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Abstract—Obtaining measured synthetic aperture radar (SAR)
data for training automatic target recognition (ATR) models can
be too expensive (in terms of time and money) and complex of a
process in many situations. In response, researchers have devel-
oped methods for creating synthetic SAR data for targets using
electro-magnetic prediction software, which is then used to enrich
an existing measured training dataset. However, this approach
relies on the availability of some amount of measured data. In this
work, we focus on the case of having 100% synthetic training data,
while testing on only measured data. We use the SAMPLE dataset
public released by AFRL, and find significant challenges to learning
generalizable representations from the synthetic data due to dis-
tributional differences between the two modalities and extremely
limited training sample quantities. Using deep learning-based ATR
models, we propose data augmentation, model construction, loss
function choices, and ensembling techniques to enhance the repre-
sentation learned from the synthetic data, and ultimately achieved
over 95% accuracy on the SAMPLE dataset. We then analyze the
functionality of our ATR models using saliency and feature-space
investigations and find them to learn a more cohesive representation
of the measured and synthetic data. Finally, we evaluate the out-
of-library detection performance of our synthetic-only models and
find that they are nearly 10% more effective than baseline methods
at identifying measured test samples that do not belong to the
training class set. Overall, our techniques and their compositions
significantly enhance the feasibility of using ATR models trained
exclusively on synthetic data.

Index Terms—Automatic target recognition (ATR), deep
learning, synthetic aperture radar (SAR).

I. INTRODUCTION

AKEY issue in the development of automatic target recog-
nition (ATR) models for SAR data is the availability of
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realistic measured data for targets-of-interest, in situations-of-
interest. The means of collecting measured SAR data for training
an ATR model is costly, and involves several complex pro-
cesses [1]. From the availability of the physical radar system, to
the staging and imaging of realistic scenes, to the postprocessing
and manual labeling of ground truth data, it is not feasible to
invoke this pipeline for every ATR task of interest.

One promising way to reduce (or potentially eliminate) the
need to collect measured training data is to simulate the collec-
tion process and create synthetic SAR data. Unlike the previously
mentioned pipeline, the simulation starts with the formation of
realistic computer-aided design (CAD) models of the targets,
and the estimation of the reflective properties for each surface
on the model and background. Then, radar signal returns are
predicted at regular positions over a dome-shaped pattern sur-
rounding the target using a ray-tracing based technique [2],
[3]. The predicted returns can then be used to build simulated
phase history records similar to what would be collected by a
sensor under common operating conditions. Finally, the simu-
lated phase history is processed by an SAR image formation
algorithm, such as the FFT-based polar format algorithm [4], to
form the complex image for a range of selected azimuth views
at a desired resolution [2]. Albeit computationally expensive,
creating synthetic data for training ATR models avoids many
of the challenges related to measured data collection; the major
downsides being the accuracy with which we can simulate the
targets in CAD, and the complexities of the radar estimation.

The central motivation of this article is to train DL-based
SAR-ATR models entirely on synthetically generated data, and
achieve high performance when testing on measured data.
Critically, we consider the performance in the context of both
accuracy on known targets as well as the ability of the ATR
system to detect and reject out-of-library confusers. This defi-
nition of performance addresses a more realistic “open-world”
assumption for the deployment of SAR-ATR systems, where
it can not be assumed that all targets encountered in the field
have been trained on. The key challenge we must overcome
lies in the differences between the synthetic (training) and
measured (testing) data distributions [5]. Our models must not
over-fit to the unique properties of the synthetic data, while also
learning a robust and transferable representation of the target
signatures. We introduce several techniques that are individually
known to bolster generalization and reduce over-fitting, and
whose composition we find to greatly improve the effectiveness
of ATR systems trained on synthetic and tested on measured
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data. Specifically, our techniques fall in the categories of data
augmentation, model construction, training function choice, and
model ensembling.

To perform the experiments, we leverage the recent synthetic
and measured paired labeled experiment (SAMPLE) dataset [2],
which has (measured, synthetic) pairs of targets from the moving
and stationary target acquisition and recognition (MSTAR) pub-
lic dataset [6]. As a part of [2], four core experimental designs
were proposed, of which we consider two (i.e., Experiments
4.1 and 4.3 of [2]). The first experiment is to maximize the
accuracy of a classifier that is trained on a mixture of measured
and synthetic data, and tested on exclusively measured data.
Specifically, we focus on the case where 100% of the training
data is synthetic. The second experiment is to achieve high
accuracy on some in-distribution set of classes, while being
capable of identifying out-of-library test samples. We follow the
previous setup of training on synthetic and testing on measured
data, however, we additionally hold-out a subset of classes from
the training dataset and work to identify samples from these
classes at test time as out-of-distribution (OOD). Throughout
the experiments, emphasis is also placed on the analysis of our
techniques, which provides intuition for how/why they work.

A summary of our contributions are as follows.
1) We identify and articulate several key problems for train-

ing ATR algorithms on 100% synthetic and testing on
100% measured SAR data.

2) We introduce four categories of modifications to the stan-
dard SAR-ATR training procedure: data augmentation,
model construction, training function choice, and ensem-
bling; and show that individually each category can boost
the transferability of the learned representation, while
being most effective when composed.

3) We analyze the underlying behaviors behind our proposed
techniques and find that they cause the ATR models to
focus on salient regions of the target object and to blend
the representations of the synthetic and measured samples
in feature space.

4) We show that models trained with a composition of our
proposed modifications are significantly more proficient
at identifying out-of-library confusers during testing.

The remainder of this work is organized as follows.
Section II provides background information regarding the SAM-
PLE dataset, challenges of working with synthetic data, and
several related works. Section III describes our training method-
ologies and experimental results focused on accuracy. Section IV
describes methodologies and results for detecting out-of-library
confusers at test time, and Section V provides conclusions and
motivations for future works.

II. BACKGROUND

A. SAMPLE Dataset

We use the SAMPLE dataset [2] to train and evaluate our
ATR models, which contains (measured, synthetic) pairs for
the ten public MSTAR [6] target classes. Measured1 SAR data

1for the remainder of this document, we will use the terms “measured” and
“real” data interchangeably.

Fig. 1. SAMPLE dataset (measured, synthetic) pairs.

TABLE I
DETAILS OF THE SAMPLE DATASET

were taken directly from the MSTAR public release dataset.
Corresponding synthetic samples for each of the MSTAR images
were first recreated as CAD models in software with estimated
reflectivity properties for each surface, then the electromagnetic
signatures of each target were predicted using asymptotic ray-
tracing techniques [2]. The synthetic phase history was then
formed to images using a polar format algorithm [4] with param-
eters to mimic the MSTAR targets (i.e., 0.3 m range resolution,
128 × 128 px image size, HH polarization, 10◦ − 80◦ azimuth
range). Fig. 1 shows one (measured, synthetic) pair from each
class. Like the MSTAR standard operating condition (SOC) test,
the training and test data vary in elevation [6], [7]. Under SOC
for SAMPLE, the training data come from elevations 14◦ − 16◦

and the test data are all from 17◦ elevation. Table I shows the
number of training and test samples from each class.

B. Challenges Presented by Synthetic Data

The core challenge of training exclusively on synthetic data
is the apparent distribution gap between the synthetic and mea-
sured distributions. Informally, from the samples in Fig. 1 we
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Fig. 2. Histograms of image means and variances.

Fig. 3. Select (measured, synthetic) pairs with significant differences.

may describe the synthetic and measured data as “similar-but-
different.” Reasons for the differences include difficulties in ac-
curately modeling intricate objects in CAD software, imperfect
radar estimation algorithms, variability operating conditions,
and complications in simulating realistic background clutter.
One straightforward way to show the statistical differences be-
tween the synthetic and measured data is to plot histograms of the
image means and variances in Fig. 2. Clearly, the synthetic data
tend to have lower mean and variance than the measured. In part,
this difference has to do with the lack of clutter in the synthetic
chips [5], [8], as evident from the darker background regions in
Fig. 1. In addition, Fig. 3 shows selected (measured, synthetic)
data pairs with clear differences in the overall structure of the
targets as well as fine differences in the target details. To succeed,
our methods must prevent over-fitting to the unique properties
of the synthetic data distribution, while simultaneously learning
a robust representation of the target classes.

Another challenge more specific to the SAMPLE dataset is
the lack of training data. From Table I, there are a total of 806
training images, yielding an average of 80 samples per class. This
lack of data opposes the sample-complexity requirements of
training DNNs and also implicates the “curse of dimensionality”
because our training samples are sparsely distributed in the high
dimensional input space. To overcome the lack of training sam-
ples, our methods must also focus on bolstering generalization
with very little data.

C. Learning With Synthetic Data

With the clear utility of leveraging synthetic SAR data in
ATR tasks, there has emerged several different methodologies
for learning with synthetic data, some of which also use the
SAMPLE dataset.

1) Learning a Transform Function: One popular method is to
learn a transform/preprocessing function between the synthetic
and measured distributions. The goal is to reconcile any differ-
ences between the manifolds of the synthetic/measured data by
transforming the synthetic data to “look” more like the measured
data. This is motivated by the observation that using synthetic
data in its unaltered form yields poor performing models in mea-
sured data applications [9]. Some methods in this category rely
on training DL-based generative adversarial networks (GANs)
and/or auto-encoders to learn the transform based on seeing
many examples of both synthetic and measured data [9]–[11].
Further, Scarnati and Lewis [8] design a preprocessing func-
tion for synthetic SAMPLE data which perform a despecking,
quantization, and clutter transfer between (measured, synthetic)
pairs. Critically, the act of learning transform functions implic-
itly requires access to both synthetic and measured data. Thus,
learned transforms do not fit within our 100% synthetic training
data scheme.

2) Transfer Learning: Another popular technique for leverag-
ing synthetic data is to perform transfer learning (TL) [12]–[14].
In most of these works, one trains an initial source model on
synthetic SAR data to learn useful and generalizable features of
the targets. Then, the model is fine-tuned by retraining to update
the learned representation using a training set of measured data.
Thus, the goal is to learn the most beneficial features from the
synthetic data and to efficiently refine them in the retraining
process. Note, the TL problem statement also assumes access to
training sets of both measured and synthetic data, which makes
it outside of our synthetic-only problem statement.

3) Toward Fully Synthetic Training: Finally, there are a few
works that focus on using little to no measured training data,
which are the most closely related to our work. Sellers et al. [15]
design an augmentation method for applying measured-phase-
error noise to the synthetic data as to account for differences in
measurement conditions. To apply the noise, the method requires
a small amount of measured training data from which it can
then extrapolate the noise to all of the synthetic images. The
method ultimately uses 1% measured and 99% synthetic training
data, and is able to improve the classification performance of
the SAMPLE problem to 95%, while incidentally increasing
the training time by a factor of 10×. Although impressive, we
remark that there is a critical distinction between having/needing
1% and 0% measured data available for training. Lewis et al. [16]
consider the 100% synthetic training data case for the SAMPLE
dataset, while using an atypical implementation of adversarial
training (AT). The intuition is that the AT procedure would better
align the decision boundaries for separating the measured data.
However, they report marginal benefits. We also consider AT in
this work, however, we use a standardized version [17] which
has proven to learn more robust representations, and is distinct
from the version used in the referenced work [16].

III. ENHANCING GENERALIZATION AND ACCURACY

Within our stated “open-world” operating assumption, our
first performance target is to train accurate models for the
in-distribution test samples using a purely synthetic training
distribution. In this case, we can assume that the test data are
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Fig. 4. Test accuracy versus percentage of measured training data.

from the set of training classes, so performance is measured as
the generalization ability (i.e., accuracy) of the trained classifier
to the measured distribution. Specifically, we operate within the
rules described in Experiment 4.1 of [2]. In the generic setup
of Experiment 4.1, a parameter K ∈ [0, 1] is introduced which
defines the percentage of measured training data, while the test
data is always 100% measured. For example, if K = 0.75 then
75% of the 806 (measured, synthetic) training data pairs use
the measured component, while the remaining 25% of training
samples are represented by their synthetic data component. Most
related to our work, ifK = 0, then 100% of the training samples
are synthetic.

To show thatK = 0 is a special case worth studying, consider
Fig. 4 which shows the test accuracy as K is swept from 0 to
1 (using the default model and training configuration from [2]).
The general trend is that as K → 0, the test accuracy decreases.
This alone is not surprising because the model is presumably
learning the dominant features of the synthetic data, which may
not align perfectly with the dominant features of the measured
test data. However, notice the rate of change in the test accuracy
w.r.t. K. For K ∈ [0.1, 1] the average test accuracy is consis-
tently above 90%, for K = 0.05 accuracy drops to ∼ 85%,
then at K = 0 accuracy drops sharply to ∼ 50%. Motivated
by understanding and reconciling this drop in performance, the
remainder of this section is dedicated to improving accuracy at
K = 0.

A. Methodology for Training At K = 0

To address the aforementioned problems with training on
100% synthetic data and testing on 100% measured data, we
consider three methodological categories of modifications to the
standard training setup: 1) data augmentations; 2) model con-
struction; 3) training function selection. Each category includes
two or more methods, on which we elaborate here.

1) Data Augmentation: The first category of improvements
adds image-level augmentations to the training data, which
reduce the model’s propensity to over-fit any particular view
of the data [18], [19]. Thus, the model learns more informative
underlying features, as opposed to memorizing weak features
such as orientation or exact pixel magnitudes. In this article,
we consider two augmentations: Gaussian noising and rotation.

To apply Gaussian noise to a training image x, we first set
the standard deviation σ (as a hyper-parameter), then create
an augmented version as x̃ = x+N (mean = 0, stdev = σ).
The values of x̃ are then clipped to the image range of [0,1].
Since the synthetic chips are found to have a lack of background
clutter, adding Gaussian noise to effectively estimate such clutter
is of particular interest, and may directly address the found
distribution gap. The second training augmentation we consider
is a straightforward image rotation by a maximum of ±r◦. This
process is randomized, so for any given training image the
amount of rotation applied is rot ∼ Uniform(−r, r). Rota-
tion augmentations are of interest in this work because they have
been shown to enhance the learned representations of DNNs and
reduce over-fitting in several computer vision tasks [19], [20].
Importantly, data augmentations are only applied at training
time.

2) Model Construction: The second category of improve-
ments is to change the construction of the DNN model itself. This
technique addresses the bias-variance tradeoff by controlling the
complexity of the searched hypothesis space. First, we would
like to avoid a situation where an unnecessarily high bias is
induced through the choice of an overly simplistic model (i.e.,
we use a very small model to search a limited hypothesis space
that cannot perform well on a complex task). We would also like
to avoid extreme variance via over-fitting the model’s decision
boundaries to the training samples (i.e., we use too big of a model
which memorizes the training data and has weak generalization
to unseen samples).

The first method of changing model construction is to add
dropout layers [21] between existing processing layers of a DNN
(usually, dropout layers are inserted directly after the nonlinear
activation unit, and may be added between convolutional and/or
linear layers). The strength of a dropout layer is determined
by a parameter p_drop, which represents the probability that
a unit within the feature map will be randomly dropped. For
dropout layers placed between convolutions, p_drop is the
probability that any channel of the input feature map will be
zeroed out. For dropout layers between linear layers, p_drop
is the probability that the output of any node in the layer will
be zeroed out. During training, the dropout layers are active
and randomly select units of the feature maps to drop for each
input sample. During testing, the dropout layers are inactive, and
act as pass-throughs. Intuitively, each layer (and ultimately the
whole model) learns a more robust and generalized representa-
tion of the data by simulating cases when not all features are
present. In terms of the bias-variance tradeoff, dropout layers
act to reduce variance by resisting a large model’s ability to
over-fit.

The next method of changing model construction is the use of
different DNN architectures. The first model we employ is a rel-
atively small LeNet-style [22] architecture, called the sample
model (SMPL). This model is first described in [2, Table 7] and
is composed of four {convolution, max pool} blocks, followed
by four linear layers. The next model is ResNet18 (RN18) [23]
which is larger in parameter count and also incorporates residual
connections. The inclusion of residual connections has shown
to significantly improve the performance of ResNets on the
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ImageNet task, which prompts its use here. The final model is
Wide-ResNet18 (WRN18) [24] and is the largest in parameter
count. This model has a similar structure to ResNet18, however,
has 2× the number of convolutional kernels in each layer, and
thus, is considerably larger than the other two models. By using
these three architectures, we are testing the effect of using small,
medium, and large architectures, which effectively represents
three points on the bias-variance curve.

3) Training Function Choice: The third category of improve-
ments is to change the primary training function for learning the
model weights, to accomplish the SAMPLE data classification
task. We consider a total of five variants, all of which stem from
the generalized risk minimization objective for classifiers over
the distribution of SAR images (ptrue)

θ∗ = argmin
θ

E
(x,y)∼ptrue

[L(x, y; θ)] . (1)

For a given model parameterized by θ, we wish to learn the
optimal set of parameters θ∗ to minimize the expected classifi-
cation loss L for SAR chips x and labels y drawn from ptrue.
However, we do not have access to the infinite set of samples in
ptrue, rather, we assume to start with aN sample training dataset
D = {(xn, yn)}n=1...N ∼ ptrue. In our specific problem, D is
the 806 synthetic training data samples from the 10-classes in
the SAMPLE dataset.

The first three training function variants extend directly from
the formulation of empirical risk minimization (ERM) over
samples in D, i.e.,

min
θ

1

N

∑
(xi,yi)∼D

L(xi, yi; θ). (2)

Critically, the variation between these techniques comes from
modifications to the loss function L and ground truth labels y,
which encode how we measure risk.

a) Cross-entropy with one-hot labels: The first variant will
serve as the baseline and is the most common configuration of
loss in DNN image classifiers: cross-entropy loss with one-hot
labels. Cross-entropy loss is the extension of log-loss for the
binary classification case to a multi-class setting. For a C-class
classification problem, cross-entropy loss is defined as

Lxent(x, y; θ) = −
∑
c∈C

yclog(f(x; θ)c). (3)

Here, yc is the cth element of the ground truth label vector y,
and f(x; θ)c is the predicted probability that input x belongs
to class c (by our DNN model f which is parameterized by θ).
Being a one-hot label, the y vector is sparse so the log-loss is
only calculated against the predicted probability for class c. The
intuition behind this loss/label formulation is to learn a model
that maximizes the output probability for the true class.

b) Label smoothing: The second variant of loss function
choice we consider is label smoothing [25]. The key difference is
the construction of the ground truth label, as cross-entropy loss
is still used. Label smoothing introduces a single parameter α
which defines how much weight is distributed across the incor-
rect classes in the label formulation. The smoothed label vector

yLS is constructed from the original one-hot label vector y as

yLS
c = yc(1− α) + α/C. (4)

For example, if we have a 4-class classification problem with
α = 0.1 and one-hot ground truth label vector y = [0,0,1,0], the
smoothed label is yLS = [0.025, 0.025, 0.925, 0.025]. Note,
yLS still constitutes a valid probability distribution over the
classes, and by training with this ground truth label the model
learns to simultaneously maximize the predicted probability
of the true class while uniformly minimizing the predicted
probability of the false classes. In practice, label smoothing
has shown to improve the generalization capability of DNNs
through a regularization effect [18], while also improving
the calibration of predictions [25], both of which are useful
properties in our SAMPLE classification setting.

c) Cosine loss: Unlike the previous two variants, the cosine
loss [26] does not use the cross-entropy function, however, it
does have a direct interpretation from the ERM objective in
(2) through defining L as Lcos. The intuition for cosine loss
is to encourage the model’s output vector to have high cosine
similarity with the ground truth one-hot label vector. This is as
opposed to the cross-entropy loss which tries to predict a truth-
encoded label distribution. The cosine loss we use is described
as

Lcos(x, y; θ) = 1−
〈
y ,

f(x; θ)

||f(x; θ)||2

〉
. (5)

Note, we consider the cosine loss because it has been empirically
shown to improve generalization in extremely low data set-
tings [26]. The authors believe this is because cosine-similarity
as a loss metric is more informative than cross-entropy when
there are very limited samples per class [26].

d) Adversarial training: The fourth loss function variant is
called adversarial training (AT) [17]. Different from the previous
three methods, AT reformulates the ERM objective in (2) into
a saddle point problem through the introduction of a concept
called adversarial risk. The AT objective is

min
θ

E
(x,y)∼D

[
max
δ∈S

Lxent(x+ δ, y; θ)

]
. (6)

Note, the principal difference between (2) and (6) is the in-
clusion of an inner maximizer, which, given the current set
of model parameters, maximizes the loss via perturbations to
the input data x. Once the inner maximization is approximately
solved, the network parameters are then updated to minimize this
adversarially maximized loss (i.e., to minimize the adversarial
risk). Here, δ is an image-domain perturbation and S is a set of
allowable perturbations w.r.t. x. Commonly, S is defined as an
�p norm-ball of radius ε centered at x (so, ||δ||p ≤ ε). This norm
constraint ensures that the perturbed sample is sufficiently close
to x as to be adversarial. In practice, the inner maximization is
approximately solved by an iterative projected gradient descent
(PGD) adversarial attack [17].

Although AT is traditionally used for training models ro-
bust to adversarial attacks, in recent literature it has also been
shown to prioritize the learning of “robust” features that are
capable of maintaining correlation with the true label despite
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perturbation [27]. This is as opposed to standard models which
may rely on “non-robust” features that are weakly correlated
with the true label. In the context of SAR-ATR, [7] shows that
performing AT on MSTAR models can improve the accuracy
of the classifiers while also boosting robustness. In this work,
we believe AT may improve performance at K = 0 because the
synthetic and measured data share the “robust” features of the
targets; whereas in contrast, non-AT models rely more heavily
on nonrobust features such as clutter.

e) Mixup: The final training method is mixup [28], which
defines a generic vicinal distribution on which to perform em-
pirical vicinal risk minimization (VRM) [29] (as opposed to
ERM). To define the vicinal distribution, mixup creates “vir-
tual” feature-label samples. First, two feature-label pairs (xi, yi)
and (xj , yj) are sampled from the training dataset D. Then,
mixup creates a virtual sample (x̃, ỹ) as

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj
(7)

where λ ∼ Beta(α, α) for the only introduced hyperparameter
α ∈ (0,∞) (which ensures that λ ∈ [0, 1]). Using these virtual
samples, the network parameters are trained to minimize the
expected cross-entropy loss between f(x̃; θ) and ỹ in a way
very similar to (2). The key difference between VRM and ERM
is that the risk is minimized using the virtual training samples
as opposed to just using the samples in D. The net effect is
the model learns to have linear behavior between and around
the training samples. In practice, mixup has shown to improve
generalization performance on the ImageNet task and displays
properties of a strong regularizer. As applied to the SAMPLE
problem, the regularization effect may help to increase the bias
(and thus reduce the variance) of a large DNN classifier applied
to a relatively small dataset.

Aggregation of Techniques: As introduced, each of the afore-
mentioned techniques alone has the potential to improve ATR
performance in our setting, where there is a distribution gap
between the training and test data. Data augmentations work
to reduce over-fitting to noninformative image-level features
of the training data. Model construction choices implicate the
bias-variance-tradeoff through dictation of the hypothesis space
to be searched. And, the definition of the training function
directly effects the features learned by the model through re-
definition of risk. However, we believe that aggregating tech-
niques from across these methodological categories may yield
the most substantial gains, as there is potential to attain combined
benefits. To understand how each of the techniques fit into the
training pipeline, see the pseudocode for the training loop in the
supplemental materials.

As an example of combined benefits, consider that includ-
ing data augmentation in conjunction with dropout layers may
further reduce over-fitting to the synthetic data distribution by
actively altering the image-level and intermediate-level repre-
sentations during training. Similarly, using data augmentations
with modified training objectives lends the potential to learn
higher quality features of the underlying SAR targets than just
including one of the techniques in isolation. Also, recognize the

intimate relationship between model construction and training
function -where changing the model assuredly changes the solu-
tion to the risk minimization, and changing the definition of risk
certainly changes the final solution in terms of model weights.
Finally, we posit that using a combination of techniques from
all three categories may incur the greatest benefits (assuming
proper configuration).

B. Experimental Setup

Throughout the following experiments, we are primarily fo-
cused on the effect of each training modification individually, as
well as their composition. To obtain a more true expectation of
performance, for each of the tested configurations we perform
100 training runs, each starting from a random initialization of
the 32-b model parameters. Performance is reported as the mini-
mum, maximum, and average accuracy (with standard deviation)
over the 100 iterations. Since the training data is 100% synthetic,
there is no way to effectively perform early-stopping with a
validation spit. To get an estimate of the impact early-stopping
may have if a measured validation set were available, we also
report a “Perfect Knowledge” accuracy (Perf), which represents
a near upper-limit on the expected accuracy of each method if the
trainer knew exactly when to stop to avoid over-fitting. For the
shared training parameters over all configurations, we closely
follow the setup from [2]. Each model is trained for 60 epochs,
with a random initialization of parameters, fixed learning rate of
0.001, batch size of 128 and uses the ADAM optimizer. All SAR
chips are in magnitude format and are distributed as 8-b JPEGs.
Before input into the models, we first center crop to 64× 64
pixels, then normalize to the range of [−1, 1].

Hyperparameter Selection: Most of the techniques we in-
troduce involve a single hyper-parameter that may be set
or tuned. During testing, for each parameter we perform a
sweep over a range of reasonable values and report the top
performing result. For the Gaussian noise augmentation, we
search in range σ = [0.1, 0.2, 0.3, 0.4, 0.5], which covers the
spectrum of “barely visible” to “obvious and potentially de-
structive.” For the Dropout layers, we consider p_drop =
[0.1, 0.2, 0.3, 0.4, 0.5], which mirrors the primary range and
interval of test values used in [21]. For label smoothing, we
test α = [0.06, 0.08, 0.10, 0.12], which represents a small range
around the suggested value ofα = 0.1 that was used exclusively
in [25]. For mixup, we search in α = [0.1, 0.4, 1, 4, 16], all of
which are used in [28] (interestingly, we find that our results are
not extremely sensitive to this parameter). For AT, we search
in ε = [2/255, 4/255, 8/255] which is the suggested range found
in [7] that leads to minimal performance degradation in standard
settings and has significant robustness benefits. Uniquely, for
the rotation augmentation, we use a fixed value of r = 5, which
is considered a “safe” transform as the semantic label will be
preserved [19] (note, rather than sweeping values of r, our
primary interest is simply: does random rotation help or not?).
Finally, when two or more techniques are combined, we per-
form a grid search over hyperparameter values to find the most
productive setting of each. It is worth noting that in most cases
the settings do not change when techniques are combined (e.g.,
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TABLE II
SINGLE-STEP CHANGES TO TRAINING ALGORITHM (K = 0)

The bold entries are the top performing algorithm configurations for each model type.

Gaussian noise and dropout levels are fairly consistent across
experiments). One notable case in which the settings do change
is when using AT with a Gaussian noise augmentation. This
is likely because these techniques have a direct interaction with
each-other, as both additively “perturb” the input data. For repro-
ducibility, the code used to run these experiments can be found
at: https://github.com/inkawhich/synthetic-to-measured-sar.

C. Experimental Results

1) Single-Step: The first result of interest is to measure the im-
pact of each of the proposed methodological modifications, in-
dividually (single-step). The baseline configuration uses no data
augmentations, the SMPL model architecture with no dropout,
and standard cross-entropy with one-hot labels objective. The
results of the “single-step” experiments are reported in Table II.
Notice the average accuracy of the baseline configuration is
about 50%, which matches the K = 0 value in Fig. 4 and serves
as the number to compare against when considering the other
methods. Now, consider the impact of the data augmentation
methods, i.e., rotation and Gaussian noising (gaus), on average
accuracy. Rotation by ±5◦ harms performance by about 1%.
However, Gaussian noising has a tremendously positive impact
on generalization, and boosts the average accuracy by over 21%
across the three model types.

Next, consider the implications of changing the model con-
struction. Recall, such modifications add dropout layers and/or
change the whole DNN architecture. The effect of adding
dropout layers appears quite positive, and when configured
with p_drop= 40%, increases average accuracy by about 15%
across the three models. We also notice a sizable benefit to using

TABLE III
TWO-STEP CHANGES: GAUSSIAN NOISE + OTHER (K = 0)

The bold entries are the top performing algorithm configurations for each model type.

a more complex model architecture than the SMPL model. With
no augmentation and the standard loss function, using RN18 and
WRN18 improves accuracy by 16.5% and 15.1%, respectively.
Notice, however, that the RN18 outperforms WRN18, which
suggests that increasing model complexity does not always
improve performance.

Finally, we acknowledge the benefits of training function
choice, between: cross-entropy with one-hot labels (baseline),
label smoothing (lblsm), cosine loss, mixup, and AT. Impor-
tantly, in all cases a modified training function advances the
performance over the baseline. On average, there is an improve-
ment of 11.5% with label smoothing, 12.8% with mixup, 10.2%
with cosine loss, and 21.5% with AT. Overall, the best average
accuracy reported in Table II is 85.15% from the RN18 model
trained with Gaussian noise, which is a 35% boost over the previ-
ous baseline. Our other takeaways are that RN18 is generally the
top performing architecture, and Gaussian noise augmentation
and AT are the most effective single step techniques given a fixed
architecture.

2) Two-Step: Next, we incrementally compose methods from
two different methodological categories (two-step). Given the
effectiveness of Gaussian noise augmentation alone, in Table III
we provide results for combining it with individual methods
from the model construction and training function categories.
We also remark that there is no increase in training time when
using Gaussian noise augmentation. In fact, of the methods we
consider the only two which yield a discernible training time
increase is using more complex DNN architectures (i.e., RN18
and WRN18) and performing AT.

With two exceptions (cosine loss on RN18 and mixup on
WRN18), composing Gaussian noise augmentation with either
a model construction or training function change is consistently
beneficial. The average accuracy improvements across the model
architectures are 5.2% with dropout, 3.6% with label smoothing,
0.1% with mixup, 2.1% with cosine loss, and 6.4% with AT. The
best overall configuration is the RN18 model with Gaussian
noise augmentation and dropout, which has an average test

https://github.com/inkawhich/synthetic-to-measured-sar
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TABLE IV
THREE-STEP CHANGES: GAUSSIAN NOISE + DROPOUT + OTHER (K = 0)

The bold entries are the top performing algorithm configurations for each model type.

accuracy of 89.83%. If we compare to the original baseline
accuracy of 50%, this two-step change produces an improvement
of nearly 40%.

3) Three-Step: Now, we combine methods from all three
methodological categories (three-step). From Table III, Gaus-
sian noising used with dropout layers is the most productive
two-step change. In Table IV, we show models with Gaussian
noising, dropout layers, and a training function modification.

Similar to previous results, modifying the training function al-
ways improves the average accuracy over the model trained with
cross-entropy with one-hot labels. Across model architectures,
the accuracy improvements from each of the different training
methods are: 3% with label smoothing, 1.5% with mixup, 1%
with cosine loss, and 2.8% with AT. The best performing config-
uration is the RN18 trained with Gaussian noise, dropout, and
label smoothing, which has an average test accuracy 91.87%.

Though we have mainly focused on average accuracy, also
notice the evolution of Min and Max values across Tables II–IV.
These values have increased significantly, to the point where
the worst performing three-step models are very competitive
with the best performing baseline and one-step models. Also,
the standard deviation of accuracy has decreased to about 3%,
which indicates that the random parameter initialization is less
influential on final accuracy when using three-step changes.
Interestingly, even with perfect knowledge (Perf) of when to
do early-stopping, the best model in Table IV is only 97.4%
accurate, showing that perfect accuracy on the test set has not
been attained even with our methods. Finally, we do not ignore
the fact that AT has always been a top competing method.
Throughout these experiments, it has consistently produced
highly accurate models and is the best method when using the
SMPL architecture.

4) Ensembles: To this point, we have focused on training
highly accurate individual models. One way to boost accuracy
is to create an ensemble. We leverage a technique called model
“bagging” to achieve less variance (recall the bias-variance
tradeoff discussion) by deriving a prediction from a collection of
independently trained models [18]. To produce the final predic-
tion, we use a soft-voting scheme which averages the predicted
probability distributions from each of the ensemble components,

Fig. 5. Confusion matrix of best five model ensemble.

TABLE V
PERFORMANCE OF ENSEMBLING K = 0 MODELS. ALL MODELS ALSO

INCLUDE GAUSSIAN NOISE + DROPOUT

The bold entries are the top performing algorithm configurations for each model type.

then chooses the class with the highest average confidence. In
this way, not all models in the ensemble have to be correct all
the time in order for the aggregate prediction to be correct. To
evaluate effectiveness, we incrementally build up to a five model
ensemble through greedy selection of which model to include
next (candidates for selection are all three-step models from
Table IV). We start from the top performing individual model,
and end with a five model ensemble composed of: [RN18-lblsm,
RN18-mixup, RN18-AT2, SMPL-AT8, RN18-AT8].

Results of the ensembling experiment are shown in Table V,
where the min/max/avg/std statistics are computed over 50
trials. We see a consistent benefit in both average accuracy and
minimum accuracy as we add up to five models. The standard
deviation also decreases to below 1%, indicating a reduced
reliance on the random initialization of parameters (compare
this to the error bars shown for K = 0 in Fig. 4). Finally, notice
that with a four model ensemble we cross the 95% accuracy
threshold on the measured data test set, even though we are
still using exclusively synthetic training data. We view this as
a significant achievement, considering the baseline accuracy is
only 50% under these same conditions.

Fig. 5 shows the average confusion matrix on the (measured)
test dataset for the five model ensemble. Note, the patterns of
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Fig. 6. Saliency maps of models trained with different techniques.

confusion are a natural consequence of the training procedure,
and not hand-designed in any way. There are a few significant
patterns to note: the BMP2 class is commonly confused with
2S1, the M2 class has confusions with several other classes, and
the ZSU23 class data are often mispredicted as 2S1. A future
work is to design models for the ensemble that compensate for
these weaknesses.

D. Analysis

1) Saliency: The first way to analyze how/why our proposed
modifications work well for the SAMPLE K = 0 case is to ex-
amine which parts of the input data each model relies on to make
its prediction. For DL models, we can produce a saliency map
for a given input image using the gradient of the classification
loss w.r.t. the input. Intuitively, the magnitude of the gradient
describes which parts of the input are most influential in the
classification decision [30]. To measure saliency for a given
model and input SAR chip, we use the SmoothGrad [31] method.

Fig. 6 shows saliency for two (measured, synthetic) test
pairs (4 total input images), for models trained with single-
step improvements using the RN18 architecture. The top pair
corresponds to a 2S1 target chip (label=0), and the bottom
pair corresponds to a ZSU23 target chip (label=9). All models
produced correct predictions and the gradients are computed
w.r.t. the true class labels. First, observe the difference in saliency
across any of the four rows (i.e., across the single-step improve-
ment methods). The baseline, dropout, label smoothed, cosine
loss, and mixup models all yield scattered nonlocalized salient
regions that include background and target information. On the

other hand, the Gaussian noise and adversarially trained models
have salient regions focused on the actual target signatures, and
very little on the background clutter regions. Intuitively, we
believe that the ability of the Gaussian noised and adversarially
trained models to predict based almost exclusively on features
of the target signatures is a large contributing factor to why they
are the top performing methods.

Next, consider the difference in saliency between each (mea-
sured, synthetic) pair. The models used to generate these saliency
maps have all been trained on synthetic data only, so saliency
w.r.t. the real (measured) data are a generalization test of learned
features. Of all the methods, the baseline and mixup models ap-
pear to have the most significant difference in saliency across the
pairs. Differently, the Gaussian and adversarially trained models
use similarly localized salient regions for both versions of the
data. This indicates that these models in particular have learned
a transferable representation of the data, and can recognize the
same salient features in either the measured or synthetic version
of the chips. Saliency analysis should be a very important consid-
eration when training SAMPLE models (especially at K = 0),
because it elucidates if the models are leveraging critical features
of the target signatures, or have memorized characteristics of the
background clutter regions.

2) Feature Space: Another way to analyze the impacts of our
proposed training modifications is to monitor how the measured
and synthetic data is treated in the feature space of the DNNs.
Intuitively, if the model has learned a robust and transferable rep-
resentation of the data, the intermediate representations should
be homogeneous and there will not be large differences in
how the representations are processed. To analyze the feature
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Fig. 7. Low dimensional analysis of sample model’s feature space using t-SNE embeddings.

space, we start with a pretrained SMPL model. Recall, this
architecture uses a total of eight layers, four convolutional, and
four fully connected. We insert probes into the model to capture
the output feature maps from each of these eight layers. We
then input both the real and synthetic versions of the test dataset
through the probed model, save the intermediate representations
for each SAR chip, then perform a t-SNE low-dimensional
embedding [32] of the feature maps to visualize the structure
of each layer’s feature space in 2-D.

Fig. 7 shows the t-SNE plots for five SMPL models trained
with: baseline, Gaussian noise augmentation, dropout, AT, and
Gaussian noise augmentation with dropout. From Tables II and
III, the baseline and dropout models are the lowest performing
in terms of average accuracy, and the others are all quite high
performing in comparison. The left-most column shows the
input layer’s feature space (i.e., the first convolutional layer);
moving left to right indicates increasing in depth by following
the forward propagation of the data through the model; and the
rightmost column shows the output layer’s feature space (i.e.,
the final fully connected layer from which the predictions are
derived). Notice the (approximately) ten clusters in the output
layer feature space, which correspond to the ten classes in the
SAMPLE dataset.

The first core observation from Fig. 7 is that the worst per-
forming models (baseline and dropout) keep largely separated
and nonoverlapping representations of the real and synthetic

data throughout the feature space. This is an intuitive reason
for why the accuracy is low, because at the output layer the
measured test data does not respect the ten class clusters that the
model’s decision boundaries separate. The second core obser-
vation is that the high performing models (Gaussian, Adv Train,
Gaus+Drop) integrate the feature space of the real and synthetic
data which explains the accuracy improvement. In these models,
the real and synthetic data share the same class clusters at the
output layer, so the decision boundaries that were formed for the
synthetic data are also valid for the measured data. The integra-
tion of features also alludes to the learning of a transferable and
nonoverfit representation of the synthetic data, which means that
the impact of the distribution gap discussed in Section II-B has
been minimized. An interesting note is how in all models, the
feature space at the input layer is largely separate, which may
be due to the differing image-level statistics of the datasets.

IV. DETECTING OUT-OF-LIBRARY CONFUSERS

The second key performance target within our “open-world”
assumption is to reliably detect and reject test samples that are
not from any of the training classes. This constitutes an OOD
detection problem, and is critical because the model’s output on
such OOD data are inherently misleading. In the first experiment,
we showed methodologies for training highly accurate models in
the K = 0 case, but detecting OOD test samples may be just as
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important, especially if the consequences of making erroneous
predictions are severe.

Historically, OOD detection is a very challenging task for
DNN models, as they are wired to indiscriminately provide
outputs for any data that are formatted as input. In our case,
the models will produce a predicted probability distribution
over the SAMPLE classes for any 64 × 64 pixel input image
with values in [0,1]. In this work, we follow Experiment 4.3
from [2], which considers evaluating SAMPLE models under
an open-world assumption while varying the ratio of synthetic
and measured training data with K (note, we are still focused
on K = 0 in this context). To manufacture an OOD detection
problem, [2] considers holding out a random subset of J classes
from the 10 classes worth of training data. The remaining 10 − J
classes are used to train the model, and test data from these
classes are considered in-distribution (ID). During testing, data
from the selected J classes are treated as OOD, and rather than
producing a correct classification, the goal is to detect and reject
them.

A. Detection Methodology

A primary hindrance in OOD detection is that we cannot
simply train the model with an additional class to represent OOD
data, as we do not assume access to such data for training. Rather,
we only have training data from the ID set, so we must intelli-
gently leverage any signals available from the ID-only trained
classifier to predict if a sample is OOD. Specifically, the process
we consider for detecting OOD samples at inference-time is as
follows. First, a classifier is trained on the 10 − J ID classes.
Then, the measured test data from all 10 SAMPLE classes is
input into the model producing tentative predictions. Leveraging
some internal signal from the classifier, an “OOD score” is
produced for each input sample. If the score is above some
threshold, the data are deemed OOD and the model abstains from
outputting any prediction. If the score is below the threshold, the
sample is deemed ID and the model outputs its prediction.

We consider two primary methods for producing an “OOD
score.” The first is called the Softmax Thresholding Baseline
(Softmax-Thresh) and derives an OOD prediction based on
the confidence level for the predicted class [33]. The key ob-
servation is that OOD samples tend to have lower confidence
predictions than ID test samples. The second method is called
the Mahalanobis-distance detector (Mahalanobis) [34], which
is slightly more complex and works in two steps. First, after
the ID classifier is trained, the Mahalanobis detector models the
feature space at the penultimate layer of the classifier with class-
conditional Gaussian distributions, estimated over the training
dataset. Then, at test time the OOD score is computed as the
proximity of the test sample’s representation to the nearest
class-conditional distribution, as measured by Mahalanobis dis-
tance. ID test samples tend to be much closer to these modeled
distributions than OOD samples, which is the primary intuition
for this style of detection. Note, both detectors produce a real-
valued OOD score which is then compared to some threshold.
In operation, one would set this threshold based on the system’s
tolerance for error.

B. Detection Results

To quantify the OOD detection performance of our ATR
models, we measure the ability of the detectors to efficiently
separate the “OOD scores” for the ID and OOD test splits as
we sweep J from 1 to 8. We use the Area Under the Receiver
Operating Characteristic Curve (AUROC) and the True Negative
Rate at a threshold computed to achieve a 95% True Positive Rate
(TNR@95TPR) [34] as metrics of performance. AUROC is a
threshold independent performance metric which quantifies the
detectors ability to distinguish ID from OOD data by assessing
the tradeoff between true positive rate and false positive rates
across threshold values. TNR@95TPR measures a situation
where a fixed OOD score threshold is selected to achieve a 95%
true positive rate to meet some stated performance criteria, and
we are thus interested in the true negative rate at this threshold
value. Note, the possible values of both metrics lie in the range
[0,1] where the higher the value, the better the detection ability.

We consider six total classifier models for use with the de-
tectors, all of which use the SMPL architecture and whose
naming convention is carried over from Section III. The first
is the baseline model (i.e., no augmentation and cross-entropy
with one-hot label loss function) trained at K = 1 (baseline
(k=1)), which represents an upper-level of performance be-
cause there is no distribution gap between the training and
test sets. The second model is a baseline configuration trained
at K = 0 (baseline (k=0)), which represents the lower-
level of performance starting point. The remaining four models,
gaus (k=0),gaus+drop (k=0),gaus+drop+lblsm
(k=0), gaus+drop+AT (k=0), incrementally add Gaus-
sian noise (gaus), dropout layers (drop), label smoothing (lblsm),
and AT, which we previously showed to improve expected
accuracy. For each model, at each value of J , we perform 100
experiments with randomly chosen samples of J classes and
report average detection performance.

Fig. 8 shows the detection performance of both the Softmax-
Thresh and Mahalanobis detectors versus the number of hold-out
classes. As a general rule, thebaseline (k=1)models have
the highest detection performance, which is not surprising given
that they do not have to contend with the distribution gap between
the synthetic and measured data. These models have inher-
ently learned high-quality features of the measured data during
training, which evidently makes them better equipped to detect
measured OOD samples. On the other hand, the baseline
(k=0) models tend to be the lowest performing, which is also
intuitive as these models have quite low accuracy performance
in relation to the others.

Consider the left two subplots, which show the AUROC vs. J
for both detection methods. For all models, the Mahalanobis
detector is superior to the Softmax-Thresh detector in terms
of AUROC. Our top performing gaus+drop+AT (k=0)
model achieves nearly 0.7 AUROC, which is a ∼ 10% absolute
improvement over the baseline (k=0) model across all
values of J . However, this same AT model under-performs the
baseline (k=1)model by nearly 20% AUROC. Next, con-
sider the right two subplots, which show the TNR@95TPR vs.
J for both detection methods. A similar trend appears where the
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Fig. 8. OOD detection performance.

Mahalanobis detector outperforms the Softmax-Thresh detector
in general. In this metric, our top performing gaus+drop+AT
(k=0) and gaus+drop+lblsm (k=0) models achieve
between 0.15 and 0.2 TNR@95TPR, which is a gain of less
than 10% over the baseline (k=0) model, yet a drop of
over 30% from the baseline (k=1) model. Even more so
than in the AUROC tests, thebaseline (k=1)model vastly
outperforms all of the K = 0 models in terms of TNR@95TPR.

Overall, we pose two main take-aways from these OOD
experiments. First, our training enhancements, including data
augmentation, model construction, and training function choice,
do in-fact improve the OOD detection performance of K = 0
trained models. We attribute this gain to the sizeable accuracy
improvement yielded by our methods, which is indicative of a
more transferable and robust learned representation of the ID
classes. However, our second take-away is that despite such
a large gain in accuracy, our improved K = 0 models still
fall short of models trained with K = 1. This motivates future
work to co-design classification and OOD detection systems for
SAR-ATR.

V. CONCLUSION

The cost and complexity of collecting large training datasets
of real/measured SAR data for every ATR task-of-interest may
be prohibitive in many cases, especially if rapid development
is required. Thus, the goal of training ATR models on purely
simulated SAR data, for use in measured data deployment envi-
ronments, is both an important and significant challenge. To this
point, achieving high-performing models with only synthetic
training data has proven difficult, as there exists a distribution
gap between the training (synthetic) and testing (measured) data
distributions due to difficulties in perfectly simulating SAR
targets. Such distributional differences have caused DL-based
ATR models to over-fit to the unique properties of the synthetic

distribution, yielding minimal generalization to the measured
distribution.

In this work, we develop advanced training procedures for
DL-based SAR-ATR models using 100% synthetic training
datasets, for use in an “open-world” operating environment. To
boost generalization and improve the quality of learned features,
we consider composing techniques from the categories of data
augmentation, model construction, training function choice, and
model ensembling. Our models ultimately achieve over 95%
accuracy on within-library test data, which is a near 45% im-
provement over baseline methods. For the problem of detecting
out-of-library confusers, our more accurate models also lead to
a near 10% improvement in detection ability. To explain these
improvements, through analysis we find that models trained with
our methods learn representations that rely almost exclusively on
salient features of the targets, while also creating a homogeneous
mixture of the measured and synthetic data in feature space.
Overall, our methods have achieved state-of-the-art performance
when only using synthetic training data, while also motivating
a codesign for accuracy and out-of-library detection in future
works.

Discussion: As a final discussion, we would like to note that a
key assumption made throughout this work is the availability of
high-quality CAD models for the targets of interest (as used in
the generation of the SAMPLE dataset). Such models have been
developed through significant effort, to reflect the physical and
electrical properties of the corresponding targets in the MSTAR
collection. The SAR response of these targets has then been
simulated with very high quality electromagnetic modeling. This
high degree of knowledge about the targets to be simulated,
and quality of the simulation, increases the complexity and cost
of producing simulated copies of future targets, but critically
enables training on targets that might otherwise be completely
unavailable. As a future work, it would be prudent to better
understand how the overall quality of the simulation impacts
the effectiveness of our proposed training framework. Along
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this track, one may consider a variety of onerous training con-
ditions, where it is specifically measured how inaccuracies in
the synthetic data generation process affects the ATR results
on the measured data. One way to do this may be to purposely
remove/modify details of the targets (e.g., remove the barrel of
the T-72 tank) in the CAD modeling software and retrain the
ATR models on such a tainted dataset [35]. Another interesting
future work is to purposely modify details of the synthetic targets
as a form of domain-relevant data augmentation, to potentially
improve the performance of the ATR models through creation
of a more diverse training dataset. Finally, we specify that our
intention is for this work to outline a framework of techniques
that can be used when synthetic training data are available, and
we do not intend that our final parameter settings are universal
to all ATR tasks.
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