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A Deep Learning Method of Water Body Extraction
From High Resolution Remote Sensing Images

With Multisensors
Mengya Li , Penghai Wu , Member, IEEE, Biao Wang , Honglyun Park, Hui Yang , and Yanlan Wu

Abstract—Water body extraction from remote sensing images
is an important task. Deep learning has become a more popular
method for extracting water bodies from remote sensing images.
However, these methods are usually aimed at a specific sensor
and are not applicable. Thus, we proposed a new network, called
the dense-local-feature-compression (DLFC) network aiming at
extracting water body from different remote sensing images au-
tomatic. In this network, each layer of the network can receive the
feature maps of all layers before it by the densely connected module
of DenseNet. The concatenate operation on the feature dimension
is used when connecting across layers. It can realize the different
levels of features reuse. The local-feature-compression module is
introduced before concatenate operation. It can obtain the more
abstract features further by the convolution operation. Through
the DLFC, we can fuse the spatial and spectral information for
the remote sensing images that can extract water body from dif-
ferent remote sensing images. Besides, we construct a new water
body dataset based on GaoFen-2 (GF-2) remote sensing images.
The proposed DLFC achieved excellent performance with GF-2,
GaoFen-6, Sentinel-2, and ZY-3 remote sensing images. Compared
with the traditional water body extraction method and contempo-
rary networks, the DLFC exhibits noticeable improvement. The
results indicate that the DLFC can realize water body extraction
from multisource remote sensing images automatically and rapidly.

Index Terms—Deep learning, high resolution, multisource
remote sensing images, water body.
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I. INTRODUCTION

WATER is the source of life and an important component
of the land ecological system, which plays an important

role in the global water cycle [1]. Water significantly influences
public health, the living environment, and economic develop-
ment [2]. Therefore, investigating surface water and delineating
its time-spatial distribution is of great importance [3]. Due to
the features of a large scale, rapid update period, and dynamic
monitoring, remote sensing has become a general method for
surface water monitoring [4].

Water body extraction from remote sensing images mainly
includes single-band density slicing [5], spectral water indexes
[6]–[8], object-oriented approaches [9]–[12], and deep learning
methods [13], [14]. The spectral water index-based method is a
reliable method among all existing water body mapping meth-
ods. Since the 1990s, many different water indexes have been
proposed [5], [15]. McFeeters proposed the normalized differ-
ence water index (NDWI) [16]. However, NDWI cannot perform
well due to the effect of shadows in built-up areas. Because
of the shortcomings of NDWI, Xu used the shortwave infrared
(SWIR) band to replace the NIR band in NDWI, developing
the modified normalized difference water index (MNDWI) [17].
The index has been used in experiments in which remote sensing
images contain different water types, and most obtained better
effects than those of NDWI, especially in urban areas. Du et al.
mapped the water bodies of the Venice coastland, Italy, from
Sentinel-2 imagery with MNDWI [8]. These methods improved
the accuracy of water extraction to varying degrees. However,
these traditional spectral methods always come down to the
choice of the threshold value. The threshold values are different
on different occasions. For each different image, we must choose
a suitable threshold value that depends on the experience of the
studies. Therefore, these methods are subjective and have a low
level of automation [18]. Images with higher spatial resolution,
such as SPOT6/7, IKONOS, Worldview and Quick-bird, GF-2,
are used to extract water bodies. The higher the image resolution
is, the more detailed the information the images have. However,
it is impossible to use the MNDWI method with these fine-
spatial-resolution images. However, MNDWI has good perfor-
mance in water body extraction. These high-spatial-resolution
images only have four bands (blue, green, red, and near infrared),
lacking the SWIR band to compute MNDWI [3]. In addition,
in order to realize the high accuracy in water body extraction
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of the GF-2 images, Wu designed a new water index called the
two-step urban water index (TSUWI) combining the urban water
index and the urban shadow index to map the water surface [19].
The TSUWI can only extract water bodies from GF-2 images,
which is not suitable for all types of remote sensing images. The
spectral water index-based methods mentioned above all have
some common problems such as the adaptability and automation
of the index. What is more, the accuracy of these index methods
is closely related to the operator’s experience. Therefore, the
index method has certain limitations.

With the extensive application of deep learning in remote
sensing information extraction [20]–[30]. Li explored a novel
network structure named DeepUNet for pixel-level sea-land
segments on images from Google Earth [31]. The experiments
showed that this new network achieves high-precision recall and
F1-measure for both sea and land regions. To evaluate the 11 ef-
fective and efficient machine learning methods for the extraction
of shorelines, Manaf tried to extract the water from the northwest
coast of Peninsular Malaysia [32]. Among all the methods,
Multilayer Perceptron Artificial Neural Network (MLP ANN)
achieved the best performance. Yu extracted water bodies from
Landsat imagery using convolutional neural networks (CNNs)
[19]. In this study, CNN hierarchically extracted useful high-
level features from input data and then used a logistic regression
classifier to classify them. CNN has better performance than
support vector machine (SVM) and artificial neural network
(ANN). Yang introduced self-adaptive pooling into CNNs to
extract urban water bodies from two categories of Chinese
high-spatial-resolution remote sensing images (ZY-3 and GF-2
multispectral images) [3]. However, before the extraction, they
needed to preprocess the data, such as color space transformation
and adaptive simple linear iterative clustering. Li extracted urban
water by combining deep learning and the Google Earth En-
gine [33]. They combined the Google Earth Engine (GEE) and
Multiscale Convolutional Neural Network (MSCNN), which
do not need to make many subjective decisions and maintain
the advantage of high accuracy in urban water extraction using
MSCNN. Deep learning has been increasingly popular in water
body extraction from remote sensing images. However, as we
can see, the aforementioned studies both used one deep learning
network to extract the water bodies from only one remote sensing
image, especially Landsat images. These methods were often
difficult to be used to extract water body from other remote
sensing images even the different images from the same sensor.
Besides, for the methods of deep learning, each sensor needs
to make its own training dataset, and the single-sensor sample
training model cannot be effectively applied to other sensors.

To extract the water bodies from the high-resolution remote
sensing images, we proposed a novel deep learning encoder–
decoder framework, which is called the dense-local-feature-
compression (DLFC) network. There is much complex and
diverse information in the remote sensing images. The deep
learning method needs to get a powerful ability of feature
extraction. Densely connected module [34] has a strong ability
to extract features in the encode part. In this part, DenseBlock
can extract the different level features including the low-level
features and the highly abstract features. Meanwhile combining

the feature reuse mechanism of densely connected module, some
low-level features will also be added to the decoder part. Through
these two effective mechanisms, densely connected module
takes advantage of the different level spectral features. Thus, we
can make full use of the spectral information. To solve the data
normalization problem and accelerate network convergence,
we introduce group normalization [35] to replace traditional
batch normalization [36]. Group normalization can be computed
independently regardless of the batch size. Compared with batch
normalization, group normalization has a stable accuracy in a
wide range of batch sizes. In addition, to improve the adaptability
of the method, we designed a local feature compression (LFC)
module in the upsampling process. The LFC module can extract
highly abstract feature that can further improve the adaptability
of the model. Through the proposed network, we accomplished
the target that extracts the water body from different images of
one sensor and different sensors automatically. The extraction
results are more objective than traditional index methods. It does
not rely on human subjective experience. Besides compared with
the remote sensing extraction algorithms, it suits more remote
sensing images. The remote sensing extraction algorithms pro-
posed before usually aim at one type of remote sensing data.
We all know that most deep learning-based methods surely
needs a large number of training samples. But there was not
a water dataset that consists of remote sensing images. Thus, we
constructed the dataset, which is made of GF-2 remote sensing
images and the corresponding label. There are more than 16000
images in this dataset.

The rest of this article is organized as follows. A detailed
description of the proposed method is given in Section II. Related
data, data processing, and related experiments are presented
in Section III. The results of the experiments are listed in
Section IV. Finally, the conclusion is listed in Section Ⅴ, and
the discussion is in Section VI.

II. METHODOLOGY

A. DLFC Network

1) Architecture of the Proposed Network: Similar to other
encoder–decoder architectures, we continued to use the classic
encoder–decoder architecture in neural networks. In the encoder
part, there is a convolution layer with a stride of two, convo-
lution kernels of seven, a group normalization layer, and five
DenseBlocks. Using this architecture, we can obtain a feature
map that is highly abstracted. In the decoder, there are five
DenseBlocks to extract features and five transpose layers to
recover features. After the transpose layer, we introduced the
DLFC module. The local-feature-compression module contains
two convolution operations that can strengthen the high-level
features. It combines the spatial information with the spectral
information of the remote sensing images that ultimately realizes
the information extraction. Then, we concatenated the high-level
features after the upsampling and the low-level features from the
encoder part by skip layers to improve the use of features and
compensate for the loss of features. Through this operator, we
ultimately improved the adaptability of the model. Finally, we
used the convolution layer to recover the feature map as a binary
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Fig. 1. Architecture of the DLFC network.

segmentation map that has the same size as the remote-sensing
images. The architecture of the networks is shown in Fig. 1.

Batch normalization error increases rapidly when the batch
size is smaller. Some computer vision tasks, such as detection
and segmentation, usually require small batches because of the
limitations created by memory consumption. Group normal-
ization can be computed independently regardless of the batch
size. Compared with batch normalization, group normalization
has a stable accuracy in a wide range of batch sizes. We in-
troduce group normalization to replace the traditional batch
normalization in DenseBlocks, which changes the DenseBlock
convolution template that consists of a batch normalization layer,
a rectified linear unit (ReLU), and a 3 × 3 convolution layer into
a group normalization layer, an ReLU, and a 3 × 3 convolution
layer. Through this, we can make the network more reasonable.

2) Group Normalization: Therefore, GN was proposed to
improve the shortage of BN. GN divides the channels into
groups and calculates the mean and variance within each group
for normalization. The dimension channel is reshaped into two
dimensions (G and C//G), where C is the channel axis and G
is the number of the groups. Then the mean and variance are
calculated based on dimensions C//G, height (h) and width (w).
Finally, the dimension is reshaped back to the original channel
and returns the results of the linear transformation. The accuracy
cannot be influenced regardless of the batch size. Because the
calculation of GN is independent of the batch size, its accuracy
is also stable in various batch sizes.

3) LFC Module: To better integrate spatial information and
spectral information, we introduce a LFC module into the up-
sampling process. This LFC contains two convolution layers.
The first convolution layer has a 5×5 convolution operation with
a 1 stride. The second convolution layer has a 7 × 7 convolution

Fig. 2. Architecture of the LFC module, where h represents the height of the
feature map, w represents the width of the feature map, and c1, c2, and c represent
the channel of the feature map.

operation. After these two convolution layers, we can obtain
higher level features that can help extract the important spatial
and spectral features. It can improve the adaptability of the
network. The architecture of the LFC module is shown in Fig. 2.

4) Implementation Details of the Network: The other impor-
tant parameters in our proposed network were set properly to
obtain fine extraction results. For example, every DenseBlock
contained 3 layers and the growth rate was set as 32. In each
transition layer, a 1 × 1 convolution operation and a dropout
layer with a 0.2 rate were carried out, followed by a 2 × 2
average pooling operation. For the transpose layer, we used a
3 × 3 convolution operation with a 2 stride, and the activation
function was often an ReLu. In the LFC module, there were 2
convolution operations: one was 5 × 5, and the other was 7 × 7
with a 1 stride.

In addition, the network proposed in this article used binary
cross entropy as the loss function, the batch size was set to two,
the number of rounds was 100, the number of iterations per round
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was 5000. And the initial learning rate was set as 1e-4. In order
to better train the model, the learning rate will automatically
adjust with the increase of the number of training rounds, that
is, the learning rate will be reduced by 10 times every 20 rounds.
The optimization used in this article was adam [37], which can
also accelerate the convergence of the network.

B. Comparison Method

To validate the accuracy of the method proposed by us.
We performed water extraction on selected images using other
common methods, which are four deep learning methods,
DeepLabV3+ [38], U-Net [39], DeepUNet[31], SegNet [40],
and two remote sensing extraction algorithms, NDWI and SVM.
DeepLab V3+ is the latest work of the DeepLab semantic
segmentation network. It reached 89.0% of mIoU on Pascal
VOC and 82.1% on Cityscape. U-net is a semantic segmentation
network based on FCN, suitable for the segmentation of medical
images. Basically, for all segmentation problems, it can try U-net
to see the effect. The network won a big advantage in the 2015
ISBI Cell Tracking Challenge. In addition, U-net and DLFC are
both the U-shaped structures. They both consist of two parts.
U-net is consisted of a contracting path and an expansive path.
Contraction path is consist of simple convolution layer and pool-
ing layer, expansion path is made of a series of deconvolution
layer. As for DLFC, it also has two parts, the encoder part and
the decoder part. We introduced a series of dense block into
these two parts. The dense block consists of several convolution
layers. In every dense block, they both perform dense connection
that means all layers in the network are connected in pairs.
The concatenate operation on the feature dimension is used
when connecting across layers, which is not the add operation.
For each layer, the feature maps of all the preceding layers
will be used as the inputs, and its own feature maps are also
used as the inputs of the subsequent layers. DeepUNet is an
improved network based on U-Net. SegNet is a deep network
proposed by Cambridge to solve image semantic segmentation
of autonomous driving or intelligent robots. NDWI and SVM
are the most common methods for water body extraction.

C. Evaluation Metrics

For semantic segmentation, there are some common indexes
to evaluate the accuracy of segmentation, including overall ac-
curacy (OA), F1-score, IoU, etc. In this article, water extraction
is regarded as a dichotomy problem, and the results of the
prediction are either water or nonwater. For the dichotomy prob-
lem, the examples can be divided into four cases: true positive
(TP), false positive (FP), true negative (TN), and false negative
(FN) depending on the combination of the real category and
the learning prediction category. These values can be calculated
using the pixel-based confusion matrix per patch. If TP, FP,
TN, and FN represent the corresponding sample numbers, it
is obvious that TP + FP + TN + FN is the total number of
samples. The F1-score is based on the harmonic average of
precision and recall, and IoU is the intersection ratio. In the
problem of semantic segmentation, the intersection ratio of the
real value and the predicted value is calculated. The evaluation

index formula is as follows:

OA =
TP+ TN

TP + TN+ FP + FN
(1)

F1 =
2TP

2TP + FN+ FP
(2)

IoU =
TP

FN+ TP + FP
. (3)

III. DATA AND EXPERIMENT

In this section, the effectiveness of the proposed scheme for
water body extraction in very high-resolution remote sensing
images was investigated. All networks were trained and tested
with TensorFlow on a GPU.

A. Dataset

The Gaofen-2 (GF-2) satellite is the first civilian optical
remote sensing satellite independently developed in China with
a spatial resolution better than 1 m. GF-2 imagery is a good
candidate for applying previous methods to extract urban water
bodies. In this article, the dataset we used contains GF-2 re-
mote sensing images containing the Changjiang River in AnHui
Province and images containing the sea from southern China.
These images, which have blue, green, red, and near infrared
channels, include the sea, rivers, lakes, ponds, and other different
types of water. Lakes, rivers, streams, and paddy fields are
common forms of surface water in remote sensing images. Lakes
and reservoirs are clear in the shape of a planar water body. The
grass and trees around the lake, and the floating vegetation can
result in a complex and mixed water spectrum. There are many
types of river water systems, and the water bodies are usually
linear, especially slender and small, or converge into an irregular
surface. Small water bodies below the image resolution exist in
the form of mixed pixels. Due to the extremely strong fluidity of
the water body, its spatial distribution, geometric morphology,
and other characteristics are affected by various factors such as
topography, landform, water level, human modification, etc. The
spectral information of the same body of water is often different
in remote sensing images from different sensors at different
times. In addition, due to the difference in resolution, there are
more mixed pixels in low-resolution remote sensing images,
especially at the junction of water and other objects. The water
body shows various morphological characteristics in different
situations, which increases the difficulty of water information
extraction from remote sensing images. The number of different
waters is generally the same.

The water masks of the selected GF-2 images were manually
drawn by referring to the original images. The mapping of the
water masks followed the same standard. First, slender water
bodies with widths of less than 2 pixels were drawn with the
line feature. Second, water bodies with less than 2 pixels were
not drawn. Third, the edges of water areas were identified as
water if the water features are obvious, otherwise as nonwater.
Finally, a manually labeled reference water mask was created
by setting the pixel values of water and nonwater to 1 and 0,
respectively.
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TABLE I
RELATED INFORMATION OF GF-2 MULTISPECTRAL IMAGERY

In our study, all GF-2 images are of product type level 1A.
These images have high quality and contain enough information
for radiometric correction and geometric correction. All the
images we used are free of clouds. A description of the GF-2
multispectral images is presented in Table I.

The dataset consists of 23 GF-2 images divided into two parts:
training images and test images. The 23 images are not the
same size. Given the limited memory of the GPU and obtaining
more training samples, all the images had been split into small
patches of size 640 × 640. Thus, 16722 images for training
the network can be obtained. However, for testing, we chose
another 9 images, which do not belong to training images and
test images with a size of 2240 × 2240 to evaluate the extraction
performance.

B. Reference Data

To validate the adaptability of our model in different satellite
images, we chose three other types of high-resolution images:
Sentinel-2A, ZY-3, and GF-6. These three types of images have
different spatial resolutions, where the resolution of Sentinel-2A
is 10 m, ZY-3 is 6 m, and GF-6 is 10 m. The band number of
Sentinel-2A is 12, but we only chose four bands—blue band,
green band, red band, and nir red band among all bands which
are band 2, band3, band4, and band8. The band number of ZY-3
and GF6 both are 4, which are blue, green, red, and nir red
bands. The detailed information of these three types of images
was listed in Table II.

IV. RESULTS AND ANALYSIS

A. Extraction Results

After training the DLFC, we evaluated 9 test images, and
the sizes of these 9 test images are all 2240 × 2240. The
extraction results obtained by our method were perfect and
more complete than those obtained by other networks, which
are closer to the ground truth images. To accurately evaluate
the performance, the average of the three evaluation indexes,
the OA, F1-score, and IoU of all the test images were listed in
Table III, which are 98.44%, 95.39%, and 91.25%, respectively.
The highest OA among the 9 images is 99.13%, the highest
F1 is 97.41%, and the highest IoU is 94.94%. The lowest OA
among the 9 images is 97.27%, the lowest F1 is 91.62% and
the lowest IoU is 84.54%. At the same time, to intuitively
understand the extraction effectiveness of the DLFC, we showed
the best and worst results in the test pictures, as shown in Fig. 3.
From Fig. 3, we can see that the DLFC almost extracted all the

water in the images. The boundary of the water matches the
ground truth more perfectly, which cannot identify vegetation
belonging to the river band as water. Slender water bodies are
more complete and continuous. The completeness of the water is
not influenced by waves appearing on the water. For ponds, the
completeness of the extraction results is perfect. Every pond in
the images is extracted regardless of the pond size. The DLFC
can accurately distinguish urban water and building shadows.
Low albedo features that are similar to water in the spectrum,
such as roads, cannot be recognized as water. The DLFC never
gives a wrong classification. In addition, it can exclude ships
from the water, although ships in the water are always small.
Therefore, the extraction accuracy of the DLFC is excellent.
However, there are some shortcomings of the DLFC. The DLFC
cannot effectively extract small water bodies of less than two
pixels; small water bodies are usually extracted incompletely.

B. Comparison With DLFC Without the LFC Module, DLFC
(BN), and Other Water Body Extraction Methods

To validate the effect of the LFC module, we deleted the LFC
module in the upsampling. We trained the network under the
same conditions as those of the DLFC. Then, we evaluated the
same 9 test images used in Section IV-B. The results were shown
in line 4, Fig. 4. The OA, F1-score, and IoU of all the test images,
which are 98.50%, 95.26%, and 91.06%, respectively, were
listed in Table IV. By comparing with the results of Table IV, we
can see that the F1-score and IoU of the DLFC are 0.13% and
0.19% higher than those of the network without the LFC module.
The OA of the DLFC is slightly smaller than that of the network
without the LFC module, which only has a 0.04% difference.
The extraction results are shown in Fig. 4. The results are also
good. However, compared with those of the DLFC, the results
of the DLFC (NLFCM) have many problems. Some ponds are
not completely extracted. The small water body that is less than
two pixels cannot be extracted. Therefore, the LFC module is
useful for improving the reuse and fusion of the different levels
of the feature map.

In order to prove the group normalization plays an important
role in the network, we change the group normalization into
batch normalization [DLFC (BN)]. We trained the network
under the same conditions as those of the DLFC. The results were
shown in line 5, Fig. 4. The OA, F1-score, and IoU of all the test
images, which are 91.97%, 73.63%, and 59.87%. They are all
lower than the results of the network with group normalization.
The extraction results are shown in Fig. 4. From Fig. 4, we
can see that the DLFC (BN) cannot extract the complete water
in the images. Besides, it has many mistaken classifications.
That is because batch normalization depends on the batch size,
its accuracy is also unstable in various batch sizes. The small
batch size cannot meet the requirement. Therefore, the group
normalization is significant for the network.

To assess the relative performance of the DLFC, we performed
water extraction on selected images using two type common
methods. One is the remote sensing extraction algorithms, such
as NDWI and SVM. Another method is deep learning method,
such as DeepLabV3+ [37], U-Net [38] and DeepUNet [31]. We



LI et al.: DEEP LEARNING METHOD OF WATER BODY EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGES 3125

TABLE II
INFORMATION ON REFERENCE DATA

TABLE III
RESULTS OF OA, F1, AND IOU ON THE VALIDATION IMAGES

TABLE IV
COMPARISONS BETWEEN THE PROPOSED DLFC AND SEVERAL TYPICAL METHODS

compared the extraction results of all methods mentioned which
is shown in Table IV. Overall, all methods could accurately
extract evident and clear urban waters, such as large rivers,
lakes, reservoirs, and ponds. However, compared with remote
sensing extraction algorithms and other deep learning networks,
the DLFC performed better in the presence of the complex
urban surface. Especially in urban centers with dense buildings,
the DLFC could more accurately distinguish water from other
nonwater objects. As seen from the table, the results of DLFC
are much more accurate. Water detection on GF-2 imagery of
different models is shown in Fig. 4, in which it can be seen that
the DLFC generates more accurate water areas than those of
other deep learning models, such as U-Net, DeepLabV3+, and
DeepUNet. In addition, the DLFC is also better than NDWI,
SVM which are used most frequently in water extraction from
remote sensing imagery. From Table IV, we can see that the
DLFC achieves a mean F1-score water accuracy of 95.14%.

The IoU of the DLFC is 90.79%, which is higher than that of
both DeepLabV3+, U-Net, and DeepUnet. The water extracted
by U-Net has faults in local regions, which results in U-Net
having a lower OA, DeepUNet loss major part water in the test
images. While the water body extraction results of DeepLabV3+
are generally satisfactory but are less accurate than those of
NDWI, SVM, and DLFC. The mean water body extraction OA,
F1-score, and IoU of NDWI are 86.57%, 71.19%, and 56.63%,
F1-score and IoU of SVM are 97.83%, 93.61%, and 88.14%,
respectively, which are much higher than those of deep learning
methods. However, compared with the DLFC, NDWI, and SVM,
both have some common shortcomings: roads with low albedo
are identified as water, as are the shadows of buildings. The
slender water whose length is smaller than 3 pixels cannot be
extracted.

The DLFC has a strong ability to abstract and reuse the
features. It can extract different level features and reuse them
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Fig. 3. Prediction results of nine validation images.

step by step. It can not only obtain highly abstract features but
also reduce the loss of spatial information. Therefore, it can
extract the small and slender water from the images. For other
deep learning methods, they can’t acquire advanced features and
lose much information. As for the remote sensing extraction
algorithm, some of them can acquire better results. However,
they just extract the water body information by using their
own spectral features. This can induce many problems, such
as the condition of the same objects with different spectrum
or same spectrum with different objects. Besides, the remote

sensing images, extraction algorithms generally depend on the
experience of the operator.

Given the above, the DLFC is the best method of water body
extraction from high-resolution remote sensing images.

C. Extraction Results of the Different Remote Sensing Images
Using the DLFC Method

The pretrained DLFC can also be used to extract water bodies
for other types of remote sensing images without any other
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Fig. 4. Prediction results of the DLFC (Ours), U-Net, DLFC (NLFCM), DLFC (BN), DeepLabV3+, DeepUNet, NDWI, and SVM.

training or parameter adjustment. We choose the other three
types of satellite images, i.e., Sentinel-2A MSI (10 m), Ziyuan-3
MUX (6 m), and GF-6 (10 m). Before being put into the DLFC,
some preprocessing steps need to be done, such as radiation
calibration and FLAASH atmospheric correction. From Fig. 5,
it can be seen that the DLFC generates visually satisfactory water
body extraction for the multiple types of imagery. The results of
water body extraction from Sentinel-2A are similar to the ground
truth. The lake in the images is extracted completely. Almost all
the small ponds in the image are extracted. Slender features
in large areas of water have the correct recognition results.
The water body in the ZY-3 images is also extracted perfectly,
especially when ships floating on the water is called. The slender

water in the images, which hardly appears to be missing, is
extracted well. The slender water continues and is complete.
However, the extraction results of GF-6 are not great. Some
water is missed. These missed waters are often slender bodies
that are less than two pixels. However, the edge of the water
body is accurate. Moreover, features such as the shadows of
buildings and roads are not recognized as water. All three remote
sensing images do not exhibit misclassification. The evaluation
metrics results are listed in Table V. The average OA, F1, and
IoU of GF-6 are 99.42%, 99.2%, and 98.42%, respectively. The
average OA, F1, and IoU of Sentinel-2 are 98.93%, 98.98%, and
97.99%, respectively. The average OA, F1, and IoU of ZY-3 are
99.51%, 98.9%, and 97.83%, respectively. From Table Ⅴ, we
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TABLE V
RESULTS OF AVERAGE OA, F1, AND IOU ON THE OTHER REMOTE SENSING IMAGES

Fig. 5. Prediction results of ZY-3, GF-6, and Sentinel-2 using the DLFC (ours).

can see that the OA of the three different remote sensing images
all exceeds 98% as well as the F1-score. The IoU of these three
remote sensing images is more than 97%. The extraction results
across multiple sensors are generally perfect. The accuracy of
the extraction results satisfies the extraction requirements. In
summary, this is the first method that can extract water bodies

from so many types of satellite images with different resolutions
that do not need any preprocessing.

D. Extraction Results of the Different Remote-Sensing Images
Using the Other Deep Learning Method

We then chose three other deep learning networks, DLFC
(NLFCM), DLFC (BN), DeepLabV3+, SegNet, U-Net, and
DeepUNet, to validate the adaptability of different remote sens-
ing images. These deep learning networks are often used for
information extraction. To generate the objectivity of the study,
we chose the remote sensing images used in the last chapter.
The results are shown in Fig. 6. From Fig. 6, we can see that
U-Net cannot extract water bodies from these remote sensing
images. It is difficult for U-Net to extract water from remote
sensing images without pretraining. Therefore, U-Net is the
network with specificity. It does not have adaptability among
different high-resolution remote sensing images. Although U-
Net has brilliant performance in medical images. DeepLabV3+
can extract water from Sentinel-2A and ZY-3, especially the
Sentinel-2A. However, the accuracy is poor. It also has incorrect
recognition and the small area water cannot be extracted com-
pletely. However, when extracting water bodies from GF-6, it
cannot extract anything from the images. With regard to SegNet,
it has a good performance in GF-6 and Sentinel-2A. It almost
completely extracts all the water. However, it also appears that
it recognizes other things as water, such as roads and buildings.
The rate of extraction error is high. As for ZY-3, the results are
not satisfactory. The DLFC (NLFCM) also extracts almost all
the water. It has good performance in Sentinel-2A. The average
OA, F1-score, and IoU are 99.02%, 99.06%, and 98.13%, which
are slightly higher than DLFC. However, for the small ponds
and the slender water, it cannot extract completely. There is a
discontinuous condition in slender river extraction. As for GF6
and ZY-3, it cannot extract the water in detail. The average OA,
F1-score, and IoU of GF-6 are 99.06%, 98.59%, and 97.21%.
The results of ZY-3 are 99.06%, 98.98%, and 97.21%. These all
lower than DLFC. In addition, for ZY-3, there are some missing
extraction. For the images of higher resolution, the accuracy of
the extraction results is slightly worse than that of the DLFC.
The DLFC (BN) cannot extract the water completely especially.
It has a better performance in Sentinel-2A, but there was mis-
taken extraction. For GF-6 and ZY-3, it has worse performance
compared with DLFC. For the big area water in GF-6 and ZY-3,
DLFC (BN) can only extract water in the border. It cannot extract
the whole water area. Therefore, the whole accuracy is lower
than DLFC.

In our study, the GF-2 remote sensing images that have four
channels (blue band, green band, red band, and NIR band)
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Fig. 6. Prediction results of GF-6, Sentinel-2, and ZY-3 using different deep learning methods.

are imported into the deep learning network. Compared with
the other three remote sensing images, we find that the blue
band, green band, red band, and NIR band wavelength ranges
of these three types of remote sensing images overlap greatly.
The spectral and spatial features of the water in different source
remote sensing images are similar. The method we proposed has
two important parts, the densely connected module and the LFC
module. Each layer of the network can receive the feature maps
of all layers before it through the densely connected module. The
concatenate operation on the feature dimension is used when
connecting across layers. Therefore, it has a strong ability to
extract different level water body features and reuse water body
feature from the remote sensing images that have complex and
diverse information. The highly abstract features are important
for extracting water body information from different remote
sensing images. The network extracts water body from different
images through the highly abstract features. The LFC module
can obtain highly abstract features. It can improve the adaptabil-
ity of the network. Therefore, our method can not only extract the
highly abstract spectral and spatial features from remote sensing
images but also use the different level features of remote sensing
images. Through these two modules, we can fuse the spatial and
spectral information from different level features better.

As we all know, there is much information in remote sensing
images including the water body information, building informa-
tion, road information, vegetation information, etc. The infor-
mation is complex and diverse. Some information may have

the same features. Through simple convolution and pooling
operation to extract features may lose most of the important
information and cannot recover the feature as much as possible.
Therefore, the wrong extraction often appears in the U-net,
DeepUNet, SegNet, and DeepLabV3+. Besides, this method
cannot extract highly abstract features because of the width of
the network. They cannot realize water body extraction from
different remote sensing images. The remote sensing images
information extraction is a pixel-based binary classification
problem. For the DeepLabV3+, it pays more attention to the
encoder part. In this decoder part, the structure is so simple
which cannot recover the feature well. So it cannot recover the
feature of images so better that it has the bad extraction results.

In conclusion, the deep learning networks mentioned above
cannot realize water body extraction from different remote sens-
ing images without any preprocessing. The results of the evaluate
metrics are listed in Table VI.

V. DISCUSSION

A. Advantages of the DLFC Method

In this article, we proposed the DLFC method for water
extraction. Compared with the traditional water body extraction
method, the DLFC improves the accuracy of water body extrac-
tion in various environmental backgrounds. In addition, it also
provides a flexible and automatic way to extract water bodies
from different high-resolution remote-sensing images without
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TABLE VI
AVERAGE OA, F1-SCORE, AND IOU RESULTS OF SEVERAL TYPICAL MODELS

any processing steps, which accelerates the efficiency of water
extraction.

The DLFC method can achieve higher precision requirements
than those existing traditional water extraction methods, and it
has stronger robustness for different types of water extraction
in different urban environments. As a comparative experiment,
NDWI can also achieve higher accuracy by adjusting the thresh-
old. However, this requires a strong subjective consciousness,
rich experience, and much time. It is not easy to extend this
to large-scale automation applications. For the traditional deep
learning method, the results of U-Net are not satisfactory. It
classes other things such as land and buildings as water bodies.
In contrast, the performance of DeepLabV3+ is not good. The
DeepLabV3+ results are much more incomplete. Thin water
bodies are not extracted by DeepLabV3+. The DLFC (NLFC)
also has good performance in water body extraction. However,
the accuracy may be lower than that of the DLFC.

Compared with the latest deep learning method proposed by
other studies, the DLFC method can not only extract water
bodies from GF-2 images but also extract water bodies from
other remote sensing images. Above all, before extracting water
from other remote sensing images, we do not need any other
processing. This means that using only one dataset can realize
water body extraction from different remote sensing images.
These different remote sensing images do not need any other
preprocessing, which largely saves time and experience.

In short, the DLFC method does not require many subjective
decisions that affect the classification accuracy and it still main-
tains the advantage of high accuracy in water extraction from
different types of remote sensing images. There is no need to
worry about downloading and processing massive amounts of
data. We can also apply the idea of the DLFC method to other
land use classification studies.

B. Further Improvements

Although the DLFC method achieved satisfactory results
in our study, there are still several problems. First, the water
in the images with lengths of only two pixels often cannot
be completely extracted. This performance may be created by
convolution operations, which can be solved by improving the
network. Second, some shadows of tall buildings are classified

as water due to the spectrum similarity between shadows and
water. This problem may be solved by adding more accurate
samples of pixels containing shadows and water to the training
data. Finally, the accuracy of the extraction results from the
different remote sensing images is not perfect. Therefore, the
model parameters may be more suitable for the mapping of water
in different remote sensing images.

VI. CONCLUSION

With the increase in image spatial resolution and the decrease
in the available spectral channels, the traditional methods of
water body extraction cannot meet the requirements. However,
these methods have already performed well in medium and
low-resolution imagery. The higher the resolution of the remote
sensing images is, the more spectral information it has, which
increases the difficulty of capturing features. In this condition,
we use deep learning to realize the reuse of multiple features
that can slow the degradation process.

The major contributions of our method were the proposed
a novel deep learning encoder–decoder framework, which is
called the DLFC network. At the same time, we introduce group
normalization to replace traditional batch normalization and
designed an LFC module in the upsampling process, which obvi-
ously improved the OA and F1 score and IOU (98.44%, 95.39%,
and 91.25%). Through the proposed network, we accomplished
the target that extracts the water body from different images
of one sensor and different sensors automatically. Experiments
were carried out on the multisensor dataset. Water bodies of
different remote sensing images were extracted successfully
with the proposed DLFC, and the results demonstrated the ef-
fectiveness and feasibility of the DLFC in improving the perfor-
mance for water extraction. The proposed DLFC was compared
with other traditional methods, such as NDWI, SVM, and other
typical networks for semantic segmentation, such as the U-net,
SegNet, and Deeplab-V3+ models. The experimental results
showed that the proposed model performed better than other
methods in extracting slender water bodies and distinguishing
the effect of building shadows. In addition, the DLFC can be used
to extract water bodies from other types of satellite imagery. The
effectiveness of the DLFC means that it shows great promise for
practical application with multiple types of satellite imagery.
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