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Abstract—Conventional deep-learning-based retrieval models
are generally trained under the framework of scene classification
with cross-entropy loss, this way focuses only on the output prob-
ability corresponding to the label of input samples, while ignoring
the predictive information of other categories, which makes the
retrieval accuracy susceptible to the intraclass difference of the
image samples. And conventional methods often used fixed-size
convolution kernels that only consider the local area with fixed
sizes, thus largely ignoring the global information. In response
to the above problems, this article constructs a triplet nonlocal
neural network (T-NLNN) model that combines deep metric learn-
ing and nonlocal operation. The proposed T-NLNN follows the
three-branch network design, with shared weights in each branch.
We evaluate T-NLNN on three public high-resolution remote sens-
ing datasets, and the experimental results suggest that T-NLNN
has discriminative feature learning ability and outperforms other
existing algorithms. In addition, we propose a dual-anchor triplet
loss function to facilitate the utilization of information in the input
samples. The experimental results prove that the proposed dual-
anchor triplet loss function works better than the traditional triplet
loss function on all datasets.

Index Terms—Deep metric learning (DML), dual-anchor triplet
loss, high-resolution remote sensing image (HRRSI) retrieval,
triplet nonlocal neural network (T-NLNN).

I. INTRODUCTION

NOWADAYS, the resolution and volume of remote sensing
images have considerably grown, thanks to an increasing

number of satellites with their enhanced imaging capabilities [1].
How to effectively manage such large-volume data by retrieving
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interesting targets or scenes from massive images still remains
a challenge for researchers.

Content-based remote sensing image retrieval (CBRSIR) has
aroused an increasing interest of scholars in the remote sensing
community and has become a popular option due to its capability
in searching images from databases with query images.

Most traditional CBRSIR algorithms [2]–[5] use artificially
designed features from images for retrieval, falling short of
describing the complex content and rich details from high-
resolution remote sensing images (HRRSI) in an accurate man-
ner. The emergency of deep learning technology provides a new
possibility to learn features of HRRSI automatically with its
strong feature learning ability, and many studies have proved
the remarkable performance of deep learning algorithms on
CBRSIR task [6]–[17] and remote sensing image classifica-
tion task [18]–[23]. In recent literature, the existing related
approaches can be generally divided into two main categories:
1) approaches based on unsupervised feature learning [6]–[9],
and 2) approaches based on convolutional neural networks
(CNNs) [10]–[16]. Unsupervised algorithms, e.g., autoencoders,
can learn image features from unlabeled data in an automatic
manner, taking advantage of massive unlabeled remote sensing
images and reducing the burden of manual annotation. However,
unsupervised models usually have shallow networks, which
limit their feature learning capabilities. CNNs are regularized
versions of multilayer perceptron with more complex structures
and deeper networks, leading to stronger feature learning ability
and higher retrieval accuracy. Commonly used CNNs include
AlexNet [24], VggNet [25], GoogleNet [26], and ResNet [27],
to list a few.

Early CNNs-based CBRSIR methods directly migrated mod-
els pretrained on natural image datasets (such as ImageNet [28])
to the remote sensing domain as the feature extractor. Compared
with traditional CBRSIR methods, pretrained CNN models
bring a certain accuracy improvement. However, due to the
large differences between the two types of images (i.e., natural
pictures and remote sensing images), the features extracted by
pretrained models, to some extent, fail to accurately describe
the characteristics in remote sensing images, thus limiting the
final retrieval accuracy. With the purpose of further enhancing
the feature learning performance of pretrained CNN models,
researchers tried to fine-tune it using remote sensing datasets.
The experiment results showed that fine-tuned models could
obtain higher retrieval accuracy. In addition, some built their own
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Fig. 1. Conceptulization of deep metric learning.

model and trained it from scratch with HRRSI [11]. However,
training-from-scratch approaches usually demand datasets with
a large volume of labeled data, which requires much labor
and time. Due to its good performance, fine-tuned models are
usually utilized for CBRSIR. In [10], the authors combined
the fine-tuned linear convolutional layers of VGGM model and
mlpconv layer to extract low-dimension image feature vector,
aiming to reduce the storage space. In [13], the authors first
inserted the compact bilinear pooling (CBP) to a fine-tuned CNN
model. The output of CBP captures the pairwise correlation
between feature channels, facilitating the retrieval performance.
Despite the improved performance, these models are trained
under the framework of scene classification with cross-entropy
loss. In the training process, cross-entropy loss only largely
focuses on the output probability corresponding to the input
sample label, while ignoring the predictive information of other
categories, which makes the retrieval accuracy susceptible to the
intraclass difference of the image samples. To avoid this issue,
deep metric learning (DML) is an emerging alternative to model
training.

DML is the combination of deep learning and metric learning,
whose purpose is to learn a proper measure from input data and
to assist in projecting input samples to a new metric space, which
is able to make similar samples closer and dissimilar samples
farther (as shown in Fig. 1). DML has been widely used in
the field of computer vision, such as image classification [29],
video understanding [30], person reidentification [31], verifi-
cation [32], and feature matching [33]. In addition, for some
extreme classification tasks (i.e., many classes with only a few
samples per class), DML performs considerably well [34]. Given
that the purpose of DML is in accordance with remote sensing
image retrieval, scholars started to apply DML to CBRSIR task
[9], [35]–[42]. In [39], a triplet DML network was proposed
for CBRSIR and achieved great performance on two public
datasets, proving the validity of DML for the CBRSIR task. In
[40], the authors proposed a TLDCNN model that combines the
advantages of DML and low-dimension image feature vectors.

In [42], the authors proposed a rotation invariance spatial trans-
formation network, trained by means of a Siamese network, with
the capability of extracting rotation invariance object features.
However, the aforementioned methods often used fixed-size
convolution kernels (usually 3×3 or 5×5) and the receptive field
of each convolutional kernel is limited. In feature map genera-
tion, such fixed-size kernels only consider the local area of input
with fixed sizes, thus largely ignoring the global information.

In this article, inspired by the nonlocal operation in [43], we
propose a novel triplet nonlocal neural network (T-NLNN) for
high-resolution CBRSIR. T-NLNN contains three branches, and
each branch includes feature layers in VGG16 and a nonlo-
cal module with shared weights. Different from conventional
convolution operations with a certain size neighborhood of a
certain point in images, a nonlocal module benefits capturing
the global information in the image by weighting the calculation
results of all points in images. The application of a nonlocal
module obtains richer global information of images, leading
to improved retrieval accuracy. In addition, the original triplet
loss function aims to make anchor and positive images closer,
anchor and negative farther in the feature space, while ignores the
information between the positive and negative sample images.
To fully utilize the information from input samples, we propose
a dual-anchor triplet loss function modified from the original
triplet loss function. During the training process, the dual-anchor
triplet loss function can further shrink the distances among simi-
lar samples and enlarge the distance among dissimilar samples in
the feature space. The major contributions of this article include
the following two aspects:

1) We construct a novel T-NLNN for the CBRSIR task with
the advantage of capturing the long-range dependence in
the image.

2) We propose a dual-anchor triplet loss, aiming to make
features of HRRSI more discriminative in the feature
space.

The remainder of this article is organized as follows: Section II
introduces high-resolution CBRSIR based on the T-NLNN
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Fig. 2. General workflow of high-resolution CBRSIR based on T-NLNN.

model. Section III presents the experiments and results in detail.
Section IV provides a summary of our work.

II. HIGH-RESOLUTION CBRSIR BASED ON T-NLNN

Different from conventional CNNs-based CBRSIR ap-
proaches that trained model under the framework of scene
classification, T-NLNN does not focus on the classification of
each input sample but focus on making samples with the same
label closer and samples with different label farther in the feature
space. In the following sessions, we introduce the training and
retrieval stage of T-NLNN, loss function, and its optimization
algorithm in detail.

A. Model Learning and Retrieval Based on T-NLNN

For DML, commonly used networks can be categorized
into two-branch structures and three-branch structures. In [40],
the authors conducted a comparative experiment on these two
types of networks, showing that the feature extraction ability
of three-branch networks is better than two-branch networks.
Thus, we choose to build our model in the form of three-branch
structures. To capture the long-range dependence in images, we
add a nonlocal module in the network. The specific calculation
formula of a nonlocal module can be presented as

yi =
1

C(x)

∑
∀j

f(xi, xj)g(xj) (1)

where i is the output location index and j is any location index
participating in the weighted average calculation. x and y (with
the same size) mean the input and output, respectively. The f
function aims to calculate the similarity between xi and xj ,
and the g function aims to calculate the feature of position j.
C denotes the response factor used to normalize the calculation
results. There are four commonly used functions of f : Gaussian,
Embedded Gaussian, Dot Product, and Concatenation.

Fig. 2 shows the general workflow of high-resolution CBR-
SIR based on T-NLNN, which contains two main stages: the
training stage and the retrieval stage. In the training stage, the
input image samples are fed to the nonlocal neural network,

followed by a global average pooling to obtain the feature vector.
The corresponding loss is calculated according to the feature
vector of each image sample. The calculated loss is further used
to update the weight parameters through the backpropagation
algorithm. The training process continues until the network
parameters are converged. As shown in Fig. 2, T-NLNN follows
the three-branch design with the same structure (shared weights)
in each branch. The nonlocal neural network is composed of
convolutional layers in the VGG16 model and the nonlocal
module (we replace the classifier from the VGG16 model with
the nonlocal module). The specific structure of the nonlocal
module with Embedded Gaussian as the similarity calculation
function is shown in Fig. 3, where input x is obtained from the
last convolutional layer in VGG16. g, θ, and ϕ are obtained
from x through 1×1 convolution operation. In this process, the
channel is reduced to one-half of the original, and g, θ, andϕ are
compressed to obtain the corresponding 2-D matrix. g′, θ′, ϕ′,
θ′, andϕ′are multiplied to obtain f , which is later normalized by
softmax function, leading to fc. y′ is the multiplication between
fc and g′. After y′ is expanded to y, a 1 × 1 convolution is
applied to y, aiming to double its channels, and the output z
is obtained by adding y with x, meaning that x and z have the
same dimension. In the retrieval stage, a single-branch network
of trained T-NLNN is used for image feature extraction. The
similarity between the two images is measured by the Euclidean
distance in their feature spaces. Note that the feature vector
of each image is L2 normalized before calculation. The final
retrieval result is achieved by sorting the similarity calculation
of all image pairs.

B. Dual-Anchor Triplet Loss

The triplet loss is the basic loss function for a triplet neural
network. Its calculation formula can be described as (2), where
A represents the anchor image, P represents the positive sample
image with a same label as A, N represents the negative sample
image with a different label, α is the margin, ω is the network
parameters, and ϕ(·) is the L2 normalized output feature vector
of the network. From the formulation, it can be seen that triplet
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Fig. 3. Specific structure of a nonlocal module with Embedded Gaussian as the similarity calculation function.

loss aims to make A, P closer, and A, N farther in the feature
space. However, the triplet loss ignores the information between
the positive and negative sample images. In some cases, when
A, P become closer and A, N become farther, the distance
of P, N might be shorten too. To mitigate the impact of such
cases on retrieval accuracy and fully mine the information of
the input images, we propose a dual-anchor triplet loss, whose
formulation is shown in (3) shown at the bottom of this page. The
dual-anchor triplet loss function contains three parts, with the
first part the same as the original triplet loss function. The second
part aims to enlarge the distance between positive samples and
negative samples, and shorten the distance between positive
samples and anchor samples in the feature space, where P is
regarded as another anchor to calculate distance difference. To
further shorten the distance between similar images, a distance
constraint between A and P is added to the loss function, where
λ serves as a weight parameter

L(A,P,N, ω) =
1

N

N∑
i=1

{max(‖ϕ(A,ω)− ϕ(P, ω)‖2

− ‖ϕ(A,ω)− ϕ(N,ω)‖2 + α, 0)}
(2)

In the training process, Adam optimizer is selected for
model optimization. The gradient calculation formulas of
the dual-anchor triplet loss function are list below, where
li and hi (i = 1, 2, 3) are intermediate variables, and
dij (i, j = A, P, N) represents the Euclidean distance be-
tween sample i and j. According to (4) to (10), the gradient of the
dual-anchor triplet loss function for each batch can be obtained
by ϕ(A, ω), ϕ(P, ω), ϕ(N, ω), ∂ϕ(A, ω)

∂ω , ∂ϕ(P, ω)
∂ω , ∂ϕ(N, ω)

∂ω ,
which are calculated in the forward and backward propagation of
the network. The gradient is further used for updating network
parameters. The details of the training process are shown in

Algorithm 1:

∂L∗(A,P,N, ω)
∂ω

=
1

N

N∑
i=1

(l1 + l2 + l3) (4)

l1 =
{
h1dAP−dAN+α>0
0dAP−dAN+α<0 (5)

l2 =
{
h2dPA−dPN+α>0
0dPA−dPN+α<0 (6)

l3 =
{
h3dAP−α>0
0dAP−α<0 (7)

h1 = 2 ∗ (ϕ(A,ω)− ϕ(P, ω))∂ϕ(A,ω)−∂ϕ(P,ω)
∂ω

−2 ∗ (ϕ(A,ω)− ϕ(N,ω))∂ϕ(A,ω)−∂ϕ(N,ω)
∂ω

(8)

h2 = 2 ∗ (ϕ(P, ω)− ϕ(A,ω))∂ϕ(P,ω)−∂ϕ(A,ω)
∂ω

−2 ∗ (ϕ(P, ω)− ϕ(N,ω))∂ϕ(P,ω)−∂ϕ(N,ω)
∂ω

(9)

h3 = 2 ∗ λ ∗ (ϕ(A,ω)− ϕ(P, ω))
∂ϕ(A,ω)− ∂ϕ(P, ω)

∂ω
.

(10)

III. EXPERIMENTS AND RESULTS

Section III-A briefly introduces the datasets involved in this
article. Section III-B introduces the experiment implementation
details and evaluation metrics. Section III-C describes the hy-
perparameter settings of the dual-anchor triplet loss function and
the similarity calculation of the nonlocal module. Section III-D,
III-E evaluate the effectiveness of the dual-anchor triplet loss
function and the T-NLNN model.

A. Datasets

The experiments in this article involve three public HRRSI
datasets: UCM [44], AID [45], and PatternNet [46]. Table I gives
a brief introduction regarding the class numbers, the number
of images, resolution, and image sizes. Sample images of each
dataset are present in Figs. 4–6.

L∗(A,P,N, ω) =
1

N

N∑
i=1

{max(‖ϕ(A,ω)− ϕ(P, ω)‖2 − ‖ϕ(A,ω)− ϕ(N,ω)‖2 + α, 0)

+max(‖ϕ(P, ω)− ϕ(A,ω)‖2 − ‖ϕ(P, ω)− ϕ(N,ω)‖2 + α, 0)

+λ ∗ ‖ϕ(A,ω)− ϕ(P, ω)‖2}.
(3)
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Fig. 4. Example images in the UCM dataset.

TABLE I
ATTRIBUTES OF THE DATASETS

Algorithm 1: Optimization for Learning T-NLNN
Input:
training sample images {A, P, N}
Output:
network parameters {ω}
Parameter setting:
learning rate ε, epoch κ, exponential decay rates for the
moment estimates ρ1 , ρ2, constant δ

Initialization:
network parameters ω0, 1st moment vector m0, 2nd

moment vector v0, time step t0
while κt < κ do:
t← t+ 1
gt ← ∂L∗t(A,P,N,ωt−1)

∂ω
mt ← ρ1 ∗mt−1 + (1− ρ1) ∗ gt
vt ← ρ2 ∗ vt−1 + (1− ρ2) ∗ gt ∗ gt
m̂t ← mt/(1− ρt1)
v̂t ← vt/(1− ρt2)
ωt ← ωt−1 − ε ∗ m̂t/(

√
v̂t + δ)

end

B. Implementation Details and Evaluation Metrics

1) Implementation Details: The datasets used in the follow-
ing experiments are divided randomly in the form of 50% for
model training and 50% for testing. As for data preprocessing,
we first unify the size of input images to a size of 224∗224, and
then performs random flipping on them in both horizontal and
vertical directions (50% probability of flipping). For each batch,
the image triplets (i.e., anchor, positive, and negative image) are

selected randomly. The Adam optimizer is selected for model
optimization with the learning rate set to 1e-4, epoch set to 30,
and batch size set to 30. All experiments are implemented with
Pytorch 1.3, run on Ubuntu 16.04 with NVIDIA Geforce RTX
2080ti.

2) Evaluation Metrics: To compare T-NLNN with existing
retrieval algorithms, we choose the average normalized modified
retrieval rank (ANMRR), mean average precision (mAP), pre-
cision at k (P@k), and recall as the evaluation metrics to assess
the retrieval performance. The definitions of these metrics are
presented below.

ANMRR ranges from 0 to 1, with a lower value meaning better
retrieval performance. For a query image q, R(k) denotes the
rank of the k th similar image in the returned image sequence,
which is defined as (11). K(q) is usually set as 2NG(q) , where
NG(q) represents the number of similar images corresponding
to image q in the whole image database. We can then obtain the
average rank AR(q) as shown in (12):

R(k) =

{
R(k), R(k) ≤ K(q)
1.25K(q), otherwise

(11)

AR(q) =
1

NG(q)

NG(q)∑
k=1

R(k). (12)

The normalized modified retrieval rank is defined as (13).
After NQ queries, the ANMRR can be calculated as (14):

NMRR =
AR(q)− 0.5[1 +NG(q)]

1.25K(q)− 0.5[1 +NG(q)]
(13)

ANMRR =
1

NQ

NQ∑
q=1

NMRR(q). (14)

The recall refers to the the proportion of returned similar
images to the number of all images in the image dataset. The
precision P refers to the proportion of similar images to the
number of all returned images. P@k represents the precision
at cutoff k. mAP, defined as (15), is the average of all average
precision from all queries, where rel(k) equals 1 if the image
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Fig. 5. Example images in the AID dataset.

TABLE II
MAP VALUES OF DIFFERENT HYPERPARAMETERS COMBINATION ON UCM

at rank k is a similar image and 0 otherwise. n is the number of
the returned images and Ns represents the number of similar
images in returned images.

mAP =
1

Q

Q∑
q−1

∑n
k=1 (P (k) ∗ rel(k))

Ns
. (15)

C. Key Parameters Grid Search of the Dual-Anchor Triplet
Loss and the Similarity Function Selection of the
Nonlocal Module

The dual-anchor triplet loss function contains two key hy-
perparameters, i.e., α, λ, and their values play an important
role in model training. To find an appropriate combination of
parameter values, we adopt the grid search method. UCM dataset
is used in the parameter section process, and the experimental
results are present in Table II, where the bold value (0.9482)
suggests the highest mAP obtained under different parameter
value combinations. From Table II, we observe that the mAP
tends to increase first and then decrease, with the increase of

α or λ. We believe that, as the value of α or λ increases, the
similar images are closer and dissimilar images are farther in
feature space, which is conducive to the improvement of retrieval
accuracy. However, when the value of α or λ becomes too large,
they make the network difficult to converge, thus affecting the
final retrieval accuracy. According to Table II, a hyperparameter
setting of α = 0.8 and λ = 0.25 is applied to all subsequent
experiments.

Given that the similarity calculation function in the nonlocal
module also plays an essential role in model training, we explore
the performance of four similarity calculation functions on the
UCM dataset: Concatenation, Gaussian, Embedded Gaussian,
and Dot product. The experimental results are present in Fig. 7.
We observe that the precision-recall curves corresponding to
the four similarity calculation functions have a high degree of
overlap and no particular function is superior than others. Given
the slight performance advantage of Embedded Gaussian over
other functions, we choose Embedded Gaussian as the similar-
ity calculation function of the nonlocal module in subsequent
experiments.
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Fig. 6. Example images in the PatternNet dataset.

Fig. 7. Precision-recall curves of different similarity calculation functions in
nonlocal module.

D. Comparison between the Dual-Anchor Triplet Loss and the
Original Triplet Loss

In this section, we compare the effectiveness of two loss
functions on three public datasets (UCM, AID, and PatternNet).
The experimental results are present in Fig. 8. We find that
the retrieval performance of the dual-anchor triplet loss has
varying degrees of accuracy improvement compared with the
original triplet loss on all three datasets, with the largest mAP
improvement on the UCM dataset. Later, we use the model
trained by the two loss functions to extract image features of
the UCM dataset. To better understand the difference in feature
distribution in the feature space, we use t-sne [47] to visualize
image fatures obtained with different loss function by projecting
the high-dimension image features into a 2-D feature space
(Fig. 9). Features in (a) are obtained by T-NLNN optimized
with the original triplet loss function, while features in (b) are
obtained by T-NLNN optimized with the dual-anchor triplet loss
function. From Fig. 9, we can see from the 2-D map that the
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TABLE III
OVERALL RESULTS ON UCM

Fig. 8. mAP of the two loss functions on different datasets.

distance between dissimilar image features is larger and the
distribution of similar image features is more compact in (b),
compared to (a). For example, the features of sparse-residential
and medium-residential (in red circle) have a certain degree of
overlapping in (a), while the overlapping between the two in (b)
is significantly reduced. Features of beach and chaparral (in blue
circle) are distributed in long strips in (a), while the same features
in (b) are distributed in a more compact manner. As highly
distinguishable features generally lead to better retrieval results,
our improvement based on the original triplet loss function is
proven to be effective.

E. Performance Evaluation of the Proposed T-NLNN

To verify validity of the proposed T-NLNN model on high-
resolution CBRSIR task, this section compares T-NLNN with
six other retrieval algorithms (fine-tuned VGG16 (VGG16_FT),
LDCNN [10], DFLA [17], Siamese Neural Network (Siame-
seNN), DML [39], and TLDCNN [40]). Three public datasets
are used: UCM, AID, and PatternNet. It should be noted that
all methods utilize the same data partition strategy and training
hyperparameters during the experiment. VGG16_FT, LDCNN,
and DFLA are trained within the framework of scene classifi-
cation, and others are trained following a DML strategy. For

SiameseNN and DFLA, we take the features of the VGG16
model as the backbone. For T-NLNN, we use the original
triplet loss function and the dual-anchor triplet loss function,
separately, to train the model. Then, we use them for subse-
quent retrieval evaluation. The retrieval evaluation results of
each method on each dataset are present in Tables III–V (“T-
NLNN+TL” means T-NLNN trained by the original triplet loss”
and “T-NLNN+DATL” means T-NLNN trained by the dual-
anchor triplet loss). It can be seen that VGG16_FT, LDCNN,
and DFLA perform worse than other methods on all datasets,
which indicate the effectiveness of DML in the CBRSIR task.
From the retrieval results of SiameseNN and DML (VGG16),
we observe that three-branch networks outperform two-branch
networks with the same backbone. For the three-branch network,
the T-NLNN model trained with the original triplet loss function
performs better than DML (VGG16) and TLDCNN, while the
retrieval accuracy is slightly lower on the PatternNet dataset.
This phenomenon is presumably due to the high image quality in
the PatternNet dataset, which leads to less demanding require-
ment for feature extraction. After training with the proposed
dual-anchor triplet loss function, the retrieval accuracy obtained
by T-NLNN model can be further improved. The above results
suggest that the proposed T- NLNN method achieves higher
retrieval performance that surpasses the other methods, with the
largest improvement in the UCM dataset.

Besides accuracy, we also need to consider efficiency that
determines a model’s practicability in the retrieval process. We
use the UCM dataset to evaluate the retrieval time consumption
of each model. We count the time it takes for each model to finish
a complete retrieval process, including the feature extraction
of the query images and the return of retrieved images. The
time consumption for each model is shown in Table VI. For
single-branch networks, VGG16_FT and LDCNN take less time
than DFLA in the image feature extraction process. Due to the
addition of channels and spatial attention modules, the time
taken for DFLA to extract image features has increased signifi-
cantly. For the return of retrieved images, the time consumption
varies little among different methods, with DML (VGG16)
taking the longest retrieval time (0.042 s). All in all, we find that
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Fig. 9. Feature visualization of images on UCM dataset using t-sne. Features in (a) are obtained by T-NLNN optimized with the original triplet loss function,
while features in (b) are obtained by T-NLNN optimized with the dual-anchor triplet loss function.
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TABLE IV
OVERALL RESULTS ON AID

TABLE V
OVERALL RESULTS ON PATTERNNET

TABLE VI
TIME CONSUMPTION OF EACH METHOD

multibranch networks bring improvement of retrieval accuracy
at the expense of the reduction in efficiency. In practical appli-
cations, the retrieval accuracy and retrieval efficiency should be
weighed to select the most suitable model.

In addition, we evaluated each category’s retrieval accuracy of
four deep metric-learning-based methods (SiameseNN, DML,
TLDCNN, and T-NLNN) on each dataset. The results are present

in Figs. 10 –12, where the ordinate is the ANMRR (the smaller
the value, the higher the retrieval accuracy). We observe that all
four methods have great retrieval performance on simple scenes
such as beach, forest, and parking. In the UCM and PatternNet
dataset, T-NLNN outperforms other methods in most categories,
especially in buildings of different densities. In the AID dataset,
T-NLNN has a greater retrieval accuracy improvement in



ZHANG et al.: TRIPLET NONLOCAL NEURAL NETWORK WITH DUAL-ANCHOR TRIPLET LOSS 2721

Fig. 10. Retrieval accuracy (ANMRR) of each class on UCM dataset.

Fig. 11. Retrieval accuracy (ANMRR) of each class on AID dataset.

Fig. 12. Retrieval accuracy (ANMRR) of each class on PatternNet dataset.
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categories such as commercial, park, and square. We believe that
the images of the above categories tend to have more complex
content and large objects. Better feature extraction of these
images requires more attention to global information, which is
the advantage of T-NLNN. At the same time, TNLNN also has
its limitations, evidenced by the limited retrieval accuracy for
images with simple backgrounds, e.g., bareland and desert.

IV. CONCLUSION

In this article, we design a T-NLNN for high-resolution CBR-
SIR. The proposed T-NLNN follows the three-branch network
design, with shared weights in each branch. With the purpose of
fully mining the input sample information, we further propose
a dual-anchor triplet loss function. We evaluate T-NLNN on
three public high-resolution remote sensing datasets, and the
experimental results suggest that T-NLNN has discriminative
feature learning ability and outperforms other existing algo-
rithms. Experimental results further show that the proposed
dual-anchor triplet loss function outperforms the original triplet
loss function on all three public datasets. While T-NLNN still
has its limitations, evidenced by its limited retrieval accuracy for
images with simple backgrounds, we believe its advantages still
outweigh its disadvantages, and we aim to solve this problem
by further improving the T-NLNN design in our future work.
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