)

Besides, the output y can be obtained by x substracting some
redundant components n

yi = xi − ni. (9)

Therefore, by minimizing the linear ridge regression model
defined in (10), we can obtain the linear coefficients ak and bk
in (11)–(15) as follows:

E(ak, bk) =
∑
i∈ωk

(
(akIi + bk − xi)

2 + εa2k
)

(10)

ak =
1

σ2
k + ε

{
1

|ωk|
∑
i∈ωk

Iixi − μkx̄k

}
(11)

bk = x̄k − akμk (12)

μk =
1

|ωk|
∑
i∈ωk

Ii (13)

σ2
k =

1

|ωk|
∑
i∈ωk

I2i −
{

1

|ωk|
∑
i∈ωk

Ii

}2

(14)

x̄k =
1

|ωk|
∑
i∈ωk

xi. (15)

Finally, the average coefficients a and b can be obtained by
(16) and (17). The output y can be given by (18) as follows:

āi =
1

|ωi|
∑
k∈ωi

ak (16)

b̄i =
1

|ωi|
∑
k∈ωi

bk (17)

yi = āiIi + b̄i. (18)

The feed-forward propagation of the differentiable guided
filter is given by Algorithm 1, in which .∗ and ./ denote el-
ementwise multiplication and division, and fmean is the mean
filter.
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Algorithm 1: Forward of Differentiable Guided Filter
REQUIRE Input image to filter x, Guidance image I ,
Radius r, Regularization ε
ENSURE Filtered output y

1: meanI ← fmean(I)
2: meanx ← fmean(x)
3: corrI ← fmean(I. ∗ I)
4: corrIx ← fmean(I. ∗ x)
5: varI ← corrI −meanI . ∗meanI
6: covIx ← corrIx −meanI . ∗meanx
7: a← covIx./(varI + ε)

8: b← meanx − a. ∗meanI
9: meana ← fmean(a)
10: meanb ← fmean(b)
11: y ← meana. ∗ I +meanb
12: return y

D. Backward Propagation of Differentiable Guided Filter

The backward propagation of the differentiable guided filter
is briefly introduced in this section. Naturally, the guided filter
layer should be fully differentiable if the layer is embedded into
the network to achieve the end-to-end training and inference,
because it is necessary that the gradients with respect to trainable
variables in the backbone net should be back-propagated through
the guided filter layer, otherwise the model fails to train the
parameters. Fortunately, because all computational operators are
differentiable, including the mean filter, the elementwise multi-
plication, and division; our guided filter layer, consequently, is
differentiable. We now give the mathematical partial derivative
of the loss with respect to the input of the guided filter layer.

We first give the partial derivative of the scalar loss � with
respect to the input of the mean filter x in Proposition 1.

Proposition 1: If y = fmean(x) and the partial derivative of
the scalar loss � with respect to the output y is given, then the
partial derivative of � with respect to the input x is

∂�

∂x
= fmean

{
∂�

∂y

}
. (19)

Proof: In our case, the feed forward of the mean filter is

ym,n =
∑

m−r≤i≤m+r
n−r≤j≤n+r

1

|ω| · xi,j . (20)

Elements in {yp,q}m−r≤p≤m+r,n−r≤q≤n+r are accordingly
associated with xm,n. So the partial derivative of each yp,q with
respect to xm,n is

∂yp,q
∂xm,n

=
1

|ω| . (21)

According to the chain rule, the partial derivative of the scalar
loss � with respect to each input xm,n is

∂�

∂xm,n
=

∑
m−r≤p≤m+r
n−r≤q≤n+r

∂�

∂yp,q

∂yp,q
∂xm,n

=
∑

m−r≤p≤m+r
n−r≤q≤n+r

∂�

∂yp,q

1

|ω| . (22)

Finally, the partial derivative of the scalar loss � with respect
to the input of the mean filter x is

∂�

∂x
= fmean

{
∂�

∂y

}
. (23)

�
Proposition 2: If y = fmean(x) and the partial derivative of

the scalar loss � with respect to the output y is given, then we
have

d� = tr

{
∂�

∂yT
dy

}

= tr

{
∂�

∂yT
dfmean(x)

}

= tr

{
fTmean

{
∂�

∂y

}
dx

}
. (24)

Proof: Using Proposition 1, (24) is confirmed. �
Proposition 3: If y = fguided(I, x) in which I and x denote

the guidance and the input, and the partial derivative of the scalar
loss � with respect to y is given, then the partial derivative of �
with respect to x is

∂�

∂x
= fmean

{
∂�

∂a
. ∗ 1

σ2 + ε

}
. ∗ I

+ fmean

{
∂�

∂b
− ∂�

∂a
. ∗ 1

σ2 + ε
. ∗ fmean(I)

}
(25)

∂�

∂b
= fmean

{
∂�

∂y

}
(26)

∂�

∂a
= fmean

{
∂�

∂y
. ∗ I

}
− ∂�

∂b
. ∗ fmean(I) (27)

in which .∗ and ./ denote elementwise multiplication and divi-
sion, and 1/(·) is elementwise division, too.

Proof: The feed forward of the guided filter is given by

σ2 = f(I. ∗ I)− f(I). ∗ f(I) (28)

a = {f(I. ∗ x)− f(I). ∗ f(x)} ./(σ2 + ε) (29)

b = f(x)− a. ∗ f(I) (30)

y = f(a). ∗ I + f(b) (31)

in which f denotes the mean filter for brevity.
The total differentials of � and y satisfy

d� = tr

{
∂�

∂yT
dy

}
. (32)

Using (31), we have

d� = tr

{
∂�

∂yT
dy

}

= tr

{
∂�

∂yT
d {f(a). ∗ I + f(b)}

}
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= tr

{{
∂�

∂y
. ∗ I

}T

df(a) +
∂�

∂yT
df(b)

}

= tr

{
fT

{
∂�

∂y
. ∗ I

}
da + fT

{
∂�

∂y

}
db

}
. (33)

b is the function of a and, therefore, we have ∂�/∂b

∂�

∂b
= f

{
∂�

∂y

}
. (34)

Substituting (34) into (33), we have

d� = tr

{
fT

{
∂�

∂y
. ∗ I

}
da +

∂�

∂bT
db

}

= tr

{
fT

{
∂�

∂y
. ∗ I

}
da +

∂�

∂bT
d {f(x)− a. ∗ f(I)}

}

= tr

{
fT

{
∂�

∂y
. ∗ I

}
da +

∂�

∂bT
df(x)−

{
∂�

∂b
. ∗ f(I)

}T

da

}

= tr

{{
f

{
∂�

∂y
. ∗ I

}
− ∂�

∂b
. ∗ f(I)

}T

da +
∂�

∂bT
df(x)

}
.

(35)

Therefore, we have ∂�/∂a

∂�

∂a
= f

{
∂�

∂y
. ∗ I

}
− ∂�

∂b
. ∗ f(I). (36)

Substituting (36) into (35), we have

d� = tr

{
∂�

∂aT
da +

∂�

∂bT
df(x)

}

= tr

⎧⎪⎪⎨
⎪⎪⎩

∂�

∂aT
d
{
(f(I. ∗ x)− f(I). ∗ f(x))./(σ2 + ε)

}
+

∂�

∂bT
df(x)

⎫⎪⎪⎬
⎪⎪⎭

= tr

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
∂�

∂a
. ∗ 1

σ2 + ε

}T

d {f(I. ∗ x)− f(I). ∗ f(x)}

+
∂�

∂bT
df(x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= tr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
∂�

∂a
. ∗ 1

σ2 + ε

}T

df(I. ∗ x)

+

{
∂�

∂b
− ∂�

∂a
. ∗ 1

σ2 + ε
. ∗ f(I)

}T

df(x)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= tr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f

{
∂�

∂a
. ∗ 1

σ2 + ε

}
. ∗ I

+ f

{
∂�

∂b
− ∂�

∂a
. ∗ 1

σ2 + ε
. ∗ f(I)

}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T

dx

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(37)

in which 1/(σ2 + ε) is also an elementwise operation.

Algorithm 2: Backward of Differentiable Guided Filter
REQUIRE Derivative of � with respect to y ∂y,
Guidance image I , Radius r, Regularization ε
ENSURE Derivative of � with respect to x ∂x

1: meanI ← fmean(I)
2: corrI ← fmean(I. ∗ I)
3: varI ← corrI −meanI . ∗meanI
4: ∂b← fmean(∂y)
5: ∂a← fmean(∂y. ∗ I)− ∂b. ∗meanI
6: ∂x← fmean(∂a./(varI + ε)). ∗ I + fmean(∂b−

∂a./(varI + ε). ∗meanI)
7: RETURN ∂x

Finally, we have ∂�/∂x

∂�

∂x
= f

{
∂�

∂a
. ∗ 1

σ2 + ε

}
. ∗ I

+ f

{
∂�

∂b
− ∂�

∂a
. ∗ 1

σ2 + ε
. ∗ f(I)

}
. (38)

�
The backward propagation of the differentiable guided filter

is given in Algorithm 2, in accordance with Propositions 1–3, in
which .∗ and ./ denote elementwise multiplication and division,
and fmean is the mean filter.

The derivation of the guided filter in the matrix form is highly
related to that in the scalar form given in [12]. We will investigate
the relation in appendix.

E. Markovian Discriminator-Based Adversarial Training and
Postprocessing

To effectively train the network, we combine the adversarial
loss LGAN and the perceptual loss LL1 as the total loss and
update the network with the partial derivatives of the total loss
with respect to the learnable parameters. The discriminator D is
also derived from Pix2Pix [10], which is composed of blocks of
“convolution—instance normalization—leaky ReLU”. The out-
put of D alternatively differentiates local patches of generated
or real images, instead of a global identification. The hazy and
dehazed/GT images are concatenated to feed the discriminator.
See [10] for more details about D.

For brevity, the trainable Pix2Pix backbone is referred to as
G0, and the Guided-Pix2Pix (Pix2Pix backbone—guided filter
layer—dehazing equation) as G. Using the network and the
scattering model defined previously, the backbone G0 takes the
hazy image I as input and generates the estimation of the coarse
transmission map t0. Also, a coarse dehazed image Ĵ0 can be
restored from the given factors

t0 = G0(I) (39)

Ĵ0(z) =
I(z)−A

t0(z)
+A. (40)
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The refinement of transmission and the dehazed image are
given by

t = fguided(I, t0) (41)

Ĵ(z) =
I(z)−A

t(z)
+A. (42)

The feed-forward propagation of our model estimates the
refined transmission maps and the dehazed images, and the
backward propagation calibrates the performance of dehazing.
We now define the loss function in the backward propagation.
Conventionally, the L1 loss is used as the perceptual loss as
it captures and gathers the differences between pixels of the
dehazed and the clear image, given by

LL1 = EJ∼pdata,Ĵ∼pG

[
||J − Ĵ ||1

]
. (43)

Adversarial loss guidesG to generate the estimation of a haze-
free image that can be hardly differentiated by discriminator D,
which is derived from GAN. The objective function is given by

V (G,D) = min
G

max
D

EJ∼pdata [logD(J)]

+ EĴ∼pG

[
log(1−D(Ĵ)

]
. (44)

Optimized by gradient descent methods, the trainable back-
bone G0 can be updated by back propagation of the GAN
training strategy [25].

The inference and refinement of transmission are given by
(45) and the image dehazing is given by (46), after the parameters
of G0 are secured

t = fguided(I,G0(I)) (45)

Ĵ(z) =
I(z)−A

t(z)
+A. (46)

Besides, contrast-sensitive Retinex postprocessing is em-
ployed for better visualization: first, the multiscale Retinex
enhances the details of the dehazed image, using

r(z) =
∑
k

wk

{
log Ĵ(z)− log

[
Fk(z) ∗ Ĵ(z)

]}
(47)

where Fk(z) ∗ Ĵ(z) denotes Gaussian blur. Conventially, three
scales, σGauss = 15, 80, 250, and wk = 1/3 are used in our mul-
tiscale Retinex.

Then, given a dynamic control parameter dr, the mean μr,
the standard deviation σr, and the desired data range of r(z) are
computed

minr = μr − dr · σr (48)

maxr = μr + dr · σr. (49)

Finally, given the minimum and the maximum, the dehazed
image is rescaled and clipped into 0 . . . 255

Ĵ(z) =
r(z)−minr
maxr −minr

· 255. (50)

IV. EXPERIMENTS AND DISCUSSION

We evaluate our dehazing model by conducting a variety of
experiments, including comparisons with other methods, abla-
tion study with respect to the refinement, and hyperparameter
test with respect to r and ε.

A. Implementation Details

Our experiments are conducted with TensorFlow [45] frame-
work. The input hazy images are resized to 512 × 512, and
the refined transmission maps and dehazed images share the
same size. The radius and ε of the differentiable guided filter are
empirically assigned to 60 and 10−8, respectively. The guidance
images are the grayscale of the input images. The ADAM [46]
optimizer is applied to the optimization of the network and
its initial learning rate, β1, and β2 are 10−4, 0.5, and 0.999,
respectively. The learning rate decays by 0.9 per 100 iteration
steps. These hyperparameters are empirically given but the key
parameters will be thoroughly investigated in the following
experiments.

We collect several synthetic and real-world datasets to eval-
uate our model, including RESIDE-SOTS indoor/outdoor [47],
RICE [48], and I/O-HAZE [49], [50] datasets. REalistic Single
Image DEhazing (RESIDE) dataset [47] is composed of both
synthetic and real-world hazy/haze-free three-channel natural
images, and its synthetic objective test set (SOTS) collects
500 indoor/outdoor pairs of images, employed as the compara-
tive dataset. Remote sensing Image Cloud rEmoving (RICE)
dataset [48] contains 500 pairs of cloudy/cloud-free 3-band
images, collected from Google Earth. O-HAZE [50] is an
outdoor-scene hazy/haze-free dataset, while I-HAZE [49] is an
indoor dataset, and three-channel hazy images of both of them
are generated by dedicated haze machines. For dehazing, the
500 pairs of RESIDE-SOTS outdoor [47] hazy/clear images
are contaminated by mild haze, while the haze in the I/O-
HAZE [49], [50] dataset is severe, nonhomogeneous, and more
challenging. On the other hand, the 500 pairs of homogeneously
hazy/clear images in RICE [48] are generated from Google Earth
by switching the display of the cloud layer. We train our model
only on the half dataset of I-HAZE [49] and refer to it as the
natural image dehazing model, and train on RICE [48] as the
remote sensing dehazing model. For natural images, we test and
evaluate our model on the RESIDE-SOTS indoor/outdoor [47],
half I-HAZE [49], and O-HAZE [50] datasets, to demonstrate
the effectiveness and generalization. For remote sensing images,
we train on the half RICE [48] and evaluate on the others.

B. Comparison Against State-of-the-Art Methods

We first compare our method against representative and state-
of-the-art natural image dehazing methods, including DCP [1],
[2], AOD-Net [23], DCPDN [5], EPDN [7], DehRet [51],
KTDN [52], and the deep guided filter (DGF) [14]. Particu-
larly, DCP [1], [2], and DCPDN [5] estimate the transmission
map to restore a clear image, while AOD-Net [23], EPDN [7],
DehRet [51], KTDN [52], and DGF [14] remove haze in an
image-to-image translation way. GP2P-G denotes the outputs
of our Guided-Pix2Pix, while GP2P-Rescale and GP2P-Retinex



JIAO et al.: GUIDED-Pix2Pix: END-TO-END INFERENCE AND REFINEMENT NETWORK FOR IMAGE DEHAZING 3059

TABLE I
AVERAGE PSNR AND SSIM OF COMPARISONS ON SYNTHETIC DEHAZING DATASETS (AVERAGE ± STANDARD DEVIATION)

1We reproduce dehazing results using the pretrained models.

denote the aforementioned rescaled and Retinex-enhanced re-
sults. I/O-HAZE [49], [50], RESIDE-SOTS indoor and out-
door [47] datasets are used as benchmark datasets. The quantita-
tive comparisons between dehazing methods are listed in Table I
and the visual assessments are shown in Figs. 3–6.

First, we evaluate these methods from the visual perspective.
DCP [1], [2] is always referred to as a baseline of dehazing due
to its visual effectiveness and simple implementation, and it is
able to achieve a wonderful dehazing performance, provided
that delicate parameter configuration is given. Its drawbacks,
however, have been fully presented and improved, especially
for the halo artifacts surrounding buildings. DehRet [51] has
been proved to be an equivalent to DCP, so they generate similar
results. These halo artifacts are also shown in the results of
EPDN [7]. Visually, DGF [14] reduces the color intensity but in-
troduces color cast as well. KTDN [52] achieves the best results
on I/O-HAZE datasets; however, it brings artifacts on the low-
frequent areas. Nevertheless, our method can reduce the halo
artifacts surrounding buildings, which should be attributed to
the merits of the physical model-based fashion and transmission
map refinement: the embedded guided filter significantly refines
the spatial structure of the transmission maps, which results in
the improvement of halo artifacts and brightness consistency, as
shown in Fig. 2. Furthermore, our model simplifies the backbone
net compared to DCPDN [5] when they achieve similar visual
performance. The details in the dehazed image, in addition, can
be enhanced by the rescale method or Retinex postprocessing.

Our method has its intrinsic drawbacks as well: it dehazes
more slightly compared to those state-of-the-art methods, which
seems to yield an underdehazing visual performance. Besides,
our methods can also hardly remove the haze close to the
atmospheric light, which may appear at the deepest pixels within
the image.

The quantitative assessment is listed in Table I. Interestingly,
EPDN [7] achieves the best quantitative performance on the
indoor dataset but our method outperforms others on the outdoor
dataset, in terms of PSNR and SSIM. On the O-HAZE dataset,
KTDN [52] quantitatively performs better than other methods.
We attribute this to their high-relevant customization and train-
ing on the corresponding datasets: EPDN [7] is sufficiently
trained on the indoor dataset, and KTDN [52] fits the O-HAZE
dataset as well. Similarly, the visual check can account for
the assessment: the intrinsic drawback of our method degrade
the indoor results but slightly dehazing fits the outdoor dataset

Fig. 2. Effect of the embedded guided filter. The transmission maps from the
Pix2Pix backbone produce severe halo artifacts, while they can be dramatically
refined and improved by the guided filter layer.
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Fig. 3. Visual comparisons on RESIDE-SOTS outdoor dataset. We compare our methods with DCP [1], [2], AOD-Net [23], DCPDN [5], EPDN [7], DehRet [51],
KTDN [52], and DGF [14]. Note that DCP and EPDN degrade the dehazing performance in terms of the halo artifacts surrounding the building and the armillary
sphere, AOD-Net may overestimate the haze, DGF visually manipulates the color intensity, and KTDN introduces artifacts in the low-frequent areas. But, our
method can refine dehazing, prevent halo artifacts, and generate clear images.
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Fig. 4. Visual comparisons on RESIDE-SOTS indoor dataset. We compare our methods with DCP [1], [2], AOD-Net [23], DCPDN [5], EPDN [7], DehRet [51],
KTDN [52], and DGF [14]. Similarly, DCP and EPDN degrade the dehazing performance in terms of the halo artifacts, AOD-Net may overestimate the haze, DGF
visually manipulates the color intensity, and KTDN introduces artifacts in the low-frequent areas. Our method can also refine dehazing, prevent halo artifacts, and
generate clear images.
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Fig. 5. Visual comparisons on I-HAZE dataset. We compare our methods with DCP [1], [2], AOD-Net [23], DCPDN [5], EPDN [7], DehRet [51], KTDN [52],
and DGF [14]. Similarly, DCP and EPDN degrade the dehazing performance in terms of the halo artifacts, AOD-Net may overestimate the haze, DGF visually
manipulates the color intensity, and KTDN introduces artifacts in the low-frequent areas. Our method can also refine dehazing, prevent halo artifacts, and generate
clear images.

well. We will improve its intensity by introducing a specific
controlling knob.

The generalization of our method is confirmed on the O-
HAZE [50], RESIDE-SOTS indoor, and outdoor datasets. The
dehazing model has been trained on the half I-HAZE dataset
and transferred to dehaze on the aforementioned datasets with-
out fine-tuning. As seen in Figs. 3, 4, and 6, we find that
our method can also achieve acceptable dehazing performance
without retraining, which demonstrates the generalization of our

method. The area around the selection of atmospheric light,
however, cannot be fully restored, and the nonhomogeneous
haze cannot be thoroughly detected and removed, which should
be an improvement in future work.

C. Ablation Study With Respect to Differentiable Guided Filter

We investigate the effect of the differentiable guided filter in
the ablation study. RICE [48] dataset is employed to test the
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Fig. 6. Visual comparisons on O-HAZE dataset. We compare our methods with DCP [1], [2], AOD-Net [23], DCPDN [5], EPDN [7], DehRet [51], KTDN [52],
and DGF [14]. Similarly, DCP and EPDN degrade the dehazing performance in terms of the halo artifacts, AOD-Net may overestimate the haze, DGF visually
manipulates the color intensity, and KTDN introduces artifacts in the low-frequent areas. Our method can also refine dehazing, prevent halo artifacts, and generate
clear images.

dehazing effect on remote sensing images. The effect of each
component should be clarified first: the backbone should be
able to estimate the coarse distribution of existing haze within
an image and form the potential transmission map, while the
adversarial training (GAN architecture) and the differentiable
guided filter are in charge of different dehazing services: the
adversarial training ensures realistic outputs, which has been
demonstrated in plenty of relevant literature, while the guided
filter refines the spatial structure of transmission maps. Conse-
quently, they improve the quality of the dehazed images in a

joint way. Accordingly, we focus on investigating the effect of
the guided filter rather than that of the adversarial training.

As shown in Fig. 7, the guided filter refines the spatial struc-
ture of the potential transmission maps, yielding homogeneous
results without oversaturated artifacts: the filter follows the
backbone network and refines the transmission map jointly. The
prediction of the backbone network can coarsely capture the
spatial structure and the following differentiable guided filter
can refine the TME to retain the spatial features of the image.
Furthermore, the results also show the dehazing performance
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Fig. 7. Ablation study with respect to the differentiable guided filter. The backbone network coarsely captures the spatial structures while the following filter
refines and yields fine transmission maps.



JIAO et al.: GUIDED-Pix2Pix: END-TO-END INFERENCE AND REFINEMENT NETWORK FOR IMAGE DEHAZING 3065

Fig. 8. Hyperparameter sensitivity with respect to the radius of the guided filter (1). The radius varies from 3 to 120. A higher radius yields smooth results and
retains more spatial features.

on the remote sensing image: The estimation of the refined
transmission map, referred to as RTME, is three-channel because
three channels are contaminated by haze in different degrees.
Note that the TME of the blue channel is contaminated more
severely than that of the red and green channels, which has been
also shown in Fig. 7.

D. Hyperparameter Effect on Dehazing

We explore the effect of two key hyperparameters in the
guided-pix2pix: the radius of the differentiable guided filter
r and the initial learning rate. The radius controls the trans-
fer performance of spatial structures from original hazy im-
ages, while the initial learning rate affects the training effi-
cacy. The visual assessments on the RICE dataset are shown
in Figs. 8–10.

Figs. 8 and 9 show the effect of the radius of the guided
filter. The radius controls the transfer performance of spatial

structures from original hazy images: a higher radius yields a
finer transmission map while a lower radius keeps the refinement
as the output from the backbone network. As can be seen in
Figs. 8 and 9, the radius of 3 seldom modify the transmission
map, but the radius of 30 significantly refine it. On the other
hand, the transmission maps of the radius over 60 vary merely
compared to that of the radius of 60. Consequently, the radius is
recommended to over 60 to achieve acceptable performance for
images of 512× 512.

The initial learning rate is a key parameter to control train-
ing efficacy: a higher α leads to a spatial structure corruption
while a lower α discourages training. We test the initial learn-
ing rate because the differentiable guided filter is observed to
significantly modify the estimation of the transmission map even
if the filter has no learnable parameters. The visual results are
shown in Fig. 10.

Fig. 10 shows the effect of the initial learning rate α. The
initial learning rate α affects training efficacy: a higher α makes



3066 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 9. Hyperparameter sensitivity with respect to the radius of the guided filter (2). The radius varies from 3 to 120. A higher radius yields smooth results and
retains more spatial features.

training corrupted in learning spatial structures and features,
while a lower α punishes training hard and yields inappropriate
results. We test α varying from 10−5 to 10−3 and observe that
α of 10−4 is more appropriate compared to the others. Fortu-
nately, the following guided filter layer enables the structural
transfer from the hazy images and yields acceptable dehazing
results.

V. CONCLUSION

In this article, we propose an end-to-end learnable dehazing
network, which is referred to as Guided-Pix2Pix, to jointly esti-
mate and refine the transmission map and further dehaze images
by the physical scattering equation. Instead of a two-stage model
of predicting and postprocessing, Guided-Pix2Pix enables pre-
dicting refined transmission maps in one feed-forward step, and

then it substitutes these potential refinements into the physical
scattering equation to restore dehazed images. Specifically, the
Pix2Pix backbone is employed to achieve the coarse prediction
of the transmission, and then the embedded differentiable guided
filter refines its spatial structure to alleviate the potential halo
artifacts. In the training phase, perceptual and adversarial losses
are jointly employed to guide the dehazing network to generate
haze-free and realistic images, which is our distinct contribution
against the deep guided filter [14]. Also, the differentiable guided
filter ensures the forward propagation of the feature maps and
back-propagation of gradients, which guarantees the inference
in a one-stage way. Experiments show that our model tends
to improve the visibility of hazy images and alleviate the halo
artifacts along edges, in terms of the visual assessment in the ex-
periments. Besides, the guided filter layer significantly promotes
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Fig. 10. Hyperparameter sensitivity with respect to the initial learning rate α. The initial learning rate varies from 10−5 to 10−3. A higher α causes the learning
corruption of spatial features, while a lower α leads to the laziness of training. Fortunately, the following guided filter enables transferring the spatial structures of
hazy images.
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problematic adversarial training and is of great help to yield
acceptable results. Its generalization capability is also confirmed
on a challenging outdoor nonhomogeneous hazy dataset. Failure
of dehazing near the brightest part may be caused by the arbi-
trary atmospheric light estimation (the pixel of highest color
intensity), which should be a valuable future work. In addition,
we will further explore more sophisticated approaches to re-
moving nonhomogeneous haze within images, which remains
challenging for both prior-based and learning-based methods.

APPENDIX

Relation to The Kernel of Guided Filter

The derivation of the guided filter in the matrix form is highly
related to that in the scalar form given in [12], so we investigate
the relation in this section. The kernel of the guided filter is given
in [12]

Wij =
1

|ω|2
∑

k:(i,j)∈ωk

{
1 +

(Ii − μk)(Ij − μk)

σ2
k + ε

}
. (51)

Now, we investigate the relationship between the kernel and
the given partial derivative of the output yi with respect to the
input xj in the scalar form, which can cast another insight into
understanding the differentiability of the guided filter layer.

The partial derivative of the scalar loss � with respect to the
input xj is given by (52) according to the chain rule

∂�

∂xj
=

∑
i∈ωj

∂�

∂yi

∂yi
∂xj

. (52)

We recall the partial derivative of � with respect to x in

∂�

∂x
= f

{
∂�

∂a
. ∗ 1

σ2 + ε

}
. ∗ I

+ f

{
∂�

∂b
− ∂�

∂a
. ∗ 1

σ2 + ε
. ∗ f(I)

}
(53)

∂�

∂a
= f

{
∂�

∂y
. ∗ I

}
− ∂�

∂b
. ∗ f(I) (54)

∂�

∂b
= f

{
∂�

∂y

}
. (55)

We consider the partial derivative of � with respect to xj and
substitute (54) and (55) into the term with respect to a and b,
and then it yields

∂�

∂xj
=

1

|ω|
∑
k∈ωj

{
∂�

∂ak
∗ 1

σ2
k + ε

}
∗ Ij

+
1

|ω|
∑
k∈ωj

{
∂�

∂bk
− ∂�

∂ak
∗ μk

σ2
k + ε

}

=
1

|ω|
∑
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∗ Ij − μk

σ2
k + ε

+
∂�

∂bk

}

=
1

|ω|
∑
k∈ωj
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1
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∂yi
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1
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{
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(Ii − μk)(Ij − μk)

σ2
k + ε

}⎫⎬
⎭ .

(56)

According to the chain rule and (52), we get the partial
derivative of the output yi with respect to the input xj

∂yi
∂xj

=
1

|ω|2
∑

(i,k)∈ωj

{
1 +

(Ii − μk)(Ij − μk)

σ2
k + ε

}
. (57)

Equation (57) is the expression of the filter kernel Wi,j .
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