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A SAR Target Image Simulation Method With DNN
Embedded to Calculate Electromagnetic Reflection
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Abstract—Electromagnetic (EM) scattering calculation is a very
important part of most synthetic aperture radar (SAR) target
image simulation methods. It affects the intensity of the radar
echo signal to a great extent, thus affecting the quality of the final
simulation image. EM reflection models are usually approximate
formulas derived under certain assumptions. The errors between
these models and the actual situation can cause significant dif-
ferences between simulated images and real images. To solve this
problem, we propose a novel modified SAR target image simulation
framework, in which the deep neural network (DNN) is embed-
ded to calculate the EM reflection, so that the DNN can directly
learn and fit the EM reflection models from real SAR images.
First, the intensity calculation of radar signal in a single reflection
is separated from the cumulative calculation of multiple radar
reflection signals intensity in each pixel. Thus, the approximate
calculation formulas of EM reflection can be replaced with the DNN
models. Next, the DNN model is trained with the backpropagation
algorithm to learn the actual EM reflection model from real SAR
images. Finally, the fitted EM reflection models and an image
post-processing model are applied to simulate images of the target
under different imaging angles. In the simulation framework, the
functions of the neural network models are limited to calculating
the reflection coefficient and adding sidelobe and speckle noise.
The imaging model is still the original simulation method based
on ray tracing, which ensures the correctness and generalization
of the simulation method. Experiments show that the proposed
simulation method can significantly improve the quality of the
simulation image. When the image is normalized to [0, 1], the
minimum mean square error between the simulated SAR images
and the real images of the Sandia laboratory implementation of
cylinders target can reach 0.003. The visualization results of the
DNN models show that the fitted reflection coefficient calculation
curve and the convolution kernel used for image post-processing
are consistent with the laws in the theoretical model. In addition,
when the proposed method is used to simulate complex targets, the
similarity of simulation images can also be significantly improved.

Index Terms—Deep neural network (DNN), differentiable
rendering, electromagnetic (EM) scattering modeling, ray tracing,
synthetic aperture radar (SAR) image simulation.
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I. INTRODUCTION

SYNTHETIC aperture radar (SAR) image interpretation and
application are key problems in SAR research. SAR target

image simulation is of great significance to both of them. Specif-
ically, the research on the principle of SAR image simulation is
helpful to improve the ability of SAR image interpretation [1].
SAR target image simulation can quickly provide a large number
of images of the target under different imaging conditions at
a lower cost. These simulation images can be further applied
to a wide range of fields such as target feature extraction [2],
automatic target detection and recognition [3], [4], and building
height inversion [5] and other image-based applications.

Fast simulation speed and convenient setting of simulation
parameters are the prerequisites for a method to be used to
simulate a large number of images. The quality of simulation
image is the key factor affecting its application scope and effect.
The simulation speed and quality of SAR image simulation are
closely related to the electromagnetic (EM) scattering calcula-
tion method and imaging model. According to these two points,
as far as we know, the current mainstream SAR image simulation
methods can be divided into two categories.

The first simulation method originates from the radar cross
section (RCS) simulation and takes the turntable model as the
imaging model. This simulation method first calculates the RCS
of the target at multiple azimuths and multiple frequency points
to simulate the echo signal received by the radar antenna, and
then uses the 2D IFFT imaging algorithm for imaging [6]. In this
method, the local geometry and material information can only be
reflected as the RCS of the whole target. Therefore, it is difficult
to explore how the EM scattering occurred on many local surface
elements affects the size and distribution of the scattering points
of the final simulation image, and it is also difficult to use the
result of comparison between simulation image and real image
to adjust the simulation system.

The improvement of this simulation method is mainly focused
on improving the modeling accuracy of target geometry and
material and improving the precision and speed of numerical
calculation of target’s RCS [7]–[9]. However, accurate target
modeling usually takes a lot of manpower, and accurate numeri-
cal calculation of complex target RCS also requires a lot of time
and computing power. It often takes hours to days to simulate
one SAR image of a complex target, but the final simulation
image may still have some differences with the real image, and
is not easy to be adjusted.

The second kind of simulation method originates from com-
puter graphics. The work of Franceschetti et al. [10], [11]
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provides the theoretical basis for using the small panel model to
simulate SAR images of complex ground scenes. The theoretical
derivation of SAR imaging formulas ensures that the imaging
model based on ray tracing method is consistent with the real
SAR system [12]. Generally, the reflection law of radar signals
on the local surface is approximated by the specular reflection
and diffuse reflection models in the optical field, and the radar
signal echo is accumulated on range-azimuth plane by ray trac-
ing method for imaging [1]–[13]. Compared with the simulation
method based on RCS simulation, the relationship between the
models and the simulation image in this method is more concise
and intuitive. Although there are a lot of rays involved in the
simulation process that need to be traced, the rendering program
library based on CPU or GPU parallel acceleration technology
greatly reduces the calculation time. The simulation of an image
can be completed in a few minutes or even less than one second.
Such fast simulation speed lays a good foundation for its wide
application.

However, this method also has some shortcomings. First, the
EM wave in microwave band and visible light band are different.
In visible light band, since the wavelength of light is often far
less than the roughness of the object surface, the reflection type
of EM wave is mainly diffuse reflection. In microwave band,
the wavelength is often larger than the surface roughness of
the object, so the reflection type is mainly specular reflection.
Therefore, the parameters of the optical approximation models
used in the SAR image simulation have no corresponding actual
values, and can only be adjusted according to the simulation
experience and simulation results. Second, ray-tracing method
often ignores the diffuse multiple reflections [14]. Therefore,
the approximate EM reflection models used in this simulation
method is different from the actual case.

The key approaches to improve the performance of this sim-
ulation method is to automatically set the simulation param-
eters, and to obtain more accurate EM reflection models that
are compatible with the imaging models based on ray-tracing
technology. Deep learning technology, which has achieved good
results in many optical image applications, is a powerful tool
to realize these two points. In recent years, some scholars
have made a lot of meaningful explorations on how to apply
deep neural network (DNN) model in SAR image simulation.
Referring to the application of the conditional generative ad-
versarial networks (C-GAN) model in image generation, Guo
et al. [15] train the C-GAN model with SAR images to generate
SAR images of targets under different azimuth and depression.
Liu et al. [16] further learn from the successful application of
GAN in optical image style conversion, and input simulation
SAR images into GAN model for further modification, so as to
improve the application effect in classification problems.

Although the DNN model has very strong “end-to-end” fitting
and learning capabilities, it may not be a good approach to
directly transfer its application in the field of optical images to
the field of SAR image. The imaging principle of the SAR system
is different from that of optical system. SAR images are also
very different from optical images. For example, targets in SAR
images are not color blocks with clear boundary, but scattering
points with different intensity and sizes. Since the reflection

of radar signal is mainly specular reflection, these scattering
points are very sensitive to the imaging angle. A small change in
imaging angle can result in a huge change of the scattered point.

In the problem of how to effectively and correctly apply
DNN to SAR target image simulation, since SAR images are
very sensitive to imaging angles, the correlation between SAR
images from different angles is much lower than that of optical
images, it is very important to ensure the generalization ability
of the simulation method. Too complex DNN or directly using
DNN to generate images often cannot achieve good simulation
results, and the interpretability of the DNN models are also
in doubt. However, most of these attempts which apply deep
learning to SAR image simulation are only based on the suc-
cessful DNN model, without in-depth analysis of the existing
simulation methods or clear explanation of the function of deep
network model. Guo pointed out in his article that the SAR
images generated by GAN are seriously degraded under some
azimuth, and are very different from real images. Liu only used
the modified simulation SAR image as the augmented data of
the real SAR image.

The core idea of this article is to use the neural network with
simple structure and fewer parameters to complete specific and
simple functions in simulation, so as to increase the interpretabil-
ity of the network and the generalization ability of the simulation
method. It is also one of the goals and very important innovations
of the framework proposed in this article. We believe that a good
framework combining SAR image simulation with DNN model
should follow the following design principles.

1) Keep the original simulation principle as much as possible.
2) Clearly define the specific function of DNN model in

simulation, so as to improve the interpretability of DNN
model.

3) Limit the function and input data of the DNN, thus avoid-
ing the DNN model to directly generate images based on
the features of target category and azimuth, instead of the
usual simulation calculation data.

In [17], we proposed and implemented a method which
automatically extract simulation parameters from a single real
SAR image using DNN model. In this method, the function of
the DNN model is limited to extracting simulation parameters
based on the brightness of target and background in SAR real
images, rather than directly modifying the simulation image.
In this way, the original simulation method and formula are
kept unchanged and the generalization ability of the simulation
method is guaranteed.

After solving the problem of automatic setting of simulation
parameters, we think that the adjustability of the approximate
EM models is limited, and even if the simulation parameters
are accurately adjusted, the neglected part of the scattering may
still not be compensated. Therefore, as mentioned earlier, it is
imperative to further adjust the original EM reflection models.
We believe that this direction of applying DNN models to SAR
image simulation can achieve better results. In this way, the
adjustability of the reflection models is increased. Even when
there is only material label, the calculation model can be directly
fitted from the real images without the need to measure the
simulation parameters in the field.
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Xu et al. made a beneficial preliminary attempt in this direc-
tion [18]. They trained the DNN model to fit the scattered field
of an inhomogeneous region by taking the permittivity map in
a circular area as input and the scattered field calculated by
a 2-D finite element-boundary integral model as output. Their
experiments show that DNN can predict the scattering field at an
acceptable level on a certain number of datasets, but the DNN
model will no longer converge when the datasets become more
complex. Therefore, the permittivity distribution data alone is
not sufficient for the DNN model to learn an effective EM
scattering model with strong generalization ability for complex
targets. Li et al. used DNN to solve the nonlinear EM near-field
inverse scattering [19].

SAR image simulation can be thought as a complex com-
bination of local operations. “Simple operation” refers to the
EM reflection occurring on the local surface of an object. The
EM reflection model is a multivariate function, with less than
six input variables and one or two output variables. Hence,
this function performs dimensionality reduction operation on
the low-dimensional data, that is, from 6-D to 1-D. “Complex
combination” means imaging the scattered signal echoes. If
imaging process is also considered as a function, the number
of its input variables is the number of scattered signal echoes,
and the number of output variables is the number of pixels of the
simulation image. Therefore, the mapping relationship between
the scattering signal echoes and the SAR image represented by
this function is the mapping relationship between the data in
high dimensional space. In this high-dimensional space, data is
sparse, so it is difficult for DNN models to learn complex and
general models. However, for the EM reflection calculation on
local surfaces, which is a mapping problem in low dimensional
space, the data is enough to train and learn a DNN model with
strong generalization ability.

On the basis of the above analysis, we propose the idea of
using DNN models to fit EM reflection model from real images,
and design and implement a simulation framework which em-
beds DNN model into the simulation process. In this framework,
the DNN model is used to replace the original EM approximate
reflection models to calculate each EM reflection of radar signal
on the local surface of the object. The input data of the DNN
model is limited to the material and geometric information on
the local surface, without any overall characteristics of the target.
Thus, it is avoided that the DNN model generate specific images
based only on the overall structure of the target. The output
data of the DNN model is limited to reflection intensity or
reflection coefficient, which emphasizes the specific function of
the DNN model in simulation and enhances the interpretability
of network. Meanwhile, the function that DNN needs to learn
is a function curve fitting task on a low-dimensional and dense
dataset, which ensures the generalization performance of the
network.

It may be easy to come up with the idea of using DNN model
to learn and fit EM reflection model from real images, but there
are many difficulties in the process of realizing this idea.

1) How to use the reflection intensity data accumulated in
a single pixel to train the single reflection model of the
signal.

2) How to efficiently and coherently record and organize the
large amount of data related to EM reflection computing.
These data are generated by the multiple reflections of
radar signals on the local surface.

3) How to design an elaborate network structure to efficiently
calculate the EM reflection on the local surface element,
and to adopt an appropriate model connection mode to
ensure the correct intensity relationship between reflection
and incident signals in multiple reflections.

4) How to ensure that all steps in the simulation framework
from the calculation of EM reflection intensity to the
final output of the simulation image are differentiable,
so as to reverse transfer the simulation error to the DNN
model.

5) How to quickly and effectively calculate the error between
the simulation image and the real image which are not
registered.

Aiming at the above problems and difficulties, we redesigned
and adjusted the whole simulation framework on the basis of
keeping the original simulation method and imaging principle
unchanged. We design a multichannel “image” model data
structure to store simulation information, and an ingenious DNN
model and a connection architecture between models in a new
perspective. Finally, we complete the function of each part of
the simulation framework, and carry out complete and effective
experimental verification.

The innovation of this article can be summarized as follows.
1) Under the condition of keeping the imaging model of

the original SAR target image simulation method un-
changed, we propose a simulation framework that embed
DNN model into the simulation process for EM reflec-
tion calculation. This method concours the above five
difficulties.

2) The simulation results are verified by moving and station-
ary target acquisition and recognition (MSTAR) Sandia
laboratory implementation of cylinders (SLICY) and T-72
tank data. Compared with other applications of the DNN
model in the SAR image simulation, the method proposed
in this article emphasizes more on the specific functions
of the deep network model in simulation and enhances the
interpretability of the network and so get better generality.
Compared with the simulation parameter adjustment using
DNN model, the DNN model in this method is more
closely combined with the simulation method and get
better learning ability.

The rest of this article is organized as follows. Section II
mainly describes the basic simulation method of the proposed
simulation framework, namely the simulation method based on
ray tracing. The imaging model and EM reflection calculation
model of the simulation method are introduced. Section III
describes the SAR image simulation framework which embed-
ded the DNN models for EM reflection calculation, as well as
the specific implementation methods of each part. Section IV
verifies the design of each part, and visualizes the function of
DNN models embedded in the simulation framework. Finally
Section V summarizes the content of the full article, and gives
the further research and application direction.
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Fig. 1. Design of virtual SAR sensor: orthographic projection in azimuth and
elevation for local scenes; parallel light for representing the radar signal.

II. MODEL AND PROBLEM

In this section, we mainly introduce the basic simulation
method in the proposed simulation framework. It is a modified
and ported version of RaySAR [13]. RaySAR is a state-of-art
ray-tracing SAR image simulator [15] which is developed and
open source by Dr. Stefan Auer [1]–[13] for analyzing multiple
reflection in SAR images.

In [17], we proposed that the SAR image simulation can be
abstracted as

X ′ = f (M,Y ′) (1)

where M is the geometry of an object, Y ′ is the surface pa-
rameters, f is the simulation method, and X ′ is the simulation
image. Generally, the simulation function f needs to complete
two main functions: calculate the intensity of radar signal,
and calculate the focused position of the signal echo in the
range-azimuth plane. These two functions correspond to the
EM scattering model and the imaging model in the simulation
method respectively.

In the imaging model, RaySAR uses parallel light for repre-
senting the radar signal and orthographic projection in azimuth
and elevation for local scenes. In the EM scattering model, it
uses the specular reflection and diffuse reflection models in the
optical field to approximately calculate the intensities of radar
signal signals as they are reflected between objects and as they
are reflected from objects to the radar antenna. The details of
the imaging model and EM reflection model of this method are
described in the following content. In addition, some problems
in applying this simulation method are explained.

A. Imaging Model

Fig. 1 shows the imaging model of RaySAR. In this model, a
plane of the same size as the scene being imaged is used as the
virtual SAR sensor. It is called the sensor plane and is used for
transmitting and receiving radar signals. A set of parallel rays
perpendicular to the sensor plane is used as the radar signal.

The simulation imaging process can be divided into three
steps: transmitting radar signals, calculating the interaction
between signals and the target scene, and accumulating the
signal echo to the range-azimuth plane for imaging. First, a

Fig. 2. Geometry of scattering problem.

set of parallel rays are emitted from the pixels on the sensor
plane to the scene. Each pixel cell can emit multiple rays. These
rays are called primary rays. Second, when these rays intersect
the target or background, they are reflected and generate new
signal rays. RaySAR simulates the reflected signal rays of two
directions: the direction of specular reflection signal (SP) and
the direction of backward echo (BK). Third, the rays in the BK
direction, called focusing ray, will return to the sensor plane
and be accumulated into the receiving pixel unit according to
their focusing positions in the range-azimuth plane. The rays
in the SP direction, called the secondary, tertiary rays, etc., will
continue to intersect with the target or background and generate
new rays of the two directions.

The cumulative position of the focusing rays should be consis-
tent with the position of the real echo signal. Although RaySAR
does not use the Range-Doppler coherent imaging algorithm, its
imaging geometry model can guarantee the above relationship.
In RaySAR, the position of the echo is calculated by projecting
the starting point of the focusing ray into azimuth direction and
elevation direction respectively. According to the derivation in
[12], we further change the calculation model to

x =
xA + xB

2
(2)

r =
1

2
(rA + rB + rMP ) (3)

y =
r − r0

2
(4)

where x represents the azimuth coordinate, while xA and xB are
respectively the coordinates of the incidence point of primary
ray and the exit point of focusing ray projected on the azimuth
direction, as shown in the Fig. 1. The focusing position of a ray
in the azimuth is the middle position between the ray’s incident
point and the exit point. y is the range coordinate, and r is the
sum of lengths of the ray which emitted from the sensor plane
rAand returned to the sensor plane rB after multiple reflections
rMP . r0 is the total length of the ray corresponding to the signal
echo in the center of the scene.

B. Approximate EM Reflection Model

In RaySAR, the intensity of the signal echo is only related to
the multiple reflections of the ray on the local surface. Fig. 2
illustrates the geometric data involved in ray reflection. θ1
represents the angle between the incident ray and the surface
normal. θ2 represents the angle between the reflection direction
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and the surface normal.θ3 represents the azimuth of the direction
of reflection.

The reflection of radar signal on the local surface is divided
into two parts: specular reflection and diffuse reflection. The
Fresnel model, e.g., reported in [20], is common for approx-
imating the specular reflection of radar signals. The Fresnel
coefficient in horizontal polarization is

Rh =
cos θ1 −

(
εr − sin2θ1

)1/2
cos θ1 +

(
εr − sin2θ1

)1/2 . (5)

The Fresnel coefficient in vertical polarization is

Rv =
εr cos θ1 −

(
εr − sin2θ1

)1/2
εr cos θ1 +

(
εr − sin2θ1

)1/2 (6)

where εr is the relative dielectric constant.
In case of diffuse reflection of radar signals, the small per-

turbation method (SPM) [20] is applicable for surfaces whose
roughness is small compared to the signal wavelength. The
calculation formula of SPM is

|Epq|2 =
4a

∣∣k2 cos θ1 cos θ2βpq

∣∣2W (ηxy)

(2πR)2
(7)

βhh =
(εr − 1) cos (θ3)(

cos θ2 +
√

εr − sin2θ2

)
·
(
cos θ1 +

√
εr − sin2θ1

)
(8)

βvv =

√
εr − sin2 (θ2) ·

√
εr − sin2 (θ1) · cos θ3 · (εr − 1)(

εr cos θ2 +
√

εr − sin2θ2

)

−εr sin (θ1) sin (θ2) (εr − 1)

·
(
εr cos θ1 +

√
εr − sin2θ1

) (9)

where a is the area of the surface, k = 2π/λ is the signal
wavenumber, and R is the spatial distance between SAR and
object. βpq is a coefficient associated with the mode of polariza-
tion. W (ηxy) is the surface power spectrum, i.e., the Fourier
transform of the surface autocorrelation function. It may be
defined by means of standard surface models such as gaussian
or exponential shapes or by using fractals [21].

The Fresnel model and SPM are derived from Maxwell’s
equations under certain assumptions. However, RaySAR does
not actually use the above EM reflection models, because the ray-
tracing library on which RaySAR was developed, POV-ray, is
originally intended for optical simulation, and does not provide
such models. Hence, RaySAR adopts the rendering models used
in optical simulation field to approximates the reflection of radar
signals. In RaySAR, the model for specular reflection model is

Is = Fs · ( �N · �H)
1
Fr (10)

where Fs is a specular reflection coefficient [0, 1] and Fr

is a roughness factor defining the sharpness of the specular
highlight. �N is the surface normal vector. �His a bisection vector.
The model for diffuse reflection model is

Id = Fd · Isig · ( �N · �L)Fb (11)

Fig. 3. Curves of Fresnel model which is for approximating the specular
reflections of radar signals. Left: result for HH polarization. Right: result for
VV polarization.

Fig. 4. Curves of SPM which is for approximating the diffuse reflections
of radar signals on surfaces whose roughness is small compared to the signal
wavelength. Left: result for HH polarization. Right: result for VV polarization.

Fig. 5. Curves of RaySAR model for the specular reflections of radar signals.

where Fd is the diffuse reflection coefficient [0, 1], Isig is the
intensity of the incoming signal, �L is the normalized signal
vector pointing from the surface point to the SAR, and Fb is a
surface brilliance factor [0, 1].

Figs. 3–6 show the reflection coefficient curves plotted accord-
ing to the theoretical models and the approximate models. From
the formulas and corresponding curves, we can draw the follow-
ing conclusions. For specular reflection, the reflection coefficient
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Fig. 6. Curves of RaySAR model for the diffuse reflections of radar signals.

of the specular model used in RaySAR is always Fs in the spec-
ular direction (see Fig. 5), rather than changing with the incident
angle as the Fresnel model does (see Fig. 3). For diffuse reflec-
tion, the diffuse model used in RaySAR assumes that most scat-
terers have Lambertian reflection characteristic, that is, their re-
flection coefficients are only related to the incident angle but not
to the reflection direction (see Fig. 6). This is not consistent with
the SPM model (see Fig. 4) and the practice, because in the EM
wave band of SAR operation, diffuse reflection is also related
to the reflection direction. Hence, there are some differences
between the theoretical models and the approximate models.

In the actual simulation, Dr. Stefan Auer does not directly
use the approximate model provided by POV-ray in RaySAR,
but skillfully uses the approximate specular reflection model
to simultaneously simulate the specular reflection and diffuse
reflection between objects. In this way, he makes the diffuse
coefficient related to the reflection direction. In addition, he
introduces diffuse and specular coefficients to combine the direct
backscattering of radar signals with angle-dependent multiple
reflections.

However, even with the above approaches, any definition of
reflection parameters can only provide a rough approximation
of real signal reflections due to the limitations of the simulation
geometry and the reflection models. Especially, appropriate
setting of the reflection coefficients and, hence, the absorption
of radar signals is hard to be realized [14]. Since the original
development of RaySAR is focused on simulating the geometri-
cal distribution of signal responses, it is necessary to modify its
EM reflection models in order to enable it simulate better SAR
images.

III. METHOD

In this section, we describe in detail how to embed the deep
neural network model into the simulation process while keeping
the original simulation imaging model unchanged, so as to
realize the learning of the reflection model suitable for this
simulation model from the real SAR images. This content is
divided into three parts, namely the modified SAR target image
simulation framework, the construction of the input and output
datasets of neural networks, and the design of DNN models.

A. Simulation Framework and Process

In the real SAR image, the number and intensity of the
accumulated signals per pixel are uncertain, so it is difficult
to separate the single reflection on the local surface element to
train the DNN model. In order to avoid the above difficulties,
a feasible idea is to embed it into the simulation method. It
can be seen from Section Ⅱ-A that the calculation of signal
reflection intensity and the accumulation of signal intensity in
the range-azimuth plane are alternately carried out in the SAR
image simulation process based on ray tracing. In addition, the
new generated reflection signal will also affect the next reflection
as the incident signal, and each ray’s reflection is independent
of each other. Therefore, it is not a simple thing to embed the
deep neural network model into SAR image simulation. It is
necessary to split and recombine the original simulation meth-
ods reasonably and correctly to retain the original simulation
imaging model.

Fig. 7 shows the proposed SAR image simulation framework
in which the DNN model can be embedded to calculate the signal
intensity. In this framework, the ray tracing of the radar signal
rays (step 2), the calculation of the echo intensity (step 3) and
the accumulation of the focusing rays in the range-azimuth plane
(step4) are divided into three relatively separated steps and are
combined in sequence. The calculation of the intensity of each
single reflection is centralized in step 3 so that this calculation
can be replaced by a DNN model. Next, the specific functions
and requirements of each step in the simulation framework are
introduced according to the simulation process.

First, the preliminary step is to prepare the target’s 3-D model
and material parameters, and set the SAR imaging parameters. If
the target is composed of multiple materials and the parameters
of these materials are continuous physical parameters, the DNN
model can learn and fit a reflection model related to material
parameters. If the target consists of only a few materials with few
parameters, the DNN model can learn to fit the reflection model
corresponding to each material category. In other words, whether
the final fitted reflection model can deal with the changing
material parameters is related to whether the material parameters
forming the training dataset are continuous. SAR imaging pa-
rameters, such as resolution, pixel spacing, depression, azimuth,
should be consistent with the real SAR images.

The second step is to illuminate the target and scene with the
rays representing the radar signal, trace the reflection path of the
rays according the RaySAR imaging model, and record the data
generated when the ray interacts with the scene. The recorded
data are the material and geometric information when the ray
intersects with the local surface of the object, such as the material
parameters of local surface, the incident angle and reflection
angle of the ray, and are used to calculate the reflection intensity
in step 3. In addition, the coordinates of the accumulated pixels
of the focusing ray in the range-azimuth plane also need to be
calculated and recorded for imaging in step 4.

The third step is to use the DNN model to calculate the inten-
sities of reflected radar signal in the specified directions (SP and
BK). In the following content, we call this DNN model NetEM.
Since the input and output of NetEM are consistent with the
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Fig. 7. Framework of SAR image simulation embedded with the DNN model.

original approximate reflection model, the function of NetEM
is also limited to calculating the reflection coefficient. EM re-
flection model is a multi-input, single-output model. Therefore,
theoretically from the perspective of hypothesis space, a fully
connected network can complete the fitting task. However, there
are some difficulties in the structure and connection mode. The
structure of NetEM needs to be suitable for handling the complex
reflection of a large number of rays during simulation. The
reflected ray in the SP direction affects the next reflected ray
as the incident ray. This means that the current output of NetEM
should be affected by the previous output of the same model.
The NetEM for calculating the intensity of rays corresponding
to the same primary ray should be connected.

The fourth step is to accumulate the intensity of the focusing
rays calculated by NetEM into the pixels of range-azimuth plane
recorded in the step 2. It is important that all steps from this step
must be differentiable so that the error between the resulting
simulation image and the real image can be propagated back
to NetEM for training. To illustrate the differentiability, this
step can be considered as a two-layer partially connected neural
network and its weights are fixed to one. The weight of one
indicates that the radar signal represented by the first layer node
is accumulated into the pixel represented by the second layer
node. For different SAR images, the path of the rays in the
scene are different, thus the pixel’s positions of focusing rays are
different, so the connection between the front and back layers
of this network model should also change. Hence, the network
model should be a dynamic model, although the “add operation”
it does is mathematically easy to differentiate. Fortunately, the
PyTorch library [22], which supports dynamic neural networks,
provides a very effective tool for implementing this model and
makes our work a lot easier.

The fifth step is the post-processing of the simulation SAR
image output in the step 4. From the previous steps, it can be
seen that this SAR image simulation method based on ray tracing
can only simulate the position and intensity of the focusing radar
signal, but cannot simulate the sidelobe and speckle noise caused
by the coherent imaging of the SAR system. In addition, in order
to simulate the fact that a single pixel emits multiple signals, the
resolution of the sensor plane is often set to be greater than that
of the real SAR image. Therefore, the image postprocessing step
is required to add sidelobe and speckle noise to the simulated
images, and reduce the resolution of the simulated image to the
same resolution as the real image. The network model used in
this step is called NetPix.

The above is a description of the functions of each simulation
step and the problems to be solved. Next, we will explain in detail

from the aspects of dataset construction, DNN model design and
training.

B. Data Composition and Structure

1) Data Composition: The dataset can be divided into two
parts according to the data source and the role of data in DNN
models training. One part is the real SAR images of the target at
multiple imaging angles. They are taken as the ground truth of
NetPix, which are used to compare with the simulated images
to calculate the simulation error. The other part is the simulation
data recorded by the ray-tracing program in step 2, including
the geometric and material information on the local surface and
the cumulative position coordinates of the focusing rays in the
range-azimuth plane. The former is the input data of NetEM,
which is used to calculate the intensity of reflected ray in SP and
BK direction. The latter is part of the input data of the imaging
system in step 4, which is used for determining the cumulative
position of the focusing rays.

In real SAR images, the distribution of pixel values is very un-
even. Most of the pixel values are concentrated in [0, 0.4], while
some pixel values can be very large. The uneven distribution of
data affects the training and generalization performance of DNN
model. In order to solve this problem, we first use tanh function
(12) to constrain the pixel value to [0, 1], and then stretched it
linearly to [0, 255] to save it as a picture

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
. (12)

The geometric data involved in the EM reflection includes the
θ1, θ2, θ3 as illustrated in Fig. 2. The reflection intensity of EM
wave is symmetrical distribution, that is, when the values of θ1
and θ2 are constant, the reflection coefficient at the θ3 is equal
to that at 2π − θ3. In order to reduce the redundancy of the data,
the angle θ4 between the reflection direction and the incident
direction is used instead of θ3, so that the prior knowledge
about symmetry is directly contained in the data. This helps to
reduce the complexity of the reflection problem and accelerate
the convergence speed of NetEM. The signal phase associated
with the total length of the ray is also recorded. Considering the
different value ranges of data, they are all normalized to [−1, 1].
Since there are few kinds of simulation materials in the scene,
discrete values (0, 1, 2) are directly used to represent the material
categories.

2) Data Structure: The data structure often directly deter-
mines the form of the input and output data of the DNN model
and further influences the design of the network architecture.
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Fig. 8. Data structure for storing reflection calculation data. Left: Data of the
first reflection. Right: Data of the second reflection.

The data types involved in SAR image simulation are different
from traditional DNN applications. Therefore, it is necessary
to design the data structure well to effectively use the DNN to
calculate EM reflection.

In the RaySAR, a 2-D array is used to organize the data
recorded by the ray tracing. Each row of the array records the data
of a reflection, such as signal intensity, echo position, number
of reflections, whether it is specular or not. If this data structure
is used, each training of the DNN model needs to retrieve all
reflections associate with the pixels of the region of interest. This
retrieval is very complex, retrieving not only the reflection of the
focusing rays accumulated in the pixels, but also the reflection
of the previous rays associated with each focusing ray. Hence,
such data structure is not suitable as the input of DNN model.

To deal with the complexity of retrieval, a simple and straight-
forward idea is to store the data of each reflection directly in the
accumulation position of the focusing rays in the range-azimuth
plane. However, this method can only reduce the retrieval steps
of the reflection data of focusing rays, but since the number
of radar signals accumulated in each pixel is uncertain, it also
brings the problem that the storage size of each pixel cannot be
determined.

To solve the above problems, we propose a novel data struc-
ture which uses a 3-D array to store the reflection data. This
3-D array can be viewed as an image with multiple channels,
shown in Fig. 8. Each channel of the image stores one type of
reflection data (for example, incident angle). Each reflection of
the ray is stored in a different “image” according to the number
of reflections. If we set the maximum number of reflections of
the ray to 5, we only need five such “images” to store all the
reflection data. In addition to these contents, one of the most
important innovations is that we use the emission position of
the primary ray as the pixel coordinate of the stored data, rather
than the cumulative position of the focusing ray. To solve the
problem of data retrieval and imaging, it is sufficient to record
the cumulative position of the focusing ray.

This data structure has the following advantages. First, it
solves the problem of storage size uncertainty caused by the
change of the number of rays in a single pixel in the range-
azimuth plane. Second, in this data structure, the data of reflected
rays corresponding to the same primary ray is stored in the same

pixel position. This feature brings a new perspective to the design
of DNN, which greatly simplifies the model structure, reduces
redundant calculation, and improves the speed of training. At
the same time, the image postprocessing can be carried out
smoothly. These contents will be covered in more detail in the
next section.

C. Design and Training of DNN Models

In this section, we mainly introduce the design ideas and core
structures of network models in the simulation framework, as
well as their training methods. The specific super parameters of
these models such as the number of convolutional layers and
the size of the convolution kernel of the network model are
compared and discussed in the following experiment section.

1) Architecture of the DNN Model for Calculating the Reflec-
tivity: The architecture described in this part is the architecture
of the DNN model in step 3, which is used to calculate the reflec-
tivity of each reflection. Its function is exactly the same as the
approximate model of EM calculation in the original simulation
method. To simplify the presentation, it is then referred to as
NetEM.

As mentioned earlier, the EM reflection model is essentially a
multivariate function that takes incident angle, reflection angle,
material, the intensity of the incident signal and other informa-
tion as input, and outputs the intensities of reflected signal in
the specific directions. More specifically, they correspond to a
set of functional curves, as shown in Figs. 3–6. Hence, from the
perspective of hypothesis space, the most basic fully connected
neural network can fit the reflection models. In this network
model, the input node is the geometry and material data, and the
output node is the intensity of the reflected signal or reflection
coefficients of specific directions.

However, from the perspective of the SAR image simulation,
NetEM also needs to have the following functions. The first
function is the ability to efficiently input simulation data and
quickly complete reflection calculations. The simulation of a
SAR image involves a lot of intensity calculation of a large
number of reflected rays. Each pixel in the sensor plane emits
multiple rays. Each time a ray is reflected, two new rays are
generated. The second function is to output data in an organized
data structure. As mentioned earlier, there is not only position
correlation but also intensity calculation correlation among mul-
tiple reflected rays. The reflected ray in the SP direction affects
the next reflected ray as the incident ray. Hence, the structure of
the data output from the NetEM should be easily connected to
the same model. In addition, each output of the network should
facilitate the subsequent imaging processing.

Fortunately, the data structure described in Section III-B
brings us a new perspective that enable us to design and use a bet-
ter DNN structure to realize the above two functions. As shown
in Fig. 9, when we use different channels of an “image” to store
different types of simulation data, the calculation completed by
the fully connection structure is changed to be performed on the
channel dimension of the image. This structure is similar to that
of the fully convolution network (FCN) [23], which converts the
fully connected layers to convolutional layers. The difference is
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Fig. 9. Basic structure of NetEM model. In the image, the convolution oper-
ation with kernel size one is equivalent to the full connection operation in the
channel direction.

that the size of the convolution kernel in NetEM is set to 1.
Because the rays from adjacent emission positions do not affect
each other when calculating reflection, this setup eliminates the
spatial correlation between rays and ensures that the receptive
field of each layer of neurons is always 1.

The input of this structure does not need to consider the size of
the SAR image, retrieve the simulation data, or cut the original
image into a small patch. It can directly input the whole image,
thus greatly improving the efficiency of data input. In addition,
the reflected intensity data output by this structure is naturally
stored in the same position as the input data, that is, according
to the emission position of the primary ray. This facilitates the
connection between the NetEMs for each reflection calculation.
Therefore, the structure of NetEM adopts the convolution layer
with kernel size of one instead of the fully connected layer to
complete the calculation related to single reflection.

According to the imaging model described in Section Ⅱ, part
A, the NetEM needs to calculate the intensity of the radar signal
in the direction of SP and BK. There are two methods of dividing
the reflection of EM signals on a surface. In RaySAR, according
to the roughness of the reflecting surface, the reflection of EM
signal in all directions is divided into specular reflection and
diffuse reflection. According to the distance of EM wave propa-
gation, EM reflection can be divided into near-field reflection
between objects and far-field reflection between objects and
antenna. In SAR image simulation, the influence of propagation
distance on signal strength is greater than that of the roughness of
the reflecting surface. Hence, we finally chose the latter method.

The specific structure of NetEM can be realized in three ways:
one single network model with one single output node, one
single network model with two output nodes, and two network
models with one output node each. We compare these three
implementations in the experiments section.

The type of output data of NetEM determines the connection
mode between the models. If the output is the intensity of the
reflected signal, then the output of current network needs to be
connected to the next NetEM as the input data (shown in Fig. 10).
If the NetEM’s output is reflection coefficient, then the output of
current network should be connected with the output of the next
network, that is, multiplied together to calculate the intensity
of the next reflected signal (shown in Fig. 11). Considering
that the concept of reflection coefficient exists in the actual

Fig. 10. Connection structure between NetEM model when the output is the
intensity of the reflected signal. BK/SP: intensity of reflected signal in BK/SP
direction.

Fig. 11. Connection structure between NetEM model when the output is the
reflection coefficient. BK/SP: intensity of reflected signal in BK/SP direction.
BKC/SPC: reflection coefficient in BK/SP direction.

reflection of EM wave, and the output of both the theory and the
approximate reflection model is also reflection coefficient, the
latter NetEM network architecture is finally selected to increase
the interpretability of the model and reduce the difficulty of the
learning task.

2) Architecture of DNN Model for Image Postprocessing:
The architecture described in this part is the architecture of the
DNN model in step 5, which is used for image post-processing.
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This model plays two main roles in the whole simulation frame-
work. One is to add the same impulse response and window
function as the real SAR system to the simulation image, so
that the resolution and other parameters of the simulation image
are consistent with the actual image. The second is to add
speckle noise in the simulation image. Both impulse response
and speckle noise are caused by the coherent imaging mecha-
nism of the SAR system. This DNN model can also be regarded
as an image degradation model, which does not generate new
information, but loses part of the information in the image. To
simplify the presentation, it is then referred to as NetPix.

It can be seen from the above that the functions of NetPix are
much simpler than those of the models in most DNN application
scenarios. From an operational perspective, NetPix just needs
to convolve the input simulation image with two convolution
kernels representing impulse response and speckle noise, re-
spectively. Therefore, the most concise structure of NetPix is
a convolutional neural network with only two convolutional
kernels.

In the initial implementation, due to the need to register the
simulated image with the real image before calculating the
simulation error, the registration function is also assigned to
NetPix. As a result, the implementation of this function requires
that the structure of NetPix be at least five layers. The increase
of layers means more adjustable parameters, wider hypothesis
space, and the learning ability to perform complex functions.
However, the improved learning capabilities of NetPix also
means that the function of each step in the simulation framework
is out of control. It is impossible to guarantee that the model in
each step only completes its expected function, and does not
make additional fitting. For example, NetPix may make too
many additional adjustments to the simulation image obtained
in the previous step, so that it can output high-quality simulation
images only according to the fixed structural information such
as the target contour. This reduces the information that would
otherwise need to be learned by NetEM, resulting in a reduced
generalization capability of the designed simulation method.
In order to solve the above problems, we separate the image
registration function from NetPix, and put it into the calculation
of the loss function. This allows us to greatly simplify the
structure of NetPix.

3) Loss Function: The loss function is used to measure the
difference between the output simulation image and the real im-
age during the training and testing process. Since our proposed
simulation framework is differentiable and its output is directly
an image, the loss function can be calculated directly using the
simulation image and real image without any additional complex
design.

Two commonly used methods to calculate the loss between
images are mean absolute error (MAE) (13) and mean square
error (MSE) (14). Among them, MSE is more sensitive to
outliers. Because its penalty is squared, the loss of outliers can be
very large. The calculation of MSE is easier. Since the size and
distribution of the strong scattering points in the SAR simulation
image are more important, the greater sensitivity of MSE to
outlier or large values is not a disadvantage, but an advantage in
measuring the simulation error of SAR image. Hence, the MSE

loss is used as the loss function of the whole framework

MAE =
1

n

n∑
i=1

|yi − ŷi| (13)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (14)

In the experimental dataset, each image of the target is man-
ually cropped. Through comparison with the simulation image,
we find that there is a position error caused by translation
between the real image and the simulation image. Hence, the two
images need to be registered before calculating the simulation
error. According to [24], if the two images have the relation-
ship of translation (15), the pixel shift of the two images can
be calculated by the following fixed formulas. First, Fourier
transform (FT) the two images (16). Second, calculate their
cross-correlation matrix P (17) in the frequency domain. Then,
the inverse FT (IFT) of P is a Dirac delta function centered on
(x0, y0) [25], and it could be correctly captured by a simple IFT
for P. With this method, two images can be registered quickly.
Although the registration accuracy of this method is only one
pixel, it satisfies the requirement for calculating the loss value.
The relevant formulas involved are as follows:

H(x, y) = G (x− x0, y − y0) (15)

Ĥ(u, v) = Ĝ(u, v) exp {−i (ux0 + vy0)} (16)

P(u, v) =
Ĝ(u, v)Ĥ∗(u, v)∣∣∣Ĝ(u, v)Ĥ∗(u, v)

∣∣∣ = exp {i (ux0 + vy0)} . (17)

For the rotation registration between the simulation image
and the real image, we think that it can be regarded as the
estimation problem of the target principal axis direction. At
present, there have been some mature calculation methods to
estimate the principal axis direction of the target. In our previous
paper [17], a deep neural network was trained with simulation
images to predict the principal axis direction of the target, and
some results were obtained. However, the accuracy of these
methods (5°–7°) still lags behind the interval (1°–2°) of azimuth
labeled in dataset. Therefore, we think that the azimuth of the
object labeled for each image is accurate, and there is no need
to consider the registration problem caused by rotation.

4) Design and Training of DNN Models in Simulation Frame-
work: The simulation framework contains two network models
with different functions, and the two models can influence each
other. Therefore, in order to ensure that each model can only
complete its expected function without affecting the function
of the other model, we design and adopt the following design
process and training method.

Since the size of the convolution kernel used in NetEM is
one, which naturally breaks the spatial correlation between the
emission positions of rays, it is no longer necessary to divide
the real image into small patches to increase the generalization
ability of the model. This is the same as FCN, which also directly
uses the whole image for training without considering the image
size. Therefore, we only need to randomly divide the real image
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and its corresponding “image” which stores multiple reflection
data into batches, and then we can use them for model training.

Only when there is a translation relationship between the two
images can the cross-correlation matrix be used to register them.
At the beginning of NetEM training, because its parameters are
randomly initialized, the image output of step 4 is almost random
noise, so the final output cannot be registered with the real image.
Therefore, in the first few epochs of NetEM training, we used
the simulation image (just use the default values for simulation
parameters) as the true value output of step 4, provide directional
guidance on NetEM. (The simulation image obtained from the
simulation does not need to be registered with the output image
of step 4.) After the pretraining of the first five epochs, NetEM
can basically build a rough reflection calculation model, and
the image simulated by the network can be registered with the
real image. In the subsequent epoch, it is no longer necessary to
use the simulation image, but directly use the real SAR image
as the final output true value to train NetEM for more precise
adjustments.

Although the function of NetPix model is strictly limited by
its structure, it can still differently adjust the signal intensity in
SAR image. In the process of designing and training NetEM,
only the fixed convolution kernel is used as NetPix for image
post-processing. After training NetEM, keep the parameters of
NetEM unchanged, and replace the NetPix model with the struc-
ture which has adjustable convolution kernels. If the impulse
response convolution kernel is used to initialize the adjustable
convolution kernel of the same function in NetEM, it is helpful to
accelerate the convergence of the network. Finally, the well train
NetEM and NetPix as well as the whole simulation framework
can be obtained.

IV. EXPERIMENTS AND RESULTS

This section introduces experimental content, mainly includ-
ing: the experimental data, the specific design of DNN structure,
the visualization and interpretation of DNN models, the simu-
lation results analysis and performance in the simulation of a
complex target.

A. Experimental Data

The main simulation target of this article is the SLICY target.
It is a precisely designed and machined engineering test target
containing standard radar reflector primitive shapes, such as
flat plates, dihedrals, trihedrals, and top hats. In another word,
SLICY is a well-defined target for researchers to validate the
functionality of their EM algorithm [26]. Fig. 12 shows the
precise geometric model of SLICY built according to the de-
scription in [26].

There are many real SAR images of SLICY in the measured
ground stationary SAR target dataset published by the MSTAR
project [27]. Among them, there are 274 images with different
azimuths at 15° depression angle and 288 images with different
azimuths at 30° depression angle. The sensor collecting this
dataset is a high-resolution spotlight SAR, which has a resolution
of 0.3 × 0.3 m and works in the X-band. The image size is 54
pixels × 54 pixels, and the pixel spacing is 0.2 m.

Fig. 12. Geometric model of SLICY target.

Fig. 13. Distribution of various types of simulation data of SLICY at 15°
depression angle.

Table I gives all kinds of simulation data recorded by the ray
tracing program. The geometric and material data on the local
surface are used to input into the NetEM model to calculate
the EM reflectance in specific directions. Fig. 13 shows the
distribution of these data within their respective values. Because
the background is a large plane, the frequency of extremely
individual angles is very high. In the value range of each angle,
most of the angle samples exist. Hence, the training dataset
is sufficient to ensure the generalization performance of the
network to a certain extent. The position coordinates of the signal
echo in the range-azimuth plane are used to accumulate the
signal intensity into the range-azimuth imaging plane to form
the SAR image. In order to match with the real SAR image,
the azimuth and depression angle in the simulation are set to
be the same as those of the real SAR images. In the last step
of the simulation system, image postprocessing, the resolution
and pixel spacing of the simulation image will be adjusted.
Therefore, in the ray tracing system, the pixel spacing is set
to 0.1 m which is smaller than that of the real images to increase
the number of signal rays in each pixel.

Table II gives the division of the dataset. 20% of the images
in 15° depression and 80% in 30° depression are used to train
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TABLE I
SIMULATION DATA RECORDED BY THE RAY TRACING PROGRAM

The table shows the simulation data recorded at the second reflection of
radar signal.

TABLE II
DIVISION OF THE DATASET

Fig. 14. Impulse response function and window function (spatial domain) for
adjusting image resolution and adding sidelobe and speckle noise.

Fig. 15. Structures of NetPix. The convolution kernel with the size of 1 ×
107 × 107 can be the convolution kernel with fixed value shown in Fig. 14 or a
convolution kernel with adjustable value.

DNN model. The remaining images are used to verify the DNN
model.

B. Design of the Neural Network Structures

1) Network Structure of NetPix Model: The function of Net-
Pix model in the simulation framework is to post-process the
simulated SAR image. Specifically, its function is to adjust the
resolution and add sidelobe and speckle noise to the simulation
image. As mentioned in the method section, excessive image
modification by NetPix may reduce the learning content of
NetEM and hinders the back propagation of simulation error.
Therefore, the important principle of NetPix structure design
is that on the basis of guaranteeing the basic functions of the
model, reduce its adjustable parameters as far as possible and
limit its learning fitting ability.

The adjustment of image resolution and sidelobe effect caused
by the coherent imaging principle of SAR system can be simu-
lated by convoluting the image with impulse response function
and window function. Hence, a convolution kernel with fixed
value can accomplish these two main functions of NetPix. The
speckle noise in SAR image is a multiplicative noise, so the
convolution structure can also be used to add speckle noise to
some extent. We construct the corresponding fixed convolution
kernel according to the real SAR image parameters of SLICY
target, as show in Fig. 14. The resolution of the impulse function
is 0.3 m. The window function is Taylor window.

Fig. 15 shows the specific structures of NetPix. The whole
model contains only two convolutional layers and corresponding
activation functions. The first convolution layer consists of one
convolution kernel with the size of 1 × 107 × 107 and four
small convolution kernels with the size of 1 × 7 × 7, and uses
the ReLU activation function to accelerate the convergence of
the model. The large convolution kernel can be the convolution
kernel with fixed value shown in Fig. 14 or a convolution kernel
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TABLE III
STRUCTURES OF NETEM MODELS WITH DIFFERENT ACTIVATION FUNCTIONS

with adjustable value. The second convolutional layer contains
one convolution kernel with the size of 6 × 5 × 5. Since tanh
function is used to normalize the real SAR image, it is also used
as the activation function in the last layer of NetPix to ensure that
the output of the previous layer is the same as the signal intensity
in the real SAR image. Excluding the large convolution kernel
with the size of 107 × 107, the NetPix network model has only
478 trainable parameters, far less than the usual DNN model, and
can achieve the expected function. The concise network structure
and few trainable parameters help to ensure the generalization
ability of the entire simulation framework.

2) Network Structure of NetEM Model: The function of
NetEM is to learn the reflection model of EM scattering of
radar signal on local surface element from real SAR images.
As described in the methods section, the reflection model of
radar signal on the local surface is actually a curve composed of
reflection coefficients at all angles. This curve can be fitted by a
fully convolutional network with convolution kernel size of 1 ×
1. Therefore, in order to determine the optimal NetEM structure,
we only need to experiment and compare the following contents:
The activation function of the network, the number of models
and the number of layers of the network. It should be mentioned
again that in the following experiments comparing various struc-
tures of NetEM, only the fixed convolution kernel shown in
Fig. 14 is used to replace NetPix for image post-processing.
This ensures that the training and performance of NetEM are
not affected by NetPix.

The activation function between layers has little influence on
the curve fitting ability of the model. Therefore, ReLU activation
function, which is faster in calculation, is directly selected as
the interlayer activation function. The activation function of the
last layer of the NetEM model determines the output range of
the model. Therefore, we compare four networks with different
activation functions given in Table III.

Fig. 16 shows the loss curves of the four networks on the
validation set. It can be seen that all the four network structures
can converge effectively. Even though EP2 which uses Sigmoid
as activation function has the slowest convergence speed and
the highest loss value, only the Sigmoid function can effectively
limit the reflection coefficient calculated by the model to the
range of [0, 1], so as to make it conform to the actual physical
law. Therefore, the activation function of NetEM’s last layer is
set to the Sigmoid function.

Fig. 16. Loss curves of the network structures in Table III on the validation
set.

Fig. 17. Three different architectures for the NetEM model. (a) One single
network model with one single output node (b) One single network model with
two output nodes. (c) Two network models with one output node each.

Fig. 18. Loss curves of the network architectures in Fig. 17 on the validation
set.

As shown in Figs. 1 and 10, NetEM needs to calculate the
reflection coefficient in two directions: the reflection coefficient
in the SP direction which is used to calculate the reflection
between the target and the background, and the reflectivity in
the antenna echo direction (BK) which is used to calculate the
intensity of the signal echo. According to the output of NetEM,
there are three different ways to construct NetEM as shown
in Fig. 17. These three modes are: one single network model
with one single output node, one single network model with two
output nodes, and two network models with one output node
each.

Fig. 18 shows the loss curves of these three network structures
on the validation set. It can be seen that the final loss value of
EP2 and EP6 is much smaller than that of EP5, and that of EP6
is slightly smaller than that of EP2. Therefore, EP6 structure is
selected finally. With the increase of network output nodes and
network models, the computational coupling degree of the whole
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TABLE IV
STRUCTURES OF NETEM MODELS WITH DIFFERENT ACTIVATION FUNCTIONS

Fig. 19. Loss curves of NetEM models with different number of layers on the
validation set.

model in two directions decreases. Hence, it can be concluded
that radar signal reflection models are much different in SP
direction and BK direction. This conclusion is consistent with
the fact that the near field scattering and far field scattering of
EM waves follow different rules.

Finally, we compare the NetEM models with four layers
(EP7), five layers (EP6), and six layers (EP8) respectively. Their
structures are given in Table IV. Fig. 19 shows the loss curves
of the three models on the verification set. EP7 has the slowest
convergence rate and the highest loss. EP6 has the fastest conver-
gence rate and smaller loss value than EP7. EP8 has a moderate
convergence rate and the minimum loss of the three structures.
Therefore, the fully connected network with a six-layer structure
can fully fit the reflection model, and the number of layers of
NetEM is set to six layers.

To sum up, the NetEM model and NetPix model that we finally
designed are EP8 and Fig. 15 respectively.

C. Visualization of the Well-Trained Neural Network Models

In order to illustrate that the NetEM and NetPix in the sim-
ulation framework complete and only complete the designed

Fig. 20. Curves of the reflection coefficient in the SP direction.

functions, we visualized these two neural networks to increase
the interpretability of their functions.

1) EM Reflection Models Fitted by NetEM: The expected
function of NetEM is to fit the EM scattering model suitable
for the SAR image simulation method from real SAR image.
The specific function of the EM scattering model is to calculate
the reflection coefficient in the specific directions according to
the geometric and material information. Therefore, the reflection
model fitted by the NetEM model can be simply illustrated by
the curve drawn according to the input and output of NetEM. In
order to draw the complete reflection curve, we set the data
of various angles and materials, input them into the NetEM
model, calculate the corresponding reflection coefficients, and
then draw the corresponding curve. Although this method cannot
indicate which parts of the drawn curve are supported by training
data, it can easily and quickly draw the complete curve fitted by
NetEM.

Fig. 20 shows the curves of the reflection coefficient in the SP
direction when the materials are SLICY target and background.
The reflection coefficient of radar signal on SLICY surface is
close to one. This is the same as the original specular reflection
simulation model in RaySAR (see Fig. 5). This means that
there is almost no attenuation of radar signal intensity when
reflected on SLICY surface, and the reflection of radar signal
on SLICY is close to specular reflection. According to [28],
the material of SLICY target is metal, so this conclusion is
exactly the same as the reality. The reflection coefficient of the
signal on the background decreases with the increase of the
incident angle. This trend is consistent with the nature of the
background material (growing vegetation) and is similar to that
of VV polarization in Fresnel specular model, as shown in Fig. 3.

Fig. 21 shows the curves of the reflection coefficient when
the radar signal is reflected back to the SAR antenna (BK).
With the change of incident angle, the reflection coefficient
curve also changes regularly. For the material of SLICY, the
reflection coefficient reaches the minimum at the incident angle
θ1, increases gradually on both sides of the incident angle, and
gradually increases to the maximum on the other side of the
normal. For background material (only growing vegetation), its
reflection coefficient decreases rapidly on the other side of the
normal. When the reflection angle θ2 is greater than 0° and less
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Fig. 21. Curves of the reflection coefficient in the BK direction. Top: The ma-
terial of SLICY. Bottom: The material of background (only growing vegetation).

Fig. 22. Large and small convolution kernels of the NetPix model in Fig. 15.

than 90°, the reflection coefficient increases with the increase of
incident angle for both of the materials. This law is the same as
that of HH polarization of Fresnel model in Fig. 3. This indicates
that the far field reflection calculated by NetEM is related to the
incidence angle.

2) Convolution Kernels of NetPix: The expected function of
NetPix is to add side lobe and speckle noise caused by the co-
herent imaging mechanism of SAR to the simulation image. As
mentioned above, these two functions can be simulated simply
by using convolution kernel. In addition, because the number
of layers of NetPix model is very small, the function of NetPix
can be interpreted just by looking at the content of convolution
kernel. From the convolution kernel shown in Fig. 22, it can be
seen that the small-sized convolution kernel of the two layers
learns some local basic structures of SLICY to concentrate the
reflection of these structures in one or two pixels, while the large
convolution kernel fits the convolution kernel corresponding to
the impulse response. Therefore, these two convolution kernels
are in accordance with the expectation.

D. Comparison Between the Simulation Images, the Real
Images and the SLICY Model

Fig. 23 shows the curve of the MSE between the simulation
images and the real images on the verification set. In the figure,
the convergence value of MSE is 0.003253. This loss value
indicates that the shape size, intensity and position distribution of
the scattered points in the simulation images are close to the real
images, that is, the simulation images are very similar to the real
images. Table V gives the comparison between the simulation

Fig. 23. Curve of the MSE between the simulation images and the real images
on the verification set.

TABLE V
COMPARISON OF TWO KINDS OF SIMULATION IMAGES AND REAL IMAGES

images and the real images. In addition to the images simulated
by the proposed method, the other set of simulated images are
simulated by frequency asymptotic code for electromagnetic
target scattering (FACETS) [26].

FACETS is a commercial high-frequency EM code developed
by Thales U.K. Limited and its excellent numerical simulation
capability and the quality of simulation images are verified by
Defence R&D Canada [29]. Although the images simulated by
FACETS are of high quality, it can be seen from the comparison
of Table V that the images simulated by FACETS still lack
some key scattering points compared with the real images.
However, these scattering points are well simulated by the
proposed method. This is because FACETS uses a modular
structure to compute various scattering processes. The modular
structure makes FACETS unable to calculate the EM reflection
between the scattering primitives and results in the missing of
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Fig. 24. Geometric structure of T-72 main battle tank.

some scattering points in the simulation image. In addition, the
locations of scattering primitives on the target must be manually
identified and fed into the FACETS’s EM code. For complex
targets, the nominations of all the scattering primitives could be
quite labor intensive. Since the proposed method directly uses
radar signal rays to illuminate the entire imaging scene, the above
problems do not exist.

We further draw Fig. 26 in appendix to show more com-
parisons between the simulated images and the real images
and illustrate the assistance of image simulation in SAR image
interpretation. In the figure, we give the simulation images
before and after the image post-processing in step 5, in which the
image before postprocessing has two quantized results: trunca-
tion quantization and peak quantization. The relevant scattered
points are marked with red circles, so that the corresponding
relationship between scattered points in the real image and
geometric structure can be clearly obtained. By comparing the
images, it is easy to identify which structure in the target causes
each scattered point in the real image.

E. Performance in the Simulation of a Complex Target

In order to further verify the performance of the proposed
method in simulating SAR images of targets with more complex
structures and the improvement in the similarity of the simulated
images compared with the original RaySAR simulation method,
we used the two methods to simulate the SAR images of another
main target in MSTAR dataset, T-72 main battle tank, for com-
parison and analysis. The geometric model of T-72 main battle
tank is shown in Fig. 24. Compared with SLICY, it contains
more geometric structures and combinations, which is complex
enough to verify the performance of the proposed method in
simulating complex targets. In addition, the complex-wavelet
structural similarity (CW-SSIM) [30] index between the simu-
lated images and the real images was calculated respectively to
quantitative measure the improvement of the similarity of the
simulation image of the whole T-72 dataset. Fig. 25 shows the
CW-SSIM index curves of the simulation image datasets. It can
be clearly seen that our method not only has good performance
in simulating complex targets, but also has a great improvement
in the similarity of simulation images compared with those
obtained by RaySAR simulation method which directly uses
the EM approximate calculation models.

Fig. 25. CW-SSIM index curve of the simulated image datasets obtained by
the two simulation methods. (a) 15° depression. (b) 17° depression.

V. CONCLUSION

Aiming at the problem that the EM reflection approximate
models adopted in the SAR image simulation method based on
ray tracing is inconsistent with the actual situation and lack of
adjustability, we propose a simulation framework that embeds
DNN models into the simulation process to calculation EM
reflection, which solves the problem of poor interpretability
and weak generalization ability of DNN models. This method
can directly learn and fit the EM reflection models from real
images, and improve the similarity of the simulation image. The
experimental results show that the proposed method is correct
and effective. The EM reflection model fitted by the DNN
model is consistent with the material characteristics of target
and background. The convolution kernel of the post-processing
model is also consistent with the expected form.

Compared with other methods of applying DNN model to the
SAR image simulation, this method deeply analyzes and decom-
position of the original simulation method, and decomposes the
originally very complex simulation principle and process into
several steps with clear functions. Therefore, the DNN model
in each step has a very specific function, so as to enhances the
interpretability and generalization ability of the model. During
the implementation of this framework, the difficulties caused by
complex computational data and complex model connection are
overcome through the ingenious design of the data structure
and network model architecture, thus effectively solving the
problem of embedding DNN model into the simulation process
while keeping the original basic imaging model and simulation
principle unchanged.

The method proposed in this article can be further applied to
the exploration of material properties and material classification,
and can reduce the modeling cost of complex materials. More
importantly, it provides a more in-depth and novel perspec-
tive for the combination of deep learning method and image
simulation. In addition, the research ideas and techniques of
this article provide a very novel and important entry point
for the construction of a fully differentiable SAR image sim-
ulator, which will be further explored and improved in our
next work.
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APPENDIX

Fig. 26. Comparison between simulated and real SAR images at 15-degree elevation angle.
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