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Abstract—Soil moisture (SM) is a key parameter of the hy-
drological process, which affects exchanges of water and heat at
the land/atmosphere interface. The “trapezoid” (or “triangle”)
method has been widely applied to SM monitoring based on the
pixel distribution within the thermal and optical remote sensing
observations. However, the trapezoid method is a linear empirical
model highly related to the retrieval accuracy of the surface tem-
perature. In the article, the moderate-resolution imaging spectro-
radiometer (MODIS) data were applied to retrieve SM through an
improved method over the Tibetan Plateau. The improved method
is integrated with the “trapezoid” model and multiple learning
techniques, Random Forest (RF) and Extreme Gradient Boosting
(XGBoost). Meanwhile, RF and XGBoost were both trained with
SM target data (the scale of SM and soil temperature) derived
from the Tibetan Plateau observations, and the input variables
were derived from MODIS observations. Compared with the SM
measured, the results showed the root mean square error, the
mean absolute error, and the correlation coefficient of the ensem-
ble retrievals were 0.046–0.081 m3m−3, 0.030–0.065 m3m−3, and
0.60–0.87, respectively, which is better than that of the separate
model. The ideas to implement the combination of traditional
inversion algorithms and machine learning methods are helpful
for researches in remote sensing fields.

Index Terms—Ensemble learning, moderate-resolution imaging
spectroradiometer (MODIS), soil moisture (SM), Tibetan plateau
(TP), trapezoid model.

I. INTRODUCTION

A S THE “Third Pole of the Earth,” Tibetan Plateau (TP)
is especially sensitive to climate change because of its

Manuscript received July 10, 2020; revised October 25, 2020 and January
18, 2021; accepted February 2, 2021. Date of publication February 9, 2021;
date of current version March 12, 2021. This work was supported by the
Key Projects of Global Change and Response of Ministry of Science and
Technology of China under Grant 2020YFA0608203, in part by the Science and
Technology Support Project of Sichuan Province under Grant 2021YFS0335,
Grant 2020YFG0296, Grant 2020YFS0338, and Grant 2021YFG0258, and in
part by the Fundamental Research Funds for the Central Universities, UESTC
under Grant ZYGX2019J064. (Corresponding author: Yuxia Li).

Lei He is with the School of Software Engineering, Chengdu University
of Information Technology, The Software Engineering Technology Research
Support Center of Informatization Application of Sichuan, Chengdu 610225,
China (e-mail: helei197811@foxmail.com).

Yuan Cheng, Yuxia Li, Fan Li, and Kunlong Fan are with the School
of Automation Engineering, University of Electronic Science and Tech-
nology of China, Chengdu 611731, China (e-mail: shyaabb@163.com;
liyuxia@uestc.edu.cn; 1149676921@qq.com; 978901039@qq.com).

Yuzhen Li is with the Department of Big Data, Chengdu Software Develop-
ment Center, Chengdu 610041, China (e-mail: lily_lyz2001@126.com).

Digital Object Identifier 10.1109/JSTARS.2021.3058325

special geographical location and high-altitude feature. TP also
has a significant impact on the Asian monsoon, the circulation
of East Asia, and the land-atmosphere interactions of Global
Climate Change (GCC), especially in the process of energy
and water cycles [1], [2]. Soil moisture (SM), a key physical
parameter in the land surface process, affects the exchange of
latent and sensible heat at the land/atmosphere interface [3]–[5].
Monitoring regional SM is significant in the fields of agriculture,
hydrology, meteorology, and ecology [6]. However, accurate
estimation of SM is still hard to complete for the spatiotemporal
heterogeneity, especially for TP.

Generally, SM can be obtained in two ways, field measure-
ments and remote sensing observations. Field measurements
can get relatively accurate results, but time-consuming and
cost are unable to sustain for large areas. Compared with field
measurement, remote sensing methods provide an alternative
way with shorter time intervals, different spatial observation
scales, and lower costs. Several meteorological satellites, such
as the Advanced Scatterometer on EUMETSAT MetOp-A and
MetOp-B satellites, the European Soil Moisture and Ocean
Salinity Satellite [7], and Soil Moisture Active-Passive Satellite
[8], present great possibilities for SM monitoring at a large
spatial extend. The remote sensing methods for SM monitoring
can be classified into three major groups according to different
electromagnetic wavelengths [9].

1) Optical methods (wavelengths between 0.35 and 2.5 μm).
The spectral reflectance characteristics of soils are closely
related to soil color (species), primary minerals, secondary
minerals, water content, organic matter, and texture status.
Regression analysis is often used to construct an empirical
relationship between reflectance and SM [10].

2) Thermal infrared methods (wavelengths between 3.5 and
14 μm). The soils with different humidity have different
thermal inertia, so, the variation of soil surface temperature
is also different. Thermal infrared methods usually take
thermal inertia [11], [12] or combine surface temperature
and vegetation indices to retrieve SM [13]–[15].

3) Microwave methods (wavelengths between 5 and
1000 mm). Since water and soil components have dif-
ferent dielectric properties, the dielectric constant of the
soil-water mixture will increase with SM increasing [16].

Among these three methods, microwave remote
sensing (RS) have been widely used in the retrieval
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of SM due to the direct relationship between SM and
the soil dielectric constant. Microwave methods can
be divided into active microwave method and passive microwave
method according to different principles. Active microwave
uses backscattering coefficient to retrieve SM, while passive
microwave mainly uses brightness temperature to estimate SM.
Further, many studies are devoted to verifying or improving
the retrieved accuracy of SM from microwave data [17]–[20].
Although the microwave method is more widely used in SM
retrieval, passive microwave has the disadvantage of low spatial
resolutions, and active microwave not only has low temporal
resolutions, but also is easily affected by vegetation and soil
roughness [21].

Within this context, optical, microwave, and thermal methods
are also essential in SM monitoring because they can provide
more information. Hence, the development of robust methods
plays a key role in SM monitoring.

The trapezoid (or triangle) method has been widely used to
estimate SM based on thermal and optical data, because it is easy
to operate and requires little ground auxiliary data [22]–[24].
However, the trapezoid method also suffers from two inherent
limitations. First, land surface temperature is affected not only
by SM but also by ambient atmospheric conditions. Second,
these traditional optical-based models are usually empirical or
semi-empirical models, which are unable to apply in different
regions and times.

Considering the nonlinear correlations between SM and cor-
responding parameters, machine learning (ML), such as support
vector machines (SVMs) [25] and artificial neural networks [26],
[27], has been introduced to retrieve SM. However, such ML
methods are prone to over-fitting or under-fitting to deal with
high-dimensional dataset with poor interpretability. In this arti-
cle, we improved the trapezoid (or triangle) for SM predictions
with ensemble methods [i.e., Extreme Gradient Boosting (XG-
Boost) and Random Forest (RF)]. The thermal and optical data
of moderate-resolution imaging spectroradiometer (MODIS) are
the main source data in the research. Due to the heterogeneity
of climate and terrain in different regions, the MODIS LST
products were calibrated with an RF algorithm to construct the
trapezoid (or triangle) model. Meanwhile, XGBoost and RF
were trained with vegetation indices derived from MODIS data.
SM and temperature measured in TP observatory of the plateau
were taken as the expected outputs. Finally, these three mod-
els’ predictions were combined by ensemble learning method
stacking. By combining traditional methods with ML methods,
the clear physical meaning of traditional methods and the strong
nonlinear fitting capabilities are fully considered and utilized.
The prediction results of the integrated algorithm can be helpful
to meet the requirements of general applications and proved
good potential to produce a high-resolution SM distribution map.

II. STUDY AREA AND DATA

A. Study Area

The TP is known as “Roof of the World” and “Third Pole,”
which is located between 26.00° to 39.47°N and 73.19° to

104.47°E. It extends from the Himalayas in the south to the
northern margins of the Kunlun Mountains, Altun Mountains,
and Qilian Mountains in the north; and it covers from Pamirs and
Karakorum Mountains in the west to the Hengduan Mountains
in the east. The TP area is approximately 2.5 million square
kilometers. The types of land cover in TP include cultivated
land, forests, grasslands, shrubs, wetlands, water bodies, tundra,
man-made cover, bare land, glaciers, and permanent snow cover.
Grassland, forest, and bare soil are the main land cover types.
The precipitation in TP mainly occurs in summer (from May to
October), and the average annual precipitation is about 500 mm.
Due to the difference in altitude and latitude, the annual average
precipitation in the southeast of the plateau can reach 2000 mm,
while the average annual precipitation in the northwest is only
around 50 mm. The annual average temperature decreases from
20 °C in the southeast to −6 °C in the northwest. TP is not only
related to global environmental changes, it is also one of the
most sensitive areas affected by global environmental changes
due to the complex terrain and climate.

B. In Situ Measurement

The TP observatory of plateau scale SM and temperature pro-
vide representative records of different climatic and terrestrial
surface hydrometeorological conditions [28]. Three reference
networks (Naqu, Maqu, and Ngari) are available with different
climate conditions (see Fig. 1) [29]. Considering that the Ngari
network is located in the severe frozen area of the plateau, this
article only collected field measurements derived from the Naqu
network and Maqu network to build the SM retrieval model.
While Ngari network still plays a key role in SM monitoring
over TP.

The Maqu Network was established in the northeastern part
of the TP in May 2008. The network is located between 33.5°–
34.25°N and 101.63°–102.75°E. Affected by the monsoon, the
climate type of the monitoring network is relatively humid and
cold. The Maqu network includes 20 ground measurement sites,
covered approximate 40 × 80 km2. Most of the measurement
sites are installed in valleys, while the rest are located on hills
and wetlands. SM and surface temperature are measured every
15 min, and the measurement depths are 0.05, 0.10, 0.20, 0.40,
and 0.80 m, respectively.

The Naqu Network was established in the middle of the TP in
July 2010, and locates between 31.0°–32.0°N and 91.5°–92.5°E.
The Naqu area has a cold and semi-arid climate with an average
altitude of about 4650 m, covered approximate 100 × 100
km2. The Naqu Observation Network has designed three differ-
ent observation scales: large, medium, and small for different
surface hydrological models. The spatial ranges covered are
1.0°, 0.3°, and 0.1°, respectively. The Naqu network contains
56 ground measurement sites. Most of the ground sites are
located in the valleys of the Yellow River and the surrounding
hills. The main types of land cover are prairie grass and moss.
The SM and surface temperature could be obtained every 15
min, and the measuring depth is 0.05, 0.10, 0.20, and 0.40 m,
respectively.
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C. Satellite Measurement

1) MODIS: MODIS data are from the sensor equipped with
Terra and Aqua satellites, which has 36 spectral channels and
the spectrum ranges from 0.4 to 0.14 μm. Compared with other
optical satellite data, MODIS has the following advantages.

1) Terra and Aqua satellite can transit twice a day in the
same area, which makes MODIS data have higher time
resolution.

2) MODIS sensor has higher sensitivity and quantization
accuracy. The radiation resolution can reach 12bit, the
temperature resolution can reach 0.03 °C, and the quanti-
zation level is higher than other sensors.

3) MODIS receives less interference when describing vege-
tation coverage information because of the narrow band.

4) MODIS has an early launch time with abundant data,
which can meet the requirements of long-term SM moni-
toring.

In this article, MODIS cloud-free images MOD11A1 (1-km
surface temperature/emissivity daily product), and MOD09A1
(0.5-km surface reflectance 8-day product) were acquired. For
the MOD09A1 product, the DN value of each pixel is the optimal
value of the observation condition within eight days.

2) Digital Elevation Model: The digital elevation model
(DEM) is a modeling process for the terrain on the ground. The
limited elevation data could be applied to approximate the terrain
and provide basic information on the height and characteristics
of the earth’s surface. The ASTER-GDEM earth electronic
terrain data are produced according to the observation results
of the TERRA satellite, whose horizontal accuracy and vertical
accuracy are 30 and 20 m, respectively, and area covered 99% of
Earth’s land surface between latitude 83° north and 83° south. In
the research, the applied ASTER-GDEM data are downloaded
from the Land Processes Distributed Active Archive Center.1

D. Data Preprocessing

The research collected the measured surface SM and surface
temperature from Maqu Network from April 2008 to June 2016
and Naqu Network from August 2010 to October 2016 at the
depth of 5 cm. Meanwhile, MODIS data consistent with the
ground observation data had been obtained from the Data and
Information of Earth Observing System (https://earthdata.nasa.
gov/). Considering the disturbances of snow and frozen soil, the
data were selected only from May to October each year in the
research.

The MODIS data were corrected for atmospheric and aerosol
processing. All satellite data had been projected to the WGS84
coordinate system and resampled to 1000-m spatial resolution.
The preprocessing could be completed in batches with the
MODIS Reprojection Tool and ENVI5.3. After removing invalid
data, the field measured data are all stored in text form. Further,
the field data were programming with Python’s GDAL library,
synchronizing with the latitude, longitude, and acquired time of
the remote sensing data.

1[Online]. Available: https://lpdaac.usgs.gov/

TABLE I
CALCULATION FORMULA OF VIS USED IN THIS ARTICLE

III. METHODS

A. Vegetation Indices

Soil is a mixture of a variety of complex substances. The
spectral characteristics of soil are closely related to soil color
(type), primary minerals, secondary minerals, water content, or-
ganic matter, and texture conditions. The relative uniform texture
of soil shows an approximate negative correlation between soil
spectral reflectance and SM, which laid a theoretical foundation
for applying spectral reflectance to monitor SM.

Vegetation Indexes (VIs) are often used to characterize the
surface vegetation coverage and growth vitality, which is cal-
culated with land reflectance in different band combinations.
Compared with the single-band reflectivity, VIs can enhance
the interpretation of remote sensing images, which can reduce
the interference from nonvegetation signals while amplifying the
vegetation information. VIs has been widely used in the remote
sensing retrieval of SM.

Table I shows the 14 VIs related to SM selected from remote
sensing literature, where Rbi represents the reflectance of the ith
(i = 12 … 7) band of MODIS.

In addition, Table I shows that the reflectance of the first seven
bands of MODIS, DEM, and reconstructed MODIS LST are also
used as initial input features for SM retrieval.

B. Trapezoid Model

Surface radiant temperature and surface energy fluxes are
sensitive to SM and vegetation distribution. When there is lack
of water in soil, the plant will close some stomata to reduce
the transpiration, which will lead to the decline of latent heat
flux, increase of the sensible heat flux, and ultimately increase

https://earthdata.nasa.gov/
https://lpdaac.usgs.gov/
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Fig. 1. Location of three regional networks for SM and soil temperature
observatory in TP [30].

Fig. 2. Theoretical space between surface temperature and VI. [50].

of surface temperature of the blade. Based on the mechanism of
surface radiation temperature, SM, and vegetation distribution,
some researchers began to use the soil-vegetation-atmosphere
transfer model to retrieve the soil water content and evapotran-
spiration [45]–[47]. However, these surface layer models are
always complex and require additional atmospheric parameters,
such as surface albedo and wind speed. Price [48] and Carlson
et al. [49] found that the shape of surface temperature (Ts) and
vegetation coverage pixel distribution (Ts/VI scatterplot) will
be triangular or trapezoidal for a research area containing a
full range of vegetation coverage and SM. For areas with high
vegetation coverage, Ts is not sensitive to SM variations; for
bare soil areas, the sensitivity between Ts and SM variations
is increased. The shape of Ts/VI scatterplot is triangular or
trapezoidal (see Fig. 2) ).

In Fig. 2, the right border of the scatterplot is called the “dry
edge,” which is defined by the location of the upper limit of

Fig. 3. Structure of RF.

Fig. 4. Structure of the integrated model.

Ts under different vegetation coverage conditions. In addition,
the left border of the scatterplot is called the “wet edge,” which
is defined by the lower limit of Ts under different vegetation
coverage conditions. For any pixel point inside the trapezoid (or
triangle) feature space, the closer to the “dry edge.” the less SM.
Otherwise, the closer to the “wet edge,” the higher SM. Surface
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evaporation increases with the increase of SM, resulting in a de-
crease in leaf temperature. But when the vegetation is subjected
to water stress, the plant tends to close its stomata to reduce
transpiration, resulting in leaf temperature increasing. Based on
the triangular or trapezoidal distribution scatterplot, Sandholt
et al. [51] proposed the Temperature Vegetation Drought Index
(TVDI) to measure the relative distance of any pixel points from
the dry and wet edges to evaluate the surface SM status. TVDI
is defined as follows:

TVDI =
TS − Tsmin

Tsmax − Tsmin
(1)

where TS is the surface temperature corresponding to a certain
pixel, Tsmax and Tsmin are the dry and wet edges of the scatter-
plot.

Tsmax = a1 + b1NDVI (2)

Tsmin = a2 + b2NDVI (3)

where a1 and b1 are intercept and slope of the “dry edge,” a2
and b2 are intercept and slope of the wet edge.

Based on (1)–(3), TVDI can be defined by TS and V I

TVDI =
TS − (a2 + b2NDVI)

(a1 − a2) + (b1 − b2)NDVI
. (4)

After obtainingTVDI, a linear empirical model ofTVDI and
SM can be established. It is assumed thatTVDI is related to SM,
which is due to the change of thermal inertia and evaporative
control on the available energy. To improve the prediction of the
trapezoid model, Rahimzadeh-Bajgiran et al. [24] introduced
nonlinear relationship between Ts/VI and SM. Sun et al. [52]
proposed a two-stage trapezoid model considering that the veg-
etation can absorb deep SM to maintain transpiration compared
with bare soil. However, these trapezoid models suffer from two
inherent limitations. First, the Ts/VI space is highly correlated
with the retrieval accuracy of surface temperature, so it would
vary with the high variation of surface temperature. Second,
the traditional trapezoid method is always used to constraint
the solution for SM (or fluxes) retrievals, and it cannot provide
accurate SM predictions.

C. Ensemble Learning Methods

Focused on quantitative remote sensing, ML only considers
simplified models without relevant parameters. Meanwhile, it
can also introduce various types of remote sensing data and
achieve fusion of multi-source remote sensing data. Traditional
ML methods, such as SVM and neural networks, are simple
and convenient. However, when dealing with high-dimensional
data, over-fitting/under-fitting problems may occur and affect
the accuracy of inversion. Ensemble learning could combine
multiple single learning models to obtain a unified integrated
learning model for more accurate and stable results. Each of
these single learning models is called a “weak learner,” and
the integrated model ultimately generated uniformly is called
a “strong learner.”

1) Random Forest: The RF is an ensemble method based
on classification and regression tree (CART), which can re-
duce the risk of overfitting by averaging these trees [53]. The
structure of RF model in the article is shown in Fig. 3. During
the training period of RF, it first performed sampling with
bootstrap in the original training dataset D. After m times of
sampling, a new training set D1with m samples can be obtained.
T-sampling is performed in the same way, and input features
n {X1, X2 . . . Xn} are randomly selected in each round of
sampling. Generally, samples (row) and input features (column)
are randomly selected from the original training set D, and
then, new datasets T {D1, D2 . . . DT } can be obtained. Based
on each new dataset T, “weak learners” {h1, h2 . . . hT } can be
trained, and the results of each “weak trainer” are combined by
voting or averaging. In the RS model, the existence of sample
perturbations (random row sampling) and attribute perturbations
(random column sampling) makes each decision tree trained
different, ensuring the diversity of the model. If the decision
trees are combined using the average method, the final output
result is shown as

H (x) =
1

T

T∑
i = 1

hi (x) . (5)

2) Extreme Gradient Boosting: The XGBoost, proposed by
Chen et al. [54], is also an ensemble learning approach based
on gradient boosting machine. Similar to RF, XGBoost also
combines a bunch of CART decision trees to produce a strong
learner. The main difference between the two algorithms is that
each tree is trained in parallel for the RF algorithm. While for
XGBoost, all the decision trees are not independent of each
other: The first tree is built on the whole training set, while the
second one is built using the training set based on the residuals
except for the first tree. In other words, the drawbacks of the
first tree are considered in the next training period. The training
process is repeated until the stop criterion is met. The ultimate
result can be made by summing all the predictions of each tree.
The objective function of XGBoost at step t is shown in (6)

Obj(t) =
∑
i

l(yi, y
(t)
i ) +

t∑
k = 1

Ω(fk) (6)

where l represents the loss function; yi is the ith expected
outputs, y(t)i is the prediction given by the ith sample at step
t in (7); Ω is the regularization term in (8)

y
(t)
i =

t∑
k = 1

fk (xi) (7)

Ω (fk) = γT +
1

2
λ‖ω‖2 (8)

.
In the above formulas, fk is the kth decision tree; xi is the

input variable; T is the number of leaves and ω is the magnitude
of leaf weights; γ and λ are the penalty controlling parameters.
Detailed computation process of XGBoost can be found in Chen
et al. [54].
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3) Integrated Model: Stacking (stacked generalization) is a
model ensemble method proposed by Wolpert [55]. The training
process of stacking involves two phases. In phase I, several
learning algorithms (called base model) are trained on the
original training set by applying a procedure similar to k-fold
cross-validation. Then, the predictions of each base model are
collected to form a new dataset (called the meta-level training
dataset). In this dataset, each input parameter corresponds to
the expected output parameters (i.e., the real value). In phase
II, the meta-level training dataset is used to train an additional
algorithm (called meta-model). Similar to training, the test pro-
cess also includes two phases, and the ultimate predictions are
obtained from the meta-model.

The structure of the integrated model proposed in this article is
shown in Fig. 4. The base models are the trapezoid model, RF and
XGBoost. The meta-model is line regression (LR). Considering
the relationship between TVDI and SM, TVDI is introduced
for constructing the metadata set to realize the combination of
traditional SM inversion methods and ML methods. Compared
with stacking, although the trapezoid model is used as the base
model, its parameters are still determined by the entire dataset.
So, the trapezoid model is fixed throughout the entire training
stage. Focused on RF and XGBoost, both are trained with the
same dataset in a way similar to five-fold cross-validation. After
training, the predictions of the three base models are combined
to form a meta-level training dataset, which will be used to train
the meta-model (i.e., LR). The ultimate predictions of SM are
obtained from LR.

4) Feature Selection: For an ML task, eliminating irrelevant
features can not only improve the generalization ability but also
accelerate the training speed of the model. In the ensemble
learning method based on the decision tree, feature importance
is often used as the criterion for feature selection. If the time
of feature used as an optimal partition attribute is greater, the
feature importance is greater.

Except for classification and regression, RF is also used for
feature selection in ML models. In the RF model, each decision
tree selects the optimal attribute for node division by calculating
the Gini value of each feature. The formula for calculating the
Gini value GIm is shown as

G Im = 1−
K∑

i = 1

Pmi
2 (9)

where Pmi represents the proportion of the ith sample in the
current sample set of node m, and K is the number of sample
categories in the current data set. If the feature Xj is selected
as the optimal partition attribute of the node m after calculation,
the feature importance of the feature Xj at the node m is

VIMgini
jm = GIm −GIl −GIr. (10)

Among them, GIl and GIr represent the Gini values of the
new nodes l and r after the node division, respectively. The
feature importance of featureXj in the RF model is

VIMgini
j =

T∑
i=1

∑
m∈M

VIMgini
jm . (11)

TABLE II
PARAMETERS OF RF

In the above formula, M represents the set of nodes and the
feature Xj is the optimal partitioning attribute in the decision
tree i, and T represents the total number of decision trees in the
RF. Finally, the importance of the feature Xj is normalized and
the basis for feature selection is defined as follows:

VIMj =
VIMgini

j∑n
i=1 VIMgini

i

. (12)

RESULTS AND DISCUSSION

A. Land Surface Temperature Reconstruct

In the research, RF algorithm was applied to reconstruct the
MODIS LST products. The parameters of the RF algorithm
can be divided into bagging frame parameters and decision
tree parameters. Table II shows the main parameters, parameter
descriptions, and parameter setting values, respectively.

The RF model is trained with near-infrared band reflectivity
and normalized difference vegetation index (NDVI) retrieved
from MOD09A1, day and night LST from MOD11A1, and
digital elevation data from Aster-GDEM as inputs, and expected
outputs are from Tibet-Obs. Among the inputs, NDVI is used
here to parameterize the vegetation coverage. Near-infrared band
reflectivity is used to parameterize the influence of solar radia-
tion. Further, the elevation is used to reduce the effects of surface
characteristics and the location. Land surface temperature is also
influenced by SM and precipitation. Focused on the difficulty of
coarse spatial resolutions and acquisition, the two factors are not
considered in current research.

After the quality control process, total 48 475 point data
during May 15, 2008, to October 31, 2015 in Maqu and August
1, 2010, to October 31, 2015, in Naqu are obtained. 80% of the
data is used for training, and 20% of the data is used to validate
the accuracy of the model. In order to verify the time migration of
the RF-based algorithm, a total of 5854 point data of 2016 were
applied to test the accuracy of the algorithm. In order to evaluate
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TABLE III
ACCURACY OF THE RECONSTRUCTED SURFACE TEMPERATURE ON THE

VERIFICATION SET AND TEST SET

the accuracy of such an RF-based model, this article selected
root mean square (RMSE), mean absolute error (MAE), and
correlation coefficient (R) as the accuracy evaluation indicators

RMSE =

√√√√ 1

N

N∑
i=1

(fi − yi)
2 (13)

MAE =
1

N

N∑
i = 1

|fi − yi| (14)

R =
Cov (F, Y )

σFσY
. (15)

Table III shows the prediction accuracy of the surface tem-
perature reconstruction algorithm on the verification set and
the test set. The reconstructed surface temperature is close
to the measured surface temperature, and the two parameters
have a high correlation. The surface temperature reconstruction
algorithm based on RF can be applied to make improvement of
MODIS surface temperature products.

Fig. 5 shows the surface temperature of MOD11A1 during
the day, MOD11A1 at night, and the reconstructed surface
temperature of the research area in TB. The surface temperature
reconstruction algorithm based on RF can supply the missing
values of MODIS products. The reconstructed surface temper-
ature value is between MOD11A1 day and night products.

B. Feature Selection Outcome

In the article, a total of 23 initial input features were used to
build the SM inversion model, including the reflectance of the
first seven bands of MODIS, reconstructed surface temperature,
digital elevation data, and VIs listed in Table I. All the 23 features
were applied to train AF model. And the feature importance
results are shown after training (see Fig. 6).

The average value of feature importance (1/23 ≈ 0.0435)
was taken as the threshold for feature selection. Finally, 11
features, including LST, DEM, NDVI, NDTI, NDII7, NMDI,
EVI, MSAVI, Rb7, NDWI, and GVMI, were used to build SM
retrieval models.

C. SM Retrieval

The synchronization of ground data and RS data can be
completed through the coordinates of each station and the date
of data acquisition. After quality control processing, a data set
of 50 797 samples is obtained. 80% of the total data was used
for model training, and 20% of the total data was used for model
verification. The number of samples from Maqu networks is

Fig. 5. Land surface temperature of the TB. (a) MOD11A1 LST during the
day. (b) MOD11A1 LST during the night. (c) LST after reconstruction.

Fig. 6. Feature importance based on RFs.

18 420, and the time range is from May 15, 2008, to October 31,
2015. The number of samples from Naqu networks is 32 377, and
the time range is from August 1, 2010, to October 31, 2015. Total
11 initial input features were applied to build the SM inversion
model, including the spectral reflectance of the seven bands
of MODIS, VIs (NDVI, NDTI, NDII7, NMDI, EVI, MSAVI,
NDWI, GVMI), surface temperature, and digital elevation data.
In order to evaluate the accuracy of SM inversion results, the
research selects RMSE, MAE, and R as accuracy evaluation
indicators. The prediction accuracy comparison of each model
on the verification set is shown in Table IV
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TABLE IV
COMPARISON OF PREDICTION ACCURACY OF EACH MODEL ON THE

VALIDATION SET

TABLE V
COMPARISON OF PREDICTION ACCURACY OF EACH MODEL IN

MAQU NETWORK

TABLE VI
COMPARISON OF PREDICTION ACCURACY OF EACH MODEL IN NAQU NETWORK

Table IV shows that each model has achieved a high inversion
accuracy on the validation set. The estimated accuracy of the
Stacking model is superior to that of RF and XGBoost, and
RMSE is 0.046 m3m−3, MAE is 0.030 m3m−3, and R is 0.87.
The predicted values have a high correlation to the measured
value. The scatter plots of prediction values of these three models
versus the field measurement results are shown in Figs. 7 and 8.

Figs. 7 shows that the distribution of scatter plots on the
validation set of each model is relatively concentrated, and the
estimated results of SM are relatively close to the measured
results. When SM is greater than 0.6, the scatterplot distribution
of each model is more scattered, and the overall estimated
value is lower than the measured value. The reason maybe that
SM reaches the soil holding capacity, the spectral reflectance
does not decrease with SM increasing. So, the change in the
relationship between reflectivity and SM is the main reason for
the overall small estimation.

In order to further verify the migration of each model at
different times and in different regions, this research collected
and collated measured data in 2016 and RS data of Maqu and
Naqu networks. Among them, the number of samples from the
Maqu network is 490 points, and the data collection time range
is from April 1, 2016, to June 23, 2016. The number of samples
from the Naqu network is 4343 points, and the data collection
time range is from April 1, 2016, to September 18, 2016. Tables
V and VI supply the accuracy comparison of each model in
networks of Maqu and Naqu, respectively. The retrieval accuracy
of the Stacking-based model in Maqu and Naqu is higher than
that of RF and XGBoost, and the best prediction accuracy is
obtained in Maqu. Finally, RMSE is 0.058 m3m−3, MAE is 0.045
m3m−3, and R is 0.074. The accuracy of the models after fusion
is better than their base models.

Fig. 7. Scatter plots of SM predictions against field SM measurements.
(a) ERT. (b) XGBoost. (c) Multi-model ensemble algorithm based on stacking.

Compared with the inversion accuracy in Tables V and VI,
each model in Maqu networks is obviously better than that
in Naqu area. The maximum difference of RMSE in different
regions is 0.021 cm3cm−3, and the mean absolute deviation is
0.023 cm3cm−3. The main reasons for the obvious difference
between the two experimental areas are as follows.

1) In 2016, the number of stations collected data in Naqu
was 28, while only 7 was available in Maqu. The scattered
distribution of stations locates in the Naqu area, and more
diversified external factors, such as climate and terrain
among stations, are complex.

2) The data collection time of the Maqu area is from April
to June in 2016. So, the distribution of SM is relatively
concentrated, and the change range is small at different
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Fig. 8. Time series comparison of SM. (a) Maqu. (b) Naqu.

time. While the data collection time of the Naqu area is
from April to October in 2016. So, the distribution range of
SM is wide, and the change range is large at different times.
Meanwhile, the R-values between the retrieval SM and
in-situ SM range from 0.66 to 0.87, which can match the
reasonable range of accuracy of remote sensing mapping
of large-scale SM [56].

In addition, the research takes the average of SM of each
network to further study the trend of SM over time. Fig. 8 shows
the time series of SM with the time resolution and the observation
scale. The distribution of SM in the Maqu area was relatively
concentrated, compared with that in the Naqu area. The SM
reaches its maximum from July to August in Naqu. In general,
the predictions in Maqu and Naqu agreed well with the measured
data over time, and the Stacking model is better than the other
two models. Since the number of stations in the Naqu network
is larger, which can more accurately reflect the average SM of
the current observation network, the retrieval values of SM in
the Naqu area are more consistent with the change trends of the
measured values. When the SM is low, the retrieval value of
each model was higher than the measured value, which shows

Fig. 9. SM monthly distribution map in the TP. (a) April 2016. (b) May 2016.
(c) June 2016. (d) July 2016.

that the current retrieval model cannot accurately reflect extreme
drought conditions.

In order to further analyze and verify the spatial distribution
of SM in the study area, the research mapped the SM of the
entire TP based on the stacking-based algorithm. Fig. 9 shows
the SM maps of TP from April to July 2016, with a temporal
resolution of 1 month and a spatial resolution of 1 KM.

In general, the SM maps show a decreasing trend from the
southeast to the northwest of TP. The SM in the southeast region
was significantly higher than that in other regions, while SM in
the north region was relatively low. The reason for this spatial
distribution is that the land cover type in the southeast area is
mainly forests and grasslands, while bare soil occupies the north
area. In the Himalayas, there is a high distribution of SM, and
the SM of the southern side in the Himalayas is significantly
higher than that on the north side.

From April to July, SM in TP has an overall upward trend. In
April and May, due to the coverage of glaciers and snow, SM
is not available. So, a large number of blank areas appeared in
the northwest of TP. In June and July, the ice and snow began
to thaw with temperature increasing, and the value of SM in the
northwest region also increased. From April to July, SM in the
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southern part of TP showed a clear upward trend and reached
the maximum value in July. Influenced by the warm and humid
air currents carried by the East Asian monsoon, the southern TP
has abundant precipitation in summer, which ultimately leads
to higher SM in the southern region. The results show that the
SM maps of TP have a good agreement with its topography and
climate distribution.

Compared with other SM retrieval algorithms based on ML
[57], the research made an improvement for reflecting the spatial
dynamic changes of SM. In addition, compared with AMSRE,
ASCAT, ERA-Interim SM products, and other SM retrieval al-
gorithms based on microwave data [58], the SM map obtained in
the research has higher spatial resolution and spatial continuity.
Overall, the stacking method shows a good potential to produce
high-resolution SM maps. However, due to the lack of measured
data in other regions, the transferability of the model has yet to
be evaluated. Further work may be directed toward a more robust
evaluation with more datasets.

V. CONCLUSION

In this article, we explored the potential application of remote
sensing data for estimating SM in TP using ensemble learning
methods. High-resolution multi-spectral imagery, in combina-
tion with ground sampling, provided sufficient information to
accurately estimate the spatial distribution of SM.

An SM retrieval algorithm that combined the traditional
method (the trapezoid method) and ensemble learning methods
(i.e., XGBoost and RF) by stacking technology is proposed.
In order to improve the reliability of the trapezoid method, we
first reconstructed the MODIS land surface temperature product,
and then, part of the interference caused by vegetation and
terrain was eliminated. Finally, the accuracy and continuity of
the product were improved. In addition, the RF was applied
in the feature selecting process of SM-related parameters. For
selecting parameters with higher feature importance, we trained
and tested SM retrieval models of RF and XGBoost, respectively.
Finally, we integrated and retrained the results of the RF, XG-
Boost, and trapezoid methods based on stacking and obtained
more accurate SM predictions.

The prediction accuracy assessed by comparison with the in
situ measurements, RMSE, MAE, and correlation of the ensem-
ble retrievals were 0.046–0.081, 0.030–0.065, and 0.60–0.87,
respectively. Results indicate that the SM inversion model based
on the extreme random tree has stronger nonlinear expression
ability and can introduce more input parameters compared with
the empirical model. Compared with traditional ML methods
such as SVM and neural networks, extreme random tree can
obtain better inversion precision on a small sample set by com-
bining several “weak learners” into “strong learners.” Compared
with the RF, the extreme random tree can reduce the variance
and model bias and achieve better integration effects. So, the
algorithm proposed in this article can achieve good accuracy
and be applied for regional SM monitoring. Though the region-
specific trained ensemble models in the research are unable to
be used immediately in another location, the ideas to implement
the combination of traditional inversion algorithms and ML

methods are helpful to the research of information extraction
from remote sensing images.
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