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Exploiting Low-Rank and Sparse Properties in
Strided Convolution Matrix for Pansharpening

Feng Zhang, Haoran Zhang , Kai Zhang , Yinghui Xing , Jiande Sun , and Quanyuan Wu

Abstract—Fusion of low spatial resolution multispectral (LR
MS) and panchromatic (PAN) images to acquire high spatial res-
olution multispectral (HR MS) images has attracted increasing
attention in recent years. In this article, we first utilize the form of
convolution matrix (CM) to formulate the image fusion problem. In
order to reduce the complexity of CM, the step size is introduced
and strided convolution matrix (SCM) is constructed. Then, we
explore the low-rank property in SCM and impose the prior on
the spatial and spectral degradation model of LR MS and PAN
images. Meanwhile, sparsity in SCM is considered to further en-
hance the local structures in the fused image. Finally, the proposed
model is optimized efficiently by the alternative direction method of
multipliers. By exploiting the low-rank and sparse priors in SCM
of HR MS image, the local and global structures can be better
preserved. The experimental results on the reduced-resolution and
full-resolution datasets also show that the proposed method behaves
well in qualitative and quantitative assessments.

Index Terms—Image fusion, low-rank and sparse priors,
multispectral image, panchromatic (PAN) image, strided
convolution matrix (SCM).

I. INTRODUCTION

MULTISOURCE images captured by different sensors can
provide a more comprehensive understanding for the

observed scene than the images from the single sensor. In order
to efficiently use the redundant and complementary information
among multisource images, image fusion technique is proposed,
which can achieve efficient restoration [1], [2] and enhancement
[3], [4] of different kinds of images. For example, image fusion
is also applied to the integration of low spatial resolution mul-
tispectral (LR MS) images and panchromatic (PAN) images to
generate high spatial resolution multispectral (HR MS) images.
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So far, the fusion of LR MS and PAN images has been
extensively studied and a great variety of methods are proposed.
Generally, these methods can be divided into the following four
categories [5]–[7].

1) Component substitution-based methods.
2) Multiresolution analysis (MRA)-based methods.
3) Degradation model-based methods.
4) Deep neural network (DNN)-based methods.
In the first category, the LR MS image is interpolated to match

the size of the PAN image, and then, the spatial component of
the LR MS image is synthesized by some methods [8]–[10]. For
instance, adaptive Gram–Schmidt (GSA) [11] is proposed to
adaptively estimate the combination weights of different bands.
After a specific projection, the spatial component of the LR MS
image is substituted by the PAN image and the desired HR MS
image can be obtained by the corresponding inverse transform.
The methods based on component substitution behave well in
computational efficiency and implementation simplicity. But
the spectral distortions usually appear in the fused results due
to the differences in the spectral range between MS and PAN
images [12].

For the second category of methods, the spatial information in
the PAN image is extracted by some MRA tools and then injected
into the interpolated LR MS image because it is assumed that
only abundant spatial details are absent in LR MS image. Thus,
the selection of spatial information analysis method has an im-
portant influence on the fused images. In [13], wavelet transform
is considered to find proper spatial details, in which the spectral
response of the MS image is utilized for weight calculation.
Shah et al. [14] combined adaptive principal component analysis
(APCA) and contourlet [15] to preserve the spatial details, which
can overcome the limitation of the wavelet to better represent
the directional information in images. In [16], Choi et al. also
employed curvelet transform [17] to better represent the edges
in the fused images because it is effective to improve the spatial
resolution by enhancing the edges. Subsequently, some methods
based on MRA [18]–[20] are also developed by estimating more
accurate gain coefficients to achieve better fusion results. These
methods have a better performance in spectral preservation but
some spatial details from PAN images are excessively injected
into LR MS images.

In the third category, LR MS and PAN images are viewed
as the degradation results of the HR MS image in spatial and
spectral domains, respectively. Therefore, HR MS images can be
produced by solving the spatial and spectral degradation model,
which is underdetermined and needs to impose valid priors for
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the regularization of the solution space. In [21], the sparse prior
is exploited and the reconstruction of HR MS images is realized
by sharing the coding coefficients over HR/LR dictionary pair.
Then, structure sparse prior is proposed in [22] to further explore
the correlation among the bands of MS images. Besides, Wang
et al. [23] used an autoregressive model to describe the local
similarity in MS images. Yin [24] proposed a local adaptive
sparse representation scheme to capture the similarity between
LR MS and PAN images. Moreover, nonnegativity [25] and
total variation [26] are also adopted to regularize the spatial
and spectral degradation model. For instance, Chen et al. [27]
proposed the dynamic gradient sparse prior to enhance the edge
information in the fusion results. Deng et al. [28] further adopted
the hyper-Laplacian prior to capture the differences between
LR MS images and the fused images in gradient domain. For
degradation model-based methods, the spatial and spectral in-
formation is preserved well in the fused images. However, the
high computation complexity and generalization of priors limit
their use.

Recently, the fourth category is arousing more attention for
the fusion of LR MS and PAN images owing to the powerful
representation ability of DNN. For example, Huang et al. [29]
presented a stacked sparse denoising autoencoder in which DNN
is constructed to learn the mapping between LR and HR image
patches. Shao et al. [30] designed two DNNs to extract the salient
features in LR MS and PAN images, and then, the learned resid-
ual is injected into the upsampled LR MS images. In [31], two
separate branch networks are also introduced and the subpixel
convolutional layer is added into DNN to obtain detailed feature
maps. Subsequently, different networks [32]–[34] are further
attempted for more subtle feature extraction. In [35], PanNet
is constructed to model the spatial details in the fused images
through residual learning. Then, PanNet is further improved
in [36] by introducing the multiscale dilated blocks to capture
the spatial information better. Moreover, Wei et al. [37] also
employed residual learning to boost the performance of the fused
images. He et al. [38] designed different convolution neural
networks (CNNs) to extract proper details for injection. Deng
et al. [39] also developed CNNs for pansharpening, where the
difference images between PAN and LR MS images are fed into
the networks. Guo et al. [40] combined the multiscale recursive
blocks and the anisotropic total variation to overcome the spatial
distortions. However, DNNs are usually trained on degraded data
because there are no corresponding HR MS images for training
in the real world. Thus, it is promising to propose new DNN
architectures for real data training.

As a noticeable property in images, low-rank prior has been
explored widely for image restoration [41]–[43] over the past
decade. For example, Mao et al. [41] applied low-rank matrix
completion on image and video recovery. The low-rank structure
is also utilized for the fusion of LR MS and PAN images
[44]–[46]. He et al. [44] simultaneously considered spatial and
spectral sparse priors to acquire the fused image, in which the
low-rank property is revealed by rearranging each band of the
MS image into a matrix. However, the low-rank property cannot
be satisfied well in [44] because MS images only contain several
bands, e.g., 4 or 8 bands. In [46], a low-rank pansharpening

method is proposed from a new perspective of offset learning
and spatial and spectral distortions are reduced. However, the
formulations in these methods can only deal with the global
structures in MS images, which ignore the local patterns in the
images to be fused. Therefore, the fine details should be analyzed
locally in order to improve the reconstruction quality of the fused
image. Besides, the low-rank property in MS images can be
achieved more decently by local modeling.

To cope with the mentioned issues, we propose a new LR
MS and PAN image fusion method by exploring the low-rank
and sparse properties in strided convolution matrix (SCM) in
this article. In the proposed method, SCM is first developed
to reduce the computational time for convolution matrix (CM)
by introducing the step size, and then, the low-rank property in
SCM constructed by MS images is deeply analyzed and verified.
In the proposed method, the spatial and spectral degradation
model is established from the perspective of the observation
relationship among source images and HR MS images. Then,
the low-rank prior is adopted to regularize the ill-posed model,
which can deal with the global and local structures efficiently.
Besides, a sparse representation model for the SCM of the fused
image is introduced and combined with the basic fusion model,
which can further improve the reconstruction performance to
produce better fused images. Finally, an optimization algorithm
is derived for the proposed model, which follows the framework
of the alternative direction method of multipliers (ADMM)
[47]. The fusion results on the datasets from different satellites
demonstrate that the proposed method can achieve a better fusion
performance. Some parameters are further investigated for a
comprehensive understanding of the proposed method.

The remainder of the article is organized as follows. Section II
gives the formulation of SCM in detail and analyzes the low-rank
property of SCM constructed by MS images. The pansharpening
method is proposed in Section III by taking the low-rank and
sparse priors of SCM into account. Then, the optimization algo-
rithm is designed to solve the proposed pansharpening model in
Section IV. Experiments on different datasets are conducted for
the comparison and analysis in Section V. Finally, conclusions
are presented in Section VI.

II. STRIDED CONVOLUTION MATRIX

A. Convolution Matrix

CM is originally introduced in [48] to calculate a more
accurate blur kernel for blind image deblurring. For an image
E ∈ Rl1×l2 with size l1 × l2, its convolution result with a kernel
f ∈ Rh1×h2 can be equivalently written as the following matrix
multiplication form:

v (E ∗ f) = Mhv (f) (1)

where v(·) is the vectorization of matrix and ∗ stands for the
convolution operation. Mh is the corresponding matrix, which
is called as the CM of E. h = {h1, h2} is the kernel size.
Excluding the pixels influenced by boundary conditions, the size
of Mh is (l1 − h1 + 1)(l2 − h2 + 1)× h1h2. Besides, the first
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convolution eigenvalue σ1(E) of the image E is defined as

σ1 (E) = max
f
‖E ∗ f‖F , s.t.‖f‖F = 1 (2)

where ‖ · ‖F is the Frobenius norm of a matrix. Then, the
solution by maximizing the above equation is regarded as the
first convolution eigenvector f1 ∈ Rh1×h2 . Naturally, the ith
(i = 2, . . . , h1h2) convolution eigenvalue can be computed by

σi (E) = max
f
‖E ∗ fi‖F , s.t.‖fi‖F = 1, 〈fi, fj〉 = 0 ∀j < i

(3)
where 〈·, ·〉 is the inner product between two variables. In [48],
it is proved that the convolution eigenvalues of the image E
are exactly the singular values of its associated CM Mh. So,
the global low-rank property in E can be locally depicted by
minimizing the nuclear norm of Mh, because CM is com-
posed by aggregating local patches together. Then, the nuclear
norm minimization (NNM) of CM is used for image and video
completion and produces satisfactory results [49]. However, the
computational complexity for the optimization of NNM cannot
be neglected, because CM will be very large by the formulation
in (1), especially for high-dimensional data or large kernel.

B. Strided Convolution Matrix

In order to reduce the complexity, the sampling distance is
increased and the convolution of f with imageE is implemented
with step size s = {s1, s2} (1 ≤ s1 ≤ h1, 1 ≤ s2 ≤ h2), which
can be reformulated as

v (Es ∗ f) = Mh,sv (f) (4)

where Es denotes the sampled elements in E for the corre-
sponding convolution with f , which is controlled by the step
size s. s1 and s2 are the step size on horizontal and vertical
directions, respectively. Then, Mh,s is the SCM, whose size is
((l1 − h1)/s1 + 1)((l2 − h2)/s2 + 1)× h1h2. Obviously, CM
is a special case of SCM when s1 and s2 are both set as 1. When
the step size is larger than 1, Es ∗ f only contains part of the
information in E ∗ f . However, the entire information of E can
be found in SCM. Thus, the low-rank property in E also can be
preserved in SCM.

In order to validate the low-rank prior in SCM, 500 MS
images with size 256× 256× 4, collected from Sundarbans,
India, by QuickBird satellite, are employed and converted into
their corresponding SCM, in which h1 and h2 are set as 16 and
the step sizes s1 and s2 increase from 1 to 16. Then, singular
value decomposition (SVD) is implemented on SCMs with the
same s and the means of singular values from the same index
are calculated and shown in Fig. 1. From Fig. 1(a), we can see
that the singular values dramatically decrease with the increase
of index, particularly for the indexes smaller than 15. Besides,
we also display the ratio of the other singular values to the first
singular value in Fig. 1(b). It can be found that the values are
very close to zero when the index is larger than 50, which implies
the low-rank property in SCM.

To ensure the low-rank property in CM and SCM, sin-
gular value thresholding (SVT) [50] is utilized to up-
date them in most of the optimization algorithms, which

Fig. 1. Low-rank property in SCM with different s.

usually dominate their complexity. For CM, the com-
plexity is o(2(l1 − h1 + 1)(l2 − h2 + 1)h2

1h
2
2) in SVT step.

The update of SCM through SVT has a complexity of
o(2(l1 − h1 + s1)(l2 − h2 + s2)h

2
1h

2
2/s1s2). Besides, CM will

need larger memory compared with SCM [50]. Thus, the mem-
ory requirements and complexity will be reduced a lot by using
SCM with the increasing of s.

III. IMAGE FUSION USING LOW-RANK AND SPARSE

PROPERTIES IN SCM

In this section, the low-rank property in SCM is introduced
for the fusion of LR MS and PAN images. Besides, the sparse
representation model is also considered for the local spatial and
spectral structure preservation. Finally, the fusion method for
LR MS and PAN images is proposed by combining the above
degradation model and priors in SCM.

A. Low-Rank SCM for Image Fusion

In this article, LR MS and PAN images are denoted as
L ∈ Rm×n×4 and P ∈ RM×N , respectively. Then, the size is
M ×N × 4 for the desired HR MS image H. Here, M =
rm and N = rn are the width and height of the fused im-
age. r is the spatial resolution ratio between LR MS and
HR MS images. In the proposed method, P is rearranged
into SCM with the kernel size h = {h1, h2} and step size
s = {s1, s2}, which is denoted by Ph,s ∈ RK×h1h2 . K equals
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((M − h1)/s1 + 1)((N − h2)/s2 + 1). Taking the spatial res-
olution difference into consideration, the SCM ofL is LhL,sL ∈
R4K×hL

1 hL
2 , in which hL = {hL

1=h1/r, h
L
2 = h2/r} and sL =

{sL1=s1/r, s
L
2 = s2/r}. For convenience, the subscripts of the

symbol for SCM are omitted and LR MS and PAN images are
represented as L and P.

For LR MS and PAN images, the spatial and spectral degra-
dation relationships can be defined as

L = HBR+ n1 (5)

P = SH+ n2 (6)

where H ∈ R4K×h1h2 is the SCM of the desired HR MS image.
R ∈ Rh1h2×hL

1 hL
2 and B ∈ Rh1h2×h1h2 are the downsampling

matrix and blur matrix. The spectral response matrix is S ∈
RK×4K . n1 and n2 indicate the Gaussian white noises.

According to the analysis in Fig. 1, it is assumed that H
possesses the low-rank property in the proposed method. Then,
the basic fusion model can be written as follows by combining
the low-rank constraint:

min
H

rank (H) +
α

2
‖L−HBR‖2F +

β

2
‖P− SH‖2F (7)

where rank(H) is the rank of H. α and β are the tradeoff
parameters. Obviously, (7) is difficult to optimize due to its
nonconvexity. Then, the rank constraint is relaxed by minimizing
the nuclear norm under broad conditions, which is rewritten as

min
H
‖H‖∗ +

α

2
‖L−HBR‖2F +

β

2
‖P− SH‖2F (8)

where ‖ · ‖∗ denotes the nuclear norm which is the sum of all
singular values of a matrix. In (8), the global and local structures
in the fused HR MS image can be simultaneously exploited by
the low-rank constraint on H. To obtain more accurate solutions
of (8), more priors, such as sparsity and similarity, should be
considered.

B. Sparse Prior

In the proposed method, sparse representation is utilized. It
is proved that sparse prior can achieve a great performance in
the ill-posed problem of image restoration [51], [52]. In the
proposed method, one row in H is supposed to have a sparse
representation over a dictionary D with the proper size, which
is defined as

min
ai

‖ai‖0 s.t .hT
i = Dai + n3 (9)

wherehi is the ith row inH.T stands for the transpose operation.
ai is the corresponding sparse coefficient. The L0-norm of a
vector is expressed by ‖ · ‖0. n3 is the noise. Accounting all
rows of H, (9) can be equivalently rewritten as follows with the
relaxation of sparse constraint:

min
ai

4K∑
i=1

‖ai‖1 s.t. HT = DA+ n3 (10)

where A = [a1,a2,a3, . . . ,aN ] ∈ RL×4K . L is the length of
sparse coefficient, which also denotes the total number of atoms
in D. L1-norm ‖ · ‖1 is the sum of the absolute values of all

vector entries. In the proposed method, D is pretrained by
using PT . Because the differences between PAN and the fused
images are mainly caused by spectral range, they share the same
spatial information and can be represented efficiently by the
same dictionary. Therefore, D is learned from PAN image by
online dictionary learning [53] in advance.

C. Proposed Model

By incorporating the above priors, the well-posed LR MS and
PAN image fusion model is modeled as

min
H,A
‖H‖∗ +

α

2
‖L−HBR‖2F +

β

2
‖P− SH‖2F

+ λ

4K∑
i=1

‖ai‖1

s.t. HT = DA+ n3 (11)

where λ controls the sparse regularization. According to the
formulation in (11), spatial and spectral fidelity terms are regu-
larized by the low-rank property in SCM and the sparse represen-
tation model for H is adopted to ensure more reliable recovery.

IV. OPTIMIZATION ALGORITHM

In this section, the optimization algorithm is derived for the
proposed fusion model. Because the problem in (11) is highly
nonconvex, it is solved alternatively and iteratively through
ADMM. Considering the coupling between fidelity terms and
low-rank constraint, an auxiliary variable X is introduced to
replace H in the first term of (11). Then, (11) is reformulated as

min
H,A,X

‖X‖∗ +
α

2
‖L−HBR‖2F +

β

2
‖P− SH‖2F

+ λ

4K∑
i=1

‖ai‖1

s.t. HT = DA+ n3,H = X. (12)

Then, the augmented Largrange function is

min
H,A,X,Y1,Y2

‖X‖∗ +
α

2
‖L−HBR‖2F +

β

2
‖P− SH‖2F

+ λ

4K∑
i=1

‖ai‖1 +
μ1

2

∥∥HT −DA
∥∥2
F
+
〈
Y1,H

T −DA
〉

+
μ2

2
‖H−X‖2F + 〈Y2,H−X〉 (13)

where Y1 and Y2 are Lagrange multipliers. μ1 and μ2 are the
penalty parameters. According to the framework of ADMM,
these variables are updated by fixing the other variables.

For H, its subproblem can be simplified as

FH =
α

2
‖L−HBR‖2F +

β

2
‖P− SH‖2F

+
μ1

2

∥∥HT −DA
∥∥2
F
+
〈
Y1,H

T −DA
〉

+
μ2

2
‖H−X‖2F + 〈Y2,H−X〉 . (14)
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Then, the derivative of FH w.r.t. H is

∂FH

∂H = αHBRRTBT − αLRTBT + βSTSH− βSTP
+μ1H− μ1A

TDT +YT
1 + μ2H− μ2X+Y2.

(15)
By making (15) equal to zero, the optimalH can be calculated

by

Z1H+HZ2 = Z3 (16)

where

Z1 = βSTS+ μ1I (17)

Z2 = αBRRTBT + μ2I (18)

Z3 = αLRTBT + βSTP+ μ1A
TDT + μ2X−YT

1 −Y2

(19)

where I is the indent matrix with matched size. Obviously, (16) is
typical of the Sylvester equation whose sufficient and necessary
condition for a unique solution is thatZ1 and−Z2 do not have the
same eigenvalues [54]. Fortunately, Z1 and Z2 are both positive
definite matrices. Thus, (16) has a unique solution for H.

The subproblem of X can be rewritten as

FX = ‖X‖∗ +
μ2

2
‖H−X‖2F + 〈Y2,H−X〉 . (20)

X can be updated directly by SVT in [50], which is

X = USτ (Σ)VT (21)

where the SVD of ZX is UΣVT and ZX = H+ Y2

μ2
. τ = 1

μ2
.

The soft-thresholding operator is defined as

Sτ (x) =
⎧⎨
⎩

x− τ, if x > τ
x+ τ, if x < −τ

0, otherwise.
(22)

For ai, the subproblem is

Fai
= λ‖ai‖1 +

μ1

2
‖wi −Dai‖2F (23)

wherewi is the ith column inW andW = HT + Y1

μ1
. Equation

(23) can be quickly solved by the least angle regression (LARS)
algorithm [55] with accurate reconstruction.

Besides, the multipliers Y1 and Y2 are updated by

Y1 = Y1 + μ1

(
HT −DA

)
(24)

Y2 = Y2 + μ2 (H−X) . (25)

Then, the penalty parameters increase with a small gain

μ1= min (ρμ1, μmax) (26)

μ2= min (ρμ2, μmax) (27)

where ρ is the gain coefficient larger than 1. Finally, the iteration
is stopped when the maximum iteration number is reached or the
minimum reconstructed error ‖L−HBR‖2F /‖L‖2F is smaller
than δ = 10−10. The iteration scheme of the optimization algo-
rithm is summarized in Algorithm 1.

Algorithm 1: ADMM for Solving the Fusion Method
Input: PAN image P, LR MS image L, downsampling
matrix R, blur matrix B, spectral response matrix S,
parameters L, h, s, α, β, and λ;

Initialization: H0 = X0 = 0, Y1 = 0, Y2 = 0,
μ0
1 = μ0

2 = 10−3, ρ = 1.1, μmax = 1015, δ = 10−10,
maxIter = 30, t = 0;

Training dictionary D from PT ;
while ‖L−HBR‖2F /‖L‖2F > δ and t < maxIter do
1. Update Ht+1 via (16);
2. Update Xt+1 via (21);
3. for i = 1 to 4K do
Update at+1

i via (23) by LARS;
end for;
4. Update Yt+1

1 and Yt+1
2 via (24) and (25);

5. Update μt+1
1 and μt+1

2 via (26) and (27);
6. t← t+ 1;
end
Output: HR MS image H.

V. EXPERIMENTS

In this section, the experiment datasets are introduced in
detail. In addition, parameter settings are also given. Then, we
analyze the fusion results of the proposed method and all com-
pared methods on different datasets. In addition, some important
parameters are also further investigated for a comprehensive
understanding.

A. Experiment Setup

In the experiment section, different datasets from QuickBird
and GeoEye-1 satellites are employed and fused. Because there
is no HR MS image, also termed as the reference image, for
a direct comparison, reduced-resolution datasets are produced
by downsampling and blurring from original source images
in order to verify the reconstruction performance. For exam-
ple, the 64× 64× 4 LR MS and 256× 256 PAN images in
Fig. 2(a) and (b) are generated from 256× 256× 4 HR MS
and 1024× 1024 HR PAN images by downsampling with ratio
4 and blurring, in which the blurring kernels are constructed
by the settings in [56]. The images in Fig. 2(c) and (d) are
produced in the same way. Then, the 256× 256× 4 fused
images of reduced-resolution datasets are directly compared
with the original HR MS images. There are four indexes for
quality assessment of reduced-resolution datasets, including Q4
[57], spectral angle mapper (SAM) [58], universal image quality
index (UIQI) [59], and Erreur Relative Globale Adimension-
nelle de Synthèse (ERGAS) [60]. Q4 and UIQI vary from 0
to 1 and the fusion results will be better for larger values. For
SAM and ERGAS, smaller values mean better fusion results
and the best value is 0. Besides, the fusion experiments are
also conducted on the full-resolution datasets in Fig. 2(e)–(h),
where the sizes of LR MS and PAN images are 64× 64× 4 and
256× 256 , respectively. For full-resolution datasets, there are
no reference images for comparisons. Thus, some no-reference



2654 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 2. Source images to be fused. (a) and (b) Reduced-resolution LR MS and PAN images from QuickBird. (c) and (d) Reduced-resolution LR MS and PAN
images from GeoEye-1. (e) and (f) Full-resolution LR MS and PAN images from QuickBird. (g) and (h) Full-resolution LR MS and PAN images from GeoEye-1.

Fig. 3. Influences of the kernel size and step size on the fusion results of the reduced-resolution GeoEye-1 and QuickBird datasets. (a) and (b) Kernel size and
step size on GeoEye-1 satellite. (c) and (d) Kernel size and step size on QuickBird satellite.

image quality indexes are adopted for assessment, such as DS ,
Dλ, and QNR [61]. The best values of DS and Dλ are 0. For
QNR, larger values mean better fused results. Besides, several
methods are employed for comparison, including generalized
intensity-hue-saturation (GIHS) [8], Gram–Schmidt (GS) [10],
proportional additive wavelet LHS (AWLP) [13], Indusion [18],
simultaneous image registration and fusion (SIRF) [27], low-
rank pansharpening (LRP) [46], pansharpening by convolution
neural networks (PNN) [32], deep residual pansharpening neural
network (DRPNN) [37], and PanNet [35].

B. Implementation Settings

This section gives the parameter settings in detail. In the
proposed method, several parameters, such as α, β, and λ,
have important influences on the fused results. For QuickBird
dataset, α, β, and λ are set as 27, 23, and 0.1, respectively. The
parameters α, β, and λ are set as 210, 25, and 0.01 for GeoEye-1
dataset. Taking the reconstruction performance and complexity
of the proposed method into consideration, h1 = h2 = 16 and
s1 = s2 = 8 are adopted for the formulation of the convolution
matrix. The number of atoms L in the dictionary is set as 100.
For a comprehensive understanding of the proposed method,

the influences of these parameters are analyzed in the following
sections.

C. Investigation on Kernel Size and Step Size in SCM

This section presents the influences of the kernel and step sizes
on the fusion results. Here, we consider the reduced-resolution
datasets from GeoEye-1 and QuickBird satellites. Fig. 3 demon-
strates the variations of all indexes in terms of different kernel
and step sizes. In Fig. 3(a), the kernel size increases from 8
to 24 with step size 4 and we can find the values vary with
the increasing of kernel size. Small kernel size will result in
much more complexity compared with other sizes. For large
kernel size, spatial effects will be introduced. The best values
of all indexes are produced when the kernel size equals 16. In
Fig. 3(b), the step size varies from 4 to 16 with step 4. It can
be observed that small step size can produce better values for
all indexes. When the step size is 4 for PAN image, LR MS
image is transformed into CM, because the step size for LR MS
image is 1. However, the running time for step size 4 is more
than about 43 times that of step size 8. Thus, the step size is set
as 8 in the proposed method by considering the computational
complexity for GeoEye-1 dataset. Besides, we can see similar
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Fig. 4. Influences of dictionary size on the fusion result of reduced-resolution
GeoEye-1 dataset.

Fig. 5. Influences of dictionary size on the fusion result of reduced-resolution
QuickBird dataset.

trends in Fig. 3(c) and (d). The kernel size and step size for
QuickBird dataset are also set as 16 and 8, respectively.

D. Investigation on Dictionary Size

The influences of dictionary size on fusion results are analyzed
in this section. The values of all indexes are normalized for
consistent presentation in Figs. 4 and 5. The dictionary size L
varies from 82 to 182 with step size 2 on the base number. In
Figs. 4 and 5, we can see that dictionary size has less effect on
the fusion results, although the values of all indexes generally
become better with the increase of dictionary size. However, the
complexity of the proposed method will increase with increasing
dictionary size. Therefore, the number of atoms in the dictionary
is set as 100 through a comprehensive evaluation.

E. Investigation on Regularization Parameters

In this section, we analyze the influences of regularization
parameters on the fusion results. The experiment is conducted
on the image pair on the reduced-resolution data of GeoEye-1
satellite. Fig. 6 displays the results of the image pair, where the
values on axes are the logs base 2 of α and β. From Fig. 6,

Fig. 6. Influences of α and β on fusion result of reduced-resolution GeoEye-1
dataset.

Fig. 7. Influences of λ on fusion result of reduced-resolution GeoEye-1
dataset.

one can observe that the index values vary with different α
and β. Q4 and UIQI decrease with the increasing of α and
β. For SAM, α has a more obvious impact on index values
than β. ERGAS has a similar trend with SAM. Besides, we
can find that the best values for all indexes cannot be achieved
on the same settings. Thus, α and β are set as 210 and 25

by considering the overall performance on GeoEye-1 dataset.
Besides, we also investigate the influences of λ on the fusion
results. For a uniform presentation, the values of all indexes are
normalized and illustrated in Fig. 7, in which the values on axes
are the logs base 10 of λ. From Fig. 7, it can be seen that the best
values are obtained when λ equals 0.01 for all indexes. So, the
images from GeoEye-1 satellite are fused with the settings. By
similar experiments, the settings for QuickBird satellite dataset
are found.

F. Experiments on Reduced-Resolution Datasets

The experimental results on the reduced-resolution datasets
are displayed and analyzed. Fig. 8 shows the fused images of
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Fig. 8. Fusion results of images from QuickBird. (a) Reference image. (b) GIHS [8]. (c) GS [10]. (d) AWLP [13]. (e) Indusion [18]. (f) SIRF [27]. (g) LRP [46].
(h) PNN [32]. (i) DRPNN [37]. (j) PanNet [35]. (k) Proposed method.

all methods on QuickBird dataset. Besides, we display the error
maps between fused images and the reference image for more
intuitive analysis. The reference image is placed in Fig. 8(a) and
all fused images are compared with it. From the images in Fig. 8,
it can be seen that spectral distortions appear in Fig. 8(b) and (c),
which may be caused by the spectral range differences in PAN
and MS images for component substitution-based methods. But
clear spatial information is provided by Fig. 8(b) and (c). The
spectral distortions can also be found in Fig. 8(d), especially
in the vegetation areas. In Fig. 8(e), we can see some obvious
spatial artifacts, which result from the decimation in Indusion
[18]. Similar spatial effects also can be observed in Fig. 8(h) and
spatial blurring is introduced. The spectral features in Fig. 8(i)
are preserved better than Fig. 8(g), but some differences still
exist. For the proposed method, the spatial and spectral infor-
mation in Fig. 8(k) is more consistent with that of the reference
in Fig. 8(a). Besides, a local area is framed by a red rectangle
and enlarged for a closer inspection. The enlarged areas are
put on the bottom right corner of the fused images. From these
areas, one can see that some subtle spectral information is lost
in Fig. 8(b)–(e). In the amplified area in Fig. 8(g), the spectral
features are promoted excessively. The spectral information is
preserved well in the local area of Fig. 8(k). Besides, we can

observe that the fusion performance of the proposed method is
better than that of the other methods from the error maps of the
fused images.

Table I lists the values of all evaluation indexes and the best
value for each index is labeled in bold. In Table I, we can see
that best SAM, UIQI, and ERGAS are from the result of the
proposed method, but AWLP [13] provides the best Q4. The
proposed method can achieve a better performance generally.

Fig. 9 shows the fusion results of all methods on GeoEye-1
dataset. In Fig. 9, it can be observed that spectral differences in
Fig. 9(b) and (c) are considerable compared with the reference
image in Fig. 9(a). The color tone of both images is different,
although GIHS [8] and GS [10] belong to the same kind of
methods. In the vegetation areas, there are some differences
in Fig. 9(d) and (e), but the color for the building areas is
maintained. Inversely, the spectral features in Fig. 9(f) are dis-
torted and the color of some vegetation areas becomes gray.
The spatial details are enhanced well in Fig. 9(g), but some
blurring effects should be noticed in Fig. 9(h), especially in
some edges of buildings. Fig. 9(k) behaves better in spatial
and spectral preservation. In addition, an interesting region is
selected and enlarged for comparison. In the amplified area of
Fig. 9(e), the spatial artifacts can be observed obviously. The
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TABLE I
NUMERICAL EVALUATION OF FUSED RESULTS ON REDUCED-RESOLUTION QUICKBIRD DATASET

Fig. 9. Fusion results of images from GeoEye-1. (a) Reference image. (b) GIHS [8]. (c) GS [10]. (d) AWLP [13]. (e) Indusion [18]. (f) SIRF [27]. (g) LRP [46].
(h) PNN [32]. (i) DRPNN [37]. (j) PanNet [35]. (k) Proposed method.

TABLE II
NUMERICAL EVALUATION OF FUSED RESULTS ON REDUCED-RESOLUTION GEOEYE-1 DATASET

spectral information is lost in the local area of Fig. 9(f). Besides,
the enlarged area of Fig. 9(k) is more consistent with that of the
reference image visually.

The numerical values of all indexes are provided in Table II
and the best values are highlighted. In Table II, we can see that
the best values of SAM, UIQI, and ERGAS are provided by the
proposed method. Although SIRF [27] provides the best Q4,
the proposed method also behaves better than the component

substation-based methods and PNN [32]. From the error maps,
it can be observed that the errors of GIHS [8], GS [10], and LRP
[46] are obvious in some vegetation regions

G. Experiments on Full-Resolution Datasets

This section presents the fusion results of full-resolution
datasets from QuickBird and GeoEye-1 satellites. Fig. 10
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Fig. 10. Fusion results of images from QuickBird. (a) GIHS [8]. (b) GS [10]. (c) AWLP [13]. (d) Indusion [18]. (e) SIRF [27]. (f) LRP [46]. (g) PNN [32]. (h)
DRPNN [37]. (i) PanNet [35]. (j) Proposed method.

TABLE III
NUMERICAL EVALUATION OF FUSED RESULTS ON FULL-RESOLUTION QUICKBIRD DATASET

demonstrates the fused images of all methods on QuickBird
dataset. In Fig. 10, we can see that the spatial details are enhanced
well for all images but there still exist some differences in hue
for different fused images. The spectral features in Fig. 10(a)
are more similar to those in Fig. 10(c), although Fig. 10(a) and
(b) is derived from the same framework. It can be observed
that the spatial information of Fig. 10(e) has obvious distortions
compared with the results of other methods. Besides, some
spatial effects also arise. The same performance can be found
in Fig. 10(d) and the color of some buildings seems unnatural.
For example, the color in the local area slightly becomes red.
In addition, some spectral artifacts also appear in Fig. 10(g)
and the spectral features in the amplified area of Fig. 10(g) are
oversaturated. Compared with other fused images, the proposed
method can produce more natural color for buildings when
improving the spatial details. The evaluation values of all indexes
are reported in Table III. From Table III, one can see that the best
value of DS is achieved by the proposed method, which shows
the effectiveness in spatial information. Although the best value
ofDλ is from Indusion [18], the proposed method behaves better
in the overall index QNR.

Fig. 11 exhibits the fusion results of all methods on GeoEye-1
dataset. We can see some color differences on road between
Fig. 11(a) and (b), which may be caused by different spectral
response settings. For the result in Fig. 11(c), the color of the
roof in the upper right corner is different from that in Fig. 10(b).
Severe spatial effects cannot be ignored in Fig. 11(d). However,

spatial blurring effects can be observed in Fig. 11(g). The result
in Fig. 11(j) has a better performance in spatial and spectral
information. Moreover, the detailed analysis in the amplified
areas also has a similar performance. For example, some spatial
distortions, such as checkerboard artifacts, are noticeable. The
edges and textures are blurred in the enlarged area of Fig. 11(g).
From the local area in Fig. 11(j), we can see clear spatial details.
Table IV illustrates the numerical values of all fused images and
the best values are labeled in bold. In Table IV, the best values of
DS and QNR are from the proposed method, which is consistent
with the visual analysis in Fig. 11.

H. Complexity Analysis and Comparison

The complexity of the proposed method is analyzed
as follows. In the optimization algorithm, the updates of
H and X dominate the computational complexity. For
H, the Sylvester equation is solved, whose complexity is
o((4Kh1h2)

3) due to the computation of matrix inversion. The
update of X involves SVD operation and its complexity is
o(2(l1 − h1 + s1)(l2 − h2 + s2)h

2
1h

2
2/s1s2). Besides, for the

estimation of ai, its complexity is similar to that of the least
squares method in the worst case scenario, but it most often has
a very good performance in practical ones.

In Table V, the average running time of all methods is il-
lustrated, in which the time is recorded in seconds. The first
six methods and the proposed method are tested on the same
computer with Intel Core i7-6700 processor, 3.4 GHz, Intel
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Fig. 11. Fusion results of images from GeoEye-1. (a) GIHS [8]. (b) GS [10]. (c) AWLP [13]. (d) Indusion [18]. (e) SIRF [27]. (f) LRP [46]. (g) PNN [32].
(h) DRPNN [37]. (i) PanNet [35]. (j) Proposed method.

TABLE IV
NUMERICAL EVALUATION OF FUSED RESULTS ON FULL-RESOLUTION GEOEYE-1 DATASET

TABLE V
TIME COMPARISON OF ALL METHODS

Fig. 12. Convergence curve of the optimization algorithm based on ADMM.

UHD Graphics 630 and 16 G memory by MATLAB R2017a.
From Table V, we can see that component substitution- and
MRA-based methods spend little time for fusion when compared
with other kinds of methods. For PNN [32] and DRPNN [37],
their MATLAB codes are provided and implemented on the
same computer mentioned above for test, where MatConvNet
toolbox is compiled for running. PanNet [35] is trained and
tested by PyTorch on an NVIDIA 2080Ti GPU with Intel Core
i7-9700 processor, 3.0 GHz and 128 G memory. The testing time
for DNN-based pansharpening methods is fast but their training
may take a long time. Because iterative optimization is used in
the proposed method, the running time is considerable.

I. Convergence Analysis

In this section, we analyze the convergence of the proposed
optimization algorithm based on ADMM and plot the conver-
gence curve in Fig. 12. From Fig. 12, one can observe that the
algorithm derived from ADMM can converge rapidly, which
ensures the performance of the proposed method.

VI. CONCLUSION

In this article, we proposed a novel fusion method for LR MS
and PAN images based on low-rank and sparse SCM. SCM is
formulated to reduce the computation complexity of CM and
capture the local structures in MS images. Then, the degraded
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relationships of LR MS and PAN images from the HR MS
images are established, which are then incorporated with the
low-rank prior of SCM. Next, the fused HR MS image is sparsely
represented over a dictionary containing local structures, which
is learned from the corresponding PAN image. Finally, the fusion
model is solved through ADMM. Compared with GIHS [8], GS
[10], AWLP [13], Indusion [18], SIRF [27], LRP [46], PNN
[32], DRPNN [37], and PanNet [35], the proposed method can
produce better fusion results in visual analysis and achieve
a better performance in numerical evaluation. Owing to the
introduction of low-rank and sparse properties of SCM, the
proposed method can efficiently preserve the spatial and spectral
structures in the fused images.
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