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Abstract—To improve the accuracy and generalization ability
of hyperspectral image classification, a feature extraction method
integrating principal component analysis (PCA) and local binary
pattern (LBP) is developed for hyperspectral images in this article.
The PCA is employed to reduce the dimension of the spectral
features of hyperspectral images. The LBP with low computational
complexity is used to extract the local spatial texture features of
hyperspectral images to construct multifeature vectors. Then, the
gray wolf optimization algorithm with global search capability is
employed to optimize the parameters of kernel extreme learning
machine (KELM) to construct an optimized KELM model, which
is used to effectively realize a hyperspectral image classification
(PLG-KELM) method. Finally, the Indian pines dataset, Houston
dataset, and Pavia University dataset and an application of WHU-
Hi-LongKou dataset are selected to verify the effectiveness of the
PLG-KELM. The comparison experiment results show that the
PLG-KELM can obtain higher classification accuracy, and takes
on better generalization ability for small samples. It provides a new
idea for processing hyperspectral images.

Index Terms—Gray wolf optimization (GWO), hyperspectral
image classification, kernel extreme learning machine (KELM),
local binary pattern (LBP), optimization, principal component
analysis (PCA).

I. INTRODUCTION

THE hyperspectral sensor can obtain approximately con-
tinuous spectral curves of ground and objects in a large
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number of electromagnetic bands, such as ultraviolet, visible,
near-infrared, and mid-infrared by combining the spectral infor-
mation of the reflection features of ground and objects. The 3-D
data cube is composed of dozens of continuous band images,
which has the characteristics of spectral integration. It can more
effectively interpret ground features and improve the classifica-
tion and monitoring abilities of ground and objects. Therefore,
it has been widely applied in environment monitoring, disaster
assessment, and other fields [1]–[3].

Hyperspectral image classification is an important part of
hyperspectral applications, and it is one of the hot research
field of hyperspectral image processing and interpretation. In
recent years, a lot of classification methods are proposed for
hyperspectral images. Li et al. [4] developed a new framework
for the classification of hyperspectral scenes that pursues the
combination of multiple features. Li et al. [5] proposed a discon-
tinuity preserving relaxation strategy for postprocessing of class
probability estimates. Liu et al. [6] proposed a new approach for
accurate spatial spectral classification of hyperspectral images.
Xu et al. [7] proposed a new technique based on multiple
morphological component analysis. Liu et al. [8] proposed a
new class-oriented spectral partitioning technique. Xue et al.
[9] proposed a two novel sparse graph regularization methods,
SGR and SGR with total variation. Liu et al. [10] proposed a new
multiview active learning framework for hyperspectral image
classification. Juan et al. [11] proposed several methods to deal
with the hyperspectral image classification problem. Yu et al.
[12] proposed a rather different approach from a viewpoint of
mixed pixel classification to improve hyperspectral image clas-
sification for multiple classes. Chang et al. [13] introduced a new
concept of band capacity of a hyperspectral image and further
developed a theory for band capacity. Liu et al. [14] proposed a
new semisupervised active learning approach. Chang et al. [15]
proposed a new approach, which can implement automatic target
generation process bandwise in a progressive manner. Zhong
et al. [16] proposed a new spectral-spatial approach, called
spectral-spatial feedback close network system. Yu et al. [17]
proposed a novel approach called class signature-constrained
background suppression approach to band selection. Yu et al.
[18] proposed a convolutional neural network system embedded
with an extracted hashing feature that utilizes the semantic infor-
mation of the hyperspectral images. Song et al. [19] proposed a
class information-based band selection approach. Yu et al. [20]
proposed a novel hyperspectral image classification framework
based on a simplified 2–3-D convolutional neural networks by
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the cooperation between a 2-D convolutional neural network
and a 3-D convolution layer. Yu et al. [21] proposed a simplified
and equivalent model to the classic sparse representation-based
classifier. Hong et al. [22] proposed a solution to address this
issue by locally extracting invariant features from hyperspectral
imagery in both spatial and frequency domains. Zhong et al.
[23] proposed a hyperspectral image classification method with
a generative adversarial network and conditional random field
based framework. Luo et al. [24] proposed a hybrid-graph
learning method to reveal the complex high-order relationships
of the hyperspectral image. Liu et al. [25] proposed a content-
guided convolutional neural network. Samat et al. [26] proposed
an edge gradient-based active learning approach. Song et al.
[27] proposed a new progressive band selection processing of
hyperspectral image classification. Sun et al. [28] proposed a
novel patch-based low rank component induced spatial-spectral
kernel method. Chu et al. [29] proposed a new method based on
the discriminative locality preserving broad learning system by
exploiting the manifold structure between neighboring pixels of
hyperspectral image. Song et al. [30] proposed a 3-D receiver
operating characteristic analysis. Yang et al. [31] proposed a
locality regularized robust-probabilistic collaborative represen-
tation classification based on the Euclidean distance between
the training samples and the testing samples for hyperspectral
images. Mou et al. [32] proposed a novel graph-based semisu-
pervised network called nonlocal graph convolutional network.
These proposed methods can better realize image classification
and obtain better classification accuracy, but they still exist
some shortcomings, such as poor generalization ability, higher
complexity, lower accuracy for small samples, and so on.

In addition, the Hughes phenomenon caused by the high-
dimensional characteristics and the limited training samples
of hyperspectral images is always an important challenge in
hyperspectral image classification. The feature extraction is
usually performed on hyperspectral images before classification
in order to obtain feature data to describe the hyperspectral
image, and improve the accuracy of ground object classification.
Jiang et al. [33] used principal component transformation to
extract the image spectral features. Li et al. [34] proposed a local
texture description operator to extract the local spatial texture
features. In addition, support vector machine (SVM), extreme
learning machine (ELM), deep belief network, and so on are
used for constructing different classifiers [35]–[38]. Compared
with artificial neural network, the ELM has simpler structure and
faster training speed [39]–[41]. However, the number of hidden
nodes is usually less than the number of training samples in
practice, which could lead to the problem of multicollinearity.
To solve these problems, Huang introduced kernel functions
into ELM by comparing ELM and SVM to propose a KELM
[42]. However, the kernel parameters and regular parameters of
the KELM will affect the generalization ability and sensitivity
of classifiers to a certain extent. Cao et al. [43] proposed a
cascade classifier based on fusing ELM and adaptive sparse
representation. Chen et al. [44] proposed a KELM classification
algorithm with space spectrum information, which fused spec-
tral information and spatial information in the construction of
hyperspectral image feature vector to improve the classification

accuracy of KELM. In addition, the combination of different
kernel parameters and regularization parameters has great influ-
ence on classification accuracy [45]–[47]. In recent years, some
intelligent algorithms are widely applied in parameter optimiza-
tion of KELM, such as particle swarm optimization, differential
evolution, evolutionary algorithm, ant colony optimization, gray
wolf optimization (GWO) and their improvements, and so on
[48]–[56].

Due to the problems of same object with different spectra
and different objects with same spectrum, it is difficult to fully
describe the differences of each pixel using a feature space, so
it is tough to obtain a better classification effect. Therefore, in
order to improve the accuracy and efficiency of hyperspectral
image classification, the principal component analysis (PCA),
local binary pattern (LBP), GWO, and KELM are integrated
to develop a new hyperspectral image classification method,
namely PLG-KELM in this article. The PCA is employed to
reduce the dimension of the spectral features. The LBP is used to
extract the local spatial texture features to construct multifeature
vectors. The GWO is employed to optimize the parameters of
KELM to solve the unstable classification accuracy caused by
the random selection of parameters of KELM. Finally, the com-
parative experiments are implemented to verify the effectiveness
of PLG-KELM by three hyperspectral data.

The innovations and main contributions of this article are
described as follows.

1) A feature extraction method integrating PCA and LBP is
developed for hyperspectral images.

2) A parameter optimization method based on GWO with
global search capability is proposed to optimize the pa-
rameters of KELM to construct an optimized KELM.

3) A hyperspectral image classification (PLG-KELM)
method based on multifeature vectors and optimized
KELM is proposed to realize the hyperspectral image
classification.

4) Comprehensive experiments are designed and executed to
comprehensively prove the effectiveness of PLG-KELM
by different hyperspectral datasets and takes on better
classification performance and generalization ability for
small samples.

The rest of this article is organized as follows. Section II in-
troduces the PCA, LBP, GWO, and KELM. Section III proposes
a parameter optimization method for KELM. Section IV intro-
duces the idea, model, and steps of the PLG-KELM in detail.
Section V describes and analyzes the experimental results. An
application in fine classification of crops is applied in Section VI.
The discussion is given in Section VII. Finally, the conclusion
and future work are discussed in Section VIII.

II. BASIC METHOD

A. PCA

The PCA is a common unsupervised learning method, which
is the most basic dimensionality reduction method of hyper-
spectral data. In the PCA, the data are projected into a new
coordinate space by using linear projection method, so that the
new components are distributed according to the amount of
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information. The measure of information quantity is the variance
of data, which is described as follows:

Var (yi) = ai
T

∑
ai, i = 12, . . .m (1)

where aiis the i-th transformation vector, Σ is the covariance
matrix of the original data, yi is the i-th principal component,
V ar(yi) is the variance of the i-th principal component.

The PCA uses orthogonal transformation to transform the
observation data represented by linear correlation variables into
a few data represented by linear independent variables. The
linear independent variables are called principal components.
The number of principal components is usually less than the
number of original variables. Therefore, the PCA is a commonly
used method to reduce data dimension.

B. LBP

The LBP is an operator, which is used to describe the local
texture features of image and analyze image texture features. It
uses the structure analysis method to analyze the fixed window
features, and then statistics is used to extract the overall features.
The mathematical expression of LBP is described as follows:

LBP (xc, yc) =

p−1∑
p=0

S (ip − ic) ∗2p (2)

where (xc, yc) is the coordinate of the center pixel, P is the
p-th pixel of the neighborhood, ip is the gray value of the
neighborhood pixel, ic is the gray value of the center pixel. S(x)
is a symbolic function, which is defined as follows:

S (x) =

{
1 x ≥ 0
0 x < 0

. (3)

C. GWO

The GWO is inspired by the predatory activities of gray
wolves, it simulates the predatory behavior of gray wolves
and achieves the optimization goal based on the cooperation
mechanism of wolves [49]. Due to the existence of adaptive
convergence factor and information feedback mechanism, the
balance between local optimization and global search can be
achieved. The GWO has the characteristics of simple struc-
ture and less adjusted parameters, and is easy to realize. In
the GWO, in order to simulate the leadership mechanism of
gray wolves, the gray wolves are divided into four levels of
α, β, δ, and ω, which are corresponded to the first optimal
solution, second optimal solution, common solution, and chosen
solution. The optimization process of GWO includes the social
hierarchy, tracking, encircling, and attacking prey. The GWO
calculates the fitness of each individual in the population, and
marks the three gray wolves with the best fitness values as α, β,
and δ in turn, the rest gray wolves are marked as ω.

D. Kernel Extreme Learning Machine

The ELM has a network structure, which is used to
solve the problem at one time. Given the number of hid-
den layer nodes as L, the output function of hidden layer

is H(x) =[h1(x), . . . , hL(x)] , the output weight of hidden
layer is β =[β1, . . . , βL]

T , the input training sample is T =
{(xi, wi, bi)xi ∈ Rd, wi, bi ∈ Rm, i = 1, . . . , N} . That is, N
sample points are given, wi and bi are the node parameters
of hidden layer. g(xi, wi, bi) is the activation function. The
mathematical model of ELM is described as follows:⎧⎨

⎩
hi (x) = g (xi, wi, bi) = g (wixi + bi)

f (x) =
L∑

i=1

βi hi (x) = βH (x)
. (4)

The goal of ELM is to minimize the norm of training error
and hidden layer output weight, which is defined as follows:

min‖β · h (xi)− ti‖2 (5)

In order to further enhance the generalization ability and
stability of ELM, Huang proposed a kernel extreme learning
machine (KELM) by comparing the principle of ELM and SVM.
The kernel matrix is defined as follows:{

ΩELM = HHT

Ωij = h (xi) · h (xj) = K (xi, xj)
. (6)

The kernel matrix Ω replaces the random matrix HHT in
ELM, and uses kernel function to map all input samples from
N-dimensional input space to high-dimensional hidden layer
feature space. After the kernel parameters are determined, the
mapping value of Ω is fixed. hi(x) is the output function of
hidden layer nodes. The kernel function K(xi, xj) includes
radial basis function (RBF), linear kernel function, polynomial
kernel function, and so on. The kernel function is usually set as
RBF, which is described as follows:

K (xj , xj) = exp

(
−‖xi − xj‖2

σ

)
. (7)

The parameter I/C is added to the main diagonal of the unit
diagonal matrix HHT so that its characteristic root is not zero.
Then, the weight vector β∗ is obtained, which makes KELM to
be more stable and better generalization. At this time, the output
weight of KELM is changed as follows:

f (x) = h (x)HT
(
I/C +HHT

)−1

T

=

⎡
⎣ K (x, x1)

. . .
K (x, xN )

⎤
⎦
T (

I/C +ΩELM

)−1

T. (8)

III. PARAMETER OPTIMIZATION OF THE KELM

A. Idea of Parameter Optimization

In this article, RBF is used as the activation function of KELM,
the kernel parameter K of RBF is set, and the output weight is
simply calculated and analyzed to replace the original tedious
iterative process. According to the principle of ridge regression,
when the output matrix H of hidden layer is calculated, the
regular term operator C is added in order to keep more stable
solution of generalized inverse of H. Therefore, the combination
of K and C in KELM affects the generalization performance and
the sensitivity of the classifier. Traditional parameter selection
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Fig. 1. Parameter optimization model.

methods use samples to repeat experiments and analysis to man-
ually select the best parameters. However, it lacks theoretical
guidance and takes a long time. Some numerical simulation
methods (such as Newton method, gradient descent algorithm,
and so on) are sensitive to the selection of initial value. The GWO
has the simple structure, few adjusted parameters, and is easy
to realize. There exists a self-adaptive convergence factor and
information feedback mechanism, which can achieve a balance
between local optimization and global search. Therefore, the
GWO is employed to optimize the K and C of KELM. The
parameter optimization model is shown in Fig. 1.

B. Steps of Parameter Optimization

The GWO is used to iteratively find the location of the maxi-
mum value of the wolf, that is, the optimal value of classification.
The steps are described as follows.

Step 1: Determine the fitness function f(x) =

[
K(x,x1)

...

K(x,xN )
]T (I/C +ΩELM )−1T where K and C are the

optimized objects. In the search space, the initial population of
gray wolf is composed of random initialization individuals. The
values of coefficient vector �A, �C and convergence factor �a are
initialized.

Step 2: The root mean square error function is used to calculate
the fitness value of each individual, which are ranked. The
positions of the individual corresponding to the three minimum
fitness values in the population error are taken as �Xα, �Xβ , and
�Xδ .

Step 3: Calculate the nonlinear variation parameter �r1 and
�r2. Then, the values of �A and �C are updated according to �A =
2�a. �r1 − �a and �C = 2 �r2. �a is a convergence factor, which is
linearly decreased from 2 to 0 with the increasing of the number
of iterations. �r1 and �r2 are the random number in [01].

Step 4: The position of each individual is updated⎧⎨
⎩

X̃1 = X̃α − Ã1. D̃α

X̃2 = X̃β − Ã2. D̃β

X̃3 = X̃δ − Ã3. D̃δ

(9)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D̃α =
∣∣∣C̃1.X̃α − X̃

∣∣∣
D̃β =

∣∣∣C̃2.X̃β − X̃
∣∣∣

D̃δ =
∣∣∣C̃3.X̃δ − X̃

∣∣∣
. (10)

Among them, �Dα, �Dβ , �Dδ represent the distance from α,
β, and δ to other individuals, respectively. �Xα, �Xβ , and �Xδ

represent the current position of α, β, and δ, respectively. �C1,−→
C2 , and �C3 are the random vector, and �X is the current position
of gray wolf.

Step 5: The fitness value of each individual is recalculated
to update the individual extremum and population extremum,
which further update �Xα, �Xβ , and �Xδ .

Step 6: Determine whether the number of iterations is equal to
the maximum value. If it is not, execute t= t+1 and return to Step
3. Otherwise, the optimal solutionα is output. The parameters of
KELM are determined in order to establish the optimal classifer.

IV. HYPERSPECTRAL IMAGE CLASSIFICATION METHOD

A. Idea of the PLG-KELM

Hyperspectral images have the characteristics of large number
of bands, large data, redundant information, high dimension,
and so on. Although the increase of spectral bands brings more
abundant information of categories of ground and objects in
hyperspectral images, the high redundancy and high correlation
between bands make the low classification accuracy. The PCA
can map N-dimensional features to the k-dimensional features to
reduce the dimension of data features and the impact of spectral
information redundancy. The LBP has the advantages of rotation
invariance and gray level invariance. It can effectively extract the
local spatial texture features of hyperspectral images. Compared
with the traditional feed forward neural networks, the KELM
has the fast training speed and good generalization performance
for high-dimensional data. The GWO has the characteristics
of less optimization parameters, simple implementation, strong
convergence ability, fast optimization speed, and strong global
optimization ability. To improve the classification accuracy
and generalization ability, a hyperspectral image classification
(PLG-KELM) method based on integrating merits of PCA, LBP,
GWO, and KELM is proposed in this article. First, the spectral
information is combined with the local spatial context informa-
tion, and different feature extraction methods are adopted in the
spectral dimension and spatial dimension of the hyperspectral
images. The PCA is used to select the principal component
bands of spectral information to reduce the impact of spectral
information redundancy. The LBP operator is used to describe
the local spatial texture information of the hyperspectral images.
The complementarity of different features are combined, and
the feature level fusion and decision level fusion are analyzed
to construct multifeature vector of hyperspectral images, which
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Fig. 2. Model of the PLG-KELM.

is used as the training set of classifier. Then, the GWO with
strong convergence and optimization ability is used to obtain the
optimal parameter combination values of the KELM in order to
construct an optimized KELM classifier to realize a PLG-KELM
classification method.

B. Model of the PLG-KELM

In order to improve the classification accuracy, the hyper-
spectral image features based on spatial spectrum information is
extracted and a PLG-KELM method based on PCA, LBP, GWO,
and KELM is developed for hyperspectral image classification.
The model of the PLG-KELM is shown in Fig. 2.

The specific realization process of the PLG-KELM is de-
scribed as follows.

Step 1: Extract spectral features

1) The spectral dimension is quantized to obtain the matrix
X = [X1, X2, · · · , Xp ] , where p is the dimension.

2) Calculate the covariance matrix C of X, C = 1
p XXT .

3) The eigenvalues and eigenvectors of covariance matrix C
are solved.

Fig. 3. Calculation example of LBP operator.

4) The obtained eigenvectors are arranged into a matrix ac-
cording to the corresponding eigenvalues, and the values
of the first k lines are taken to form matrix Z.

5) The hyperspectral data G = ZX with spectral dimension
of K is obtained.

Step 2: Extract local spatial texture features

The LBP operator is defined on a central pixel and its sur-
rounding rectangular neighborhood system with a size of 3×3.
According to the formula (2) and formula (3), each neighbor-
hood pixel value and gray value of the center pixel are binarized.
In this way, a local binary mode is formed. Start from the upper
left corner, a series of binary numbers are obtained in clockwise
direction, and the decimal number corresponding to the binary
number is used to uniquely identify the central pixel. Each pixel
can be calculated to obtain a local binary mode. An example of
the calculation is given in Fig. 3.

Step 3: Feature fusion

In feature fusion, the feature normalization is realized in
order to unify the scale of eigenvalues. The minimum–maximum
technique is used to map feature data to the range [01]. Then,
the extracted texture and spectral features of dimensionality
reduction are directly combined. The multifeature fusion method
is adopted to stack multiple features into a combined feature,
which is concatenated into a vector to obtain the feature fusion
X = [x1, x2 · · ·xp].

Step 4: Construct an optimal KELM classifier

The multifeature vectors are considered as training set, and
the classification accuracy of KELM is used as fitness function
of the GWO. The kernel parameter and regularization parameter
(K, C) are combined as the optimal parameters of KELM, and
an optimal KELM classifier is constructed.

Step 5: Obtain the classification results

V. EXPERIMENTAL RESULTS AND ANALYSIS

To verify the effectiveness of the PLG-KELM, the Indian
pine, Houston 2013, and Pavia University are selected in
here. The classification models of SVM, broad learning sys-
tem (BLS), contractive auto-encoder and convolutional neural
network (CAE-CNN), PCA-CNN, and KELM are selected to
compare with the PLG-KELM [57].

A. Experimental Data Sources

Indian pines data are one of the most commonly used datasets
for hyperspectral images. The image is cut the size of 145
× 145 for labeling. Houston 2013 dataset was acquired by
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TABLE I
BASIC INFORMATION OF THREE DATASETS

TABLE II
GROUND AND OBJECTS OF 16 TYPES IN INDIAN PINES

TABLE III
GROUND AND OBJECTS OF 15 TYPES IN HOUSTON

hyperspectral image analysis team and NCALM on the campus
of the University of Houston and the nearby urban area. The
size of the image is 349 × 1905. Pavia University dataset is
a hyperspectral image dataset from Pavia University area in
northern Italy. The size is 610 × 340. The basic information
of three datasets are shown in Table I–Table IV.

TABLE IV
GROUND AND OBJECTS OF 9 TYPES IN PAVIA UNIVERSITY

B. Experimental Environment and Parameter Settings

The experiment is on Intel (R) i7-9750h CPU, RAM 16G,
Win10. The programming language is MATLAB R2018a.

The LBP operator uses the original LBP operator, which
selects 3×3 neighborhood size. Each neighborhood pixel value
takes the gray value of the central pixel as the threshold value
for binary quantization. The range of regularization parameters
of SVM is [10−1 ∼ 107] , the input nodes and output nodes are
the classification numbers of the corresponding hyperspectral
data. The lower bound is 0.01, and the upper bound is 100, and
the convergence factor�a ∈ [20], �C1= �C2 = �C3 =2 ∗ rand(), the
number of iterations is 400.

C. Experimental Results and Analysis

To verify the classification performance of the PLG-KELM,
the experiments are executed on three datasets. For each dataset,
random 10% and 5% of all labeled pixels are chosen from each
class of ground and objects as the training set, and the remaining
labeled pixels are the test set. The overall accuracy (OA), average
accuracy (AA), and Kappa coefficient of classification results are
used as evaluating indicators under different training set and test
set.

1) Indian Pines Dataset: It contains 16 different feature cat-
egories. The experimental results of the all methods are shown
in Table V, where the obtained best results are bold highlight.
The comparison results of the OA, AA, and Kappa coefficient of
different methods for 10% training samples are shown in Fig. 4.
The classification effects of the all methods are shown in Fig. 5.

In Fig. 5, (a)–(g) are the original image, BLS classification ef-
fect, SVM classification effect, PCA-CNN classification effect,
CEA-CNN classification effect, KELM classification effect, and
PLG-KELM classification effect. From Table V and Fig. 4, it
can be seen that the OA, AA, and Kappa coefficient of the
PLG-KELM are increased by 3.35%, 5.56%, and 3.82% for 10%
training set, and 3.76%, 5.81%, and 4.32% for 5% training set
by comparing with the BLS, SVM, PCA-CNN, CAE-CNN, and
KELM, respectively. The experiment results show that the PLG-
KELM has higher classification accuracy than the compared
methods. The OA, AA, and Kappa coefficient of KELM reach
99%, 98.65%, and 98.86% for 10% training set, respectively,
which are obviously better than the SVM, BLS, PCA-CNN,
and CAE-CNN. However, the classification performance of the
PLG-KELM is further improved by using GWO algorithm,



CHEN et al.: HYPERSPECTRAL IMAGE CLASSIFICATION METHOD USING MULTIFEATURE VECTORS AND OPTIMIZED KELM 2787

TABLE V
CLASSIFICATION RESULTS ON INDIAN PINES DATASET (%)

Fig. 4. Classification comparison results on Indian pines dataset.

and its OA, AA, and kappa coefficient are averagely increased
by 0.05%. The OA, AA, and Kappa coefficient of KELM are
95.71%, 94.32%, and 95.12%, respectively, when the training
set data are reduced by 5% in small samples. The PLG-KELM
improves OA, AA, and Kappa coefficient by 0.13%, 0.35%, and
0.14%, respectively. It can be known that the optimized KELM
has some advantages of the KELM in classification of high-
dimensional data. It can also be known that the OA and kappa
coefficient of the PLG-KELM are, respectively, improved by
0.08%, 0.3%, and 0.09%, which indicates that the PLG-KELM
has better generalization ability.

2) Houston 2013 Dataset: It contains 15 different feature
categories. The experimental results of the all methods are shown

in Table VI. The comparison results of the OA, AA, and Kappa
coefficient for 10% training samples are shown Fig. 6. The
classification effects of the all methods are shown in Fig. 7.

In Fig. 7, (a)–(g) are the original image, BLS classification ef-
fect, SVM classification effect, PCA-CNN classification effect,
CEA-CNN classification effect, KELM classification effect, and
PLG-KELM classification effect. From Table VI and Fig. 6,
it can be seen that the OA, AA, and Kappa coefficient of
the PLG-KELM are increased by 3.27%, 2.77%, and 4.06%
for 10% training set, and 2.14%, 2.17%, and 2.32% for 5%
training set by comparing with the BLS, SVM, PCA-CNN,
CAE-CNN, and KELM, respectively. The PLG-KELM shows
better classification results than the compared methods. For
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Fig. 5. Classification effect of the all methods on Indian Pines dataset.

TABLE VI
CLASSIFICATION RESULTS ON HOUSTON DATASET (%)

10% training set, the OA, AA, and Kappa coefficient of the
KELM reach 96.83%, 97.19%, and 96.58%, respectively. The
experiment results show that the LBP is more effective in ex-
tracting local spatial texture features in high-resolution dataset.
On this basis, the classification accuracy of the PLG-KELM
is further improved, and the OA, AA, and Kappa coefficient
are increased by 0.31%, 0.25%, and 0.33%, respectively. The
OA, AA, and Kappa coefficient of KELM are 93.40%, 93.92%,
and 92.87%, when the training set is reduced by 5%. On this
basis, the OA, AA, and Kappa coefficient of the PLG-KELM

are increased by 0.55%, 0.47%, and 0.6%, respectively, which
still has better classification accuracy in small samples. The
experiment results show that the PLG-KELM can effectively
extract spatial spectrum features, and has better classification
accuracy for hyperspectral images.

3) Pavia University Dataset: It contains 9 different feature
categories. The experimental results of the all methods are shown
in Table VII. The comparison results of OA, AA, and Kappa
coefficient for 10% training samples are shown in Fig. 8. The
classification effect of the all methods are shown in Fig. 9.
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Fig. 6. Classification comparison results on Houston dataset.

Fig. 7. Classification effect of the all methods on Houston dataset.

In Fig. 9, (a)–(g) are the original image, BLS classification ef-
fect, SVM classification effect, PCA-CNN classification effect,
CEA-CNN classification effect, KELM classification effect, and
PLG-KELM classification effect. There are only 9 kinds of
features in Pavia University dataset, which is 7 less than Indian
pines dataset. The number of available effective wavebands is
the least among three datasets. From Table VII and Fig. 8, it
can be known that the OA, AA, and Kappa coefficient of the
PLG-KELM are increased by 3.32%, 2.31%, and 4.10% for 10%

training set and 3.80%, 2.23%, and 4.53% for 5% training set
by comparing with the BLS, SVM, PAC-CNN, CAE-CNN, and
KELM, respectively. The experiment results show that the PLG-
KELM has better classification effect than the other compared
methods. For 10% training set, compared with the classification
results of the SVM, the OA, AA, and Kappa coefficient of the
KELM are decreased by 0.71%, 1.19%, and 0.98%, and the OA,
AA, and Kappa coefficient of the PLG-KELM are increased by
0.18%, 0.04%, and 0.24%, respectively. The experiment results
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TABLE VII
CLASSIFICATION RESULTS ON PAVIA UNIVERSITY DATASET (%)

Fig. 8. Classification comparison results of the all methods on Pavia University dataset.

Fig. 9. Classification effect of the all methods on Pavia University dataset.
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TABLE VIII
COMPARISON RESULTS OF KELM AND PLG-KELM FOR DIFFERENT DATA (%)

show that the parameter optimization of the KELM can further
improve the classification performance. For 5% training set,
compared with the classification results of the KELM, the OA,
AA, and Kappa coefficient of the PLG-KELM are increased
by 1.28%, 2.79%, and 1.73%, respectively. Compared with the
10% training set, the improvement of PLG-KELM is more
significant, and the PLG-KELM can obtain better classification
result for high-dimensional data. For small-scale training set,
for the PLG-KELM, the OA, AA, and Kappa coefficient for 5%
training set are 0.39%, 1.56%, and 0.51% higher than those for
10% training set, which indicates that the PLG-KELM has better
generalization ability for hyperspectral image classification.

D. Comparison of Parameter Optimization Effect for KLEM

In order to verify the optimization performance of GWO for
parameter optimization of the KLEM, the comparison results of
OA, AA, and Kappa coefficient of the KELM and PLG-KELM
for Indian pines dataset, Houston dataset, and Pavia University
dataset are shown in Table VIII.

It can be seen from the Table VIII, for all indicators of OA,
AA, and Kappa coefficient, the classification accuracies of the
PLG-KELM are better than those of the KELM for three datasets
of Indian pines, Houston 2013, and Pavia University for 5%
training set and 10% training set. The experiment results show
that the PLG-KELM has better classification ability. The reason
is that the GWO algorithm with global optimization capability
can effectively optimize the parameters of the KELM and obtain
the ideal values of the parameters for KELM. Therefore, the
GWO algorithm is an intelligent optimization algorithm based
on population, it is easy to implement and has good global
performance, which can effectively optimize the parameters of
classification models.

VI. APPLICATION IN FINE CLASSIFICATION OF CROPS

In order to verify the classification performance and general-
ization ability of the PLG-KELM for fine classification of crops,
an actual application of WHU-Hi-LongKou hyperspectral im-
ages is selected in this article. The dataset of WHU-Hi-LongKou
was obtained by UAV hyperspectral remote sensing observation
in LongKou, Hubei Province, China, by RSIDEA research team
of State Key Laboratory of surveying, mapping and Remote
Sensing Information Engineering [58], [59]. This dataset started
from the application demand of fine classification of crops. It is
an open and shared hyperspectral hyperspace remote sensing

TABLE IX
BASIC INFORMATION AND FEATURES STATISTICS

TABLE X
GROUND AND OBJECTS OF 9 TYPES IN WHU-HI-LONGKOU

images of fine classification dataset. The image size is 550×400
pixels. The basic information and features statistics of the dataset
are shown in Table IX. The ground and objects of 9 types in
WHU-Hi-Longkou is shown in Table X.

In the actual application, the classification models of SVM,
BLS, PCA-CNN, CAE-CNN, and KELM are still selected to
compare with the PLG-KELM. In addition, in order to verify
the classification performance and generalization ability of the
PLG-KELM for small samples, random 0.5% and 1% of all
labeled pixels in WHU-Hi-LongKou dataset are chosen from
each class of ground and objects as the training samples, and
the remaining labeled pixels are the test samples. The OA, AA,
and Kappa coefficient of classification results are still used
as evaluating indicators. The experimental results of the all
methods are shown in Table XI. The comparison results of the
OA, AA, and Kappa coefficient for 1% training set are shown
Fig. 10. The classification effect of the all methods are shown in
Fig. 11.

In Fig. 11, (a)–(g) are the original image, BLS classifica-
tion effect, SVM classification effect, PCA-CNN classification
effect, CEA-CNN classification effect, KELM classification
effect, and PLG-KELM classification effect. There are only
9 kinds of features in WHU-Hi-LongKou dataset. As can be
seen from Table XI and Fig. 10, compared with SVM, BLS,
PCA-CNN, CAE-CNN, and KELM, the OA, AA, and Kappa
coefficient of the PLG-KELM are increased by 1.65%, 6.17%,
and 2.17% for 1% training set, and 5.01%, 6.88%, and 6.15%
for 0.5% training set, which show that the PLG-KELM has
higher classification accuracy than those of the other compared
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TABLE XI
CLASSIFICATION RESULTS ON WHU-HI-LONGKOU DATASET (%)

Fig. 10. Classification results on WHU-Hi-LongKou dataset.

methods. For 1% training set, the OA, AA, and Kappa coeffi-
cient of the KELM are 97.85%, 95.89%, and 97.17%, respec-
tively, which show that the KELM is superior to SVM, BLS,
PCA-CNN, CAE-CNN, and KELM. The OA, AA, and Kappa
coefficient of the PLG-KELM are further improved by 0.29%,
0.57%, and 0.38% than those of the KELM. For 0.5% training
set, the OA, AA, and Kappa coefficient of the KELM are 96.06%,
91.73%, and 94.83%, respectively. The OA, AA, and Kappa
coefficient of the PLG-KELM are further improved by 0.35%,
1.07%, and 0.46% than those of the KELM. Compared with the
1% training set, the improvement of the PLG-KELM is more
significant. It can be concluded that the PLG-KELM can better
play the classification advantage of KELM for high-dimensional
data. For the PLG-KELM, it can be seen that the OA, AA,
and Kappa coefficient of the 0.5% training set are improved

by 0.06%, 0.5%, and 0.08% than those of 1% training set in
small samples, which indicate that the PLG-KELM has better
classification accuracy and generalization ability.

VII. DISCUSSION

It can be known from the results that the PLG-KELM is
compared with the SVM, BLS, PCA-CNN, CAE-CNN, and
KELM methods. For Indian pines dataset, Houston dataset, and
Pavia University dataset, the OA, AA, and Kappa coefficient of
the PLG-KELM are increased in various degrees, respectively.
For actual WHU-Hi-LongKou dataset, the OA, AA, and Kappa
coefficient of the PLG-KELM are increased by1.65%, 6.17%,
and 2.17% for 1% training set, and 5.01%, 6.88%, and 6.15%
for 0.5% training set, respectively. The experiment results show
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Fig. 11. Classification effect on WHU-Hi-LongKou dataset.

that the PCA and LBP can better extract the complex features
from the hyperspectral images, and the PLG-KELM can ef-
fectively remove the phenomenon of salt and pepper. At the
same time, the PLG-KELM can also effectively improve the
classification accuracy, avoid the sample misclassification at the
class boundary, and maintain the smoothness and consistency
of the classification results. And it takes on better classification
performance and generalization ability for small samples. But,
the operation efficiency is slightly lower than three compared
methods.

VIII. CONCLUSION AND FUTURE WORK

For the hyperspectral images with the serious same object and
different spectrum and foreign matter with the same spectrum
phenomenon, the complex distribution of ground and objects,
the large spatial scale difference, the few labeled samples,
the diverse noise types, and the traditional image classifica-
tion methods are difficult to realize better classification effect.
Therefore, a hyperspectral image classification method based on
integrating PCA, LBP, GWO, and KELM, namely PLG-KELM
is proposed in this article. Compared with the BLS, SVM,
PCA-CNN, CAE-CNN, and KELM, the OA, AA, and Kappa
coefficient of the PLG-KELM are, respectively, increased for
10% training set and 5% training set for Indian pines dataset,
Houston, and Pavia University dataset, and for 1% and 0.5%
training set for WHU-Hi-LongKou dataset. The experiment
results show that the PLG-KELM has a significant advantage
of classification effect, which can realize a balance between
local optimization and global search. And it achieves a better
classification effect, and effectively avoid the “pepper and salt
misclassification” problem. In addition, the PLG-KELM takes
on better classification performance and generalization ability
for small samples.

Due to the lower operation efficiency of the PLG-KELM,
we think about how to improve the operation efficiency of the
PLG-KELM in the future work.
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