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Abstract—In this article, we present a novel hybrid frame-
work, which integrates spatial–temporal semantic segmentation
with postclassification relearning, for multitemporal land use and
land cover (LULC) classification based on very high resolution
(VHR) satellite imagery. To efficiently obtain optimal multitem-
poral LULC classification maps, the hybrid framework utilizes a
spatial–temporal semantic segmentation model to harness tempo-
ral dependency for extracting high-level spatial–temporal features.
In addition, the principle of postclassification relearning is adopted
to efficiently optimize model output. Thereby, the initial outcome of
a semantic segmentation model is provided to a subsequent model
via an extended input space to guide the learning of discriminative
feature representations in an end-to-end fashion. Last, object-based
voting is coupled with postclassification relearning for coping with
the high intraclass and low interclass variances. The framework
was tested with two different postclassification relearning strate-
gies (i.e., pixel-based relearning and object-based relearning) and
three convolutional neural network models, i.e., UNet, a simple
Convolutional LSTM, and a UNet Convolutional-LSTM. The ex-
periments were conducted on two datasets with LULC labels that
contain rich semantic information and variant building morpho-
logic features (e.g., informal settlements). Each dataset contains
four time steps from WorldView-2 and Quickbird imagery. The
experimental results unambiguously underline that the proposed
framework is efficient in terms of classifying complex LULC maps
with multitemporal VHR images.

Index Terms—Classification postprocessing (CPP), con-
volutional neural networks (CNNs), deep learning (DL), multi-
temporal land use classification, relearning.

I. INTRODUCTION

OVER recent years, the number of very high resolution
(VHR) multitemporal satellite imagery has significantly

increased and become commercially available [1]. VHR imagery
provides opportunities for extracting many details including
various land use types and building morphologies. One potential
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application domain is land use analysis [2]–[4]. The World Bank
[5] estimates that three billion people will live in substandard
housing by 2030. By 2050, the UN [6] projects that two thirds
of the world’s population, around 7 billion people, will live in
urban areas. The increasingly available multitemporal satellite
imagery can be beneficial for examining urban development
over time and help set policies to limit urban sprawls, among
others. Efficient methods for classifying land use and land cover
(LULC) from multitemporal VHR imagery is therefore timely
and worthy of further exploration.

Finding suitable and effective approaches for multitemporal
LULC classification based on VHR remote sensing imagery
remains challenging. First, the significantly improved spatial
resolution of VHR imagery leads to high intravariation and low
intervariation between each LULC class [7], [8]. This issue
inevitably decreases the separability between different LULC
classes, especially for land use categories that contain much
semantic information. Moreover, most of the existing tempo-
ral methods have not fully exploited the temporal sequential
features in multitemporal data because of their limitations re-
garding automation and flexibility [9]. It can be argued that the
temporal dependency embedded in the consecutive time steps
of time-series data contains the features of transition patterns,
i.e., transitions rules of LULC changes. It has been widely rec-
ognized that deep learning (DL) methods can extract rules that
represent the relationship between the distributions of input and
output. Convolutional neural networks (CNN) are designated
for processing spatial features, whereas recurrent neural net-
works (RNN) excel at analyzing temporal relationships. These
advanced developments in the DL field shed light on taking
advantages of the temporal dependency features for improving
classification accuracy.

In the past, different strategies were followed to improve
the accuracy of LULC classification for VHR remote sensing
imagery.

A. Convolutional Neural Networks for LULC Classification

DL algorithms, particularly CNN, have gained great success
and are deployed in the remote sensing community [10]. It
is because CNNs excel at effectively encoding discriminating
features based on spectral and spatial information [11]. Such
abilities enable CNN models to achieve remarkable accuracy
in image classification tasks [12], [13]. The applications of
CNNs in LULC can be mainly grouped into two categories:
scene-based classification and pixel-based classification [14].
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Scene-based classification, also termed patch-based classi-
fication, refers to the categorization of images into a set of
LULC classes based on the main content of each image [15].
Many efforts of deploying CNNs for scene-based classification
of remote sensing imagery have been made. A typical example
of scene-based classification starts with sampling numerous
patches from a relatively large image for model training, then an
LULC map is generated by the trained model through classifying
the scene category of every sampled patch [16]. Sharma et al.
[16] proposed a path-based CNN framework that is designated
for medium-resolution remote sensing data. Liu and Shi [17]
deployed a scene-based CNN model for local climate mapping.
It can be argued that scene-based CNNs have several limitations
in LULC classification. First, a suitable size of input patch is
difficult to define, especially when the sizes of ground targets
are highly variant [18]. Moreover, the patches sampled in the
same large image are processed independently, which means
the context information is neglected in the process of classifi-
cation. Furthermore, scene-based methods usually are adopted
for recognizing large objects, whereby pixel-based methods are
more suitable for detecting fine details [19].

Pixel-based classification refers to techniques which assign a
class label to each pixel of an image. Semantic segmentation
techniques, as one type of pixel-based classification, assign
labels to each pixel according to contextual information. Over
recent years, fully convolutional networks (FCNs) [20] have re-
ceived much attention in terms of their outstanding performance
in semantic segmentation tasks. Comparing with conventional
pixel-based classifiers that partition pixels solely based on the
specific spectral information, FCNs perform pixel-level labeling
by using multiple fully convolutional layers to extract high-
level contextual features embedded in images. Although FCNs
usually do not exhibit heavy salt-and-pepper noise, one of the
constraints of FCNs is the blurring class boundaries caused by
multilevel abstractions [18], [21].

It has been widely recognized that the performance of a
CNN model can heavily depend on the quality and amount
of training data. Unlike ordinary RGB images that have open
datasets containing enormous amount of data for training CNN
models, large-scale annotated multispectral remote sensing data
is scarce [22]. Therefore, considerable efforts have been made
in developing CNN models that are suitable for remote sensing
imagery. One of the strategies is to exploit existing trained CNN
models, by including transfer learning strategies [23] and fine
tuning mechanisms [11] for model adaption. However, this di-
rection requires highly resembled classification tasks and model
structures, for example, parameters trained on ordinary dataset
are very challenging to be transferred to multispectral remote
sensing dataset. Alternatively, another effective direction is to
develop CNN-based frameworks that are tailored for remote
sensing data, i.e., integrating with object-based segments [1],
and developing effective post-classification methods [18], [24].

B. Integration of Object-Based Image Analysis and
Convolutional Neural Networks

Object-based image analysis (OBIA) has been widely ap-
plied for mitigating the high intraclass and low interclass

variabilities in VHR imagery [25]. Object-based segmentation
refers to the process of partitioning images into small objects
based on homogeneity attributes of the image. One of the pri-
mary constituting aspects of such techniques is to model mean-
ingful real-world objects (e.g., with a segmentation algorithm)
before further processing. Those allow for a diversified charac-
terization of spectral values, consideration of geometry-related
properties of objects, and also encoding of additional spatial
information such as relationships of (topological) neighborhood
and spatial hierarchy [26]. Given the outstanding performance of
DL in tasks of scene-based classification and semantic segmen-
tation, attempts of integrating OBIA with DL models have been
explored. For example, X. Zhang et al. [3] extracted spectral,
spatial, and texture features of image segments to train a deep
neural network for land-cover classification.

In terms of the integration of OBIA with CNNs, some re-
search focused on the direction of deploying OBIA as a method
of preprocessing inputs for training scene-based DL models.
However, the object-based segmentation cannot be directly used
for CNN training. This is because object-based segments have
irregular shapes and various sizes, whereas CNN models de-
mand input units to have square shapes and uniformed size
[18]. To deal with this issue, [1] proposed to use the minimum
bounding box of object-based segments to sample training inputs
for scene-based classification. However, the implementation of
OBIA as a preprocessing method still could not address the
aforementioned limitation of scene-based CNNs in terms of
deploying contexture information for classification.

To deal with VHR imagery, besides clustering pixels into
objects as processing units, another strategy is to adopt effective
postclassification methods [27]. Object-based voting (OBV) has
been extensively acknowledged as an effective OBIA-related
classification postprocessing (CPP) method, which refers to a
refinement of classified labels according to the boundaries of
objects to improve the classification accuracy [28]. In general,
CPP methods can achieve considerable accuracy improvement
efficiently and concisely. However, comparing with preprocess-
ing methods, much less attention has been paid on CPP methods
[28]. Therefore, the potential of deploying OBV-based CPP
methods for refining the output of a CNN is worthy of further
exploration. In this manner, Liu et al. [18] proposed a simple
but efficient framework, which integrates the OBV with DL.
Thereby, the outputs of a CNN are aggregated with a majority
voting strategy to object-based segments. The hybrid method
brought significant improvements to the classification accuracy
of CNN outputs.

The process of object-based segmentation is conducted in
an iterative bottom-up manner that starts from merging pix-
els into objects [29]. The sizes and geometries of objects are
determined by three parameters, which are “scale,” “shape,”
and “compactness.” The “scale” parameter determines the sen-
sitivity for the object fusion [29], greater scale value results
in larger segmentation area. The “shape” parameter defines the
influence of color on the segmentation process, the “compact-
ness” parameter defines the smoothness and compactness of
object boundaries. Among the three parameters of object-based
segmentation, it is worth noting that the “scale” parameter
has the most significant effect on the segmentation of objects,



ZHU et al.: MULTITEMPORAL RELEARNING WITH CONVOLUTIONAL LSTM MODELS FOR LAND USE CLASSIFICATION 3253

it determines whether objects are segmented into appropriate
sizes.

For instance, large scales can result in under-segmentation,
whereas small scales can lead to over-segmentation. Conse-
quently, Liu et al. [18] also claim that the selection of different
scales can have significant effects on the results of refinements.

C. Postclassification Relearning for Land Use and Land
Cover Classification

Although the aforementioned OBV-based CPP methods can
enhance raw classification accuracy, they do not account for
improving the separability between classes [28]. Regarding
this issue, relearning-based CPP methods have demonstrated
immense potential in terms of improving postclassification accu-
racy through enhancing the separability of the original classifier
[28]. The basic idea of postclassification relearning is to deploy
the initial output of the model for calculation of additional
features. Then with such additional features, the performance
of the model can be enhanced with extended input space after
training for a second time [24].

Over recent years, the advantages of using relearning-based
CPP has raised attention. Geiß and Taubenböck [24] proposed
an object-based relearning (OBR) framework, which improved
the classification accuracy by retraining a model with a triplet
of hierarchical OBV features generated from its preliminary
outcomes. Also, Han et al. [30] proposed an edge-preservation
multiclassifier relearning framework, which includes iterative
relearning procedures based on landscape metrics to enhance
the separability of LULC classes. Furthermore, Shi et al. [31]
developed an active relearning framework that can improve the
classification results with less labeling costs. More recently, Lei
et al. [32] developed an object-oriented classification method
which iteratively integrates classification results. The experi-
mental results achieved promising accuracy even with a limited
number of samples. The above experiments all conducted the
relearning processes in an iterative manner, in order to harness
the additional feature that can be updated after each iteration.
Such process can be carried on until the optimization hits a
plateau.

D. Multitemporal Land Use and Land Cover Classification

Multitemporal LULC classification is an active field in remote
sensing community. Over recent years, since the access to mul-
titemporal remote sensing imagery became increasingly avail-
able, more opportunities emerged for the utilization of temporary
dependency to improve LULC classification [33]. Temporal
sequential LULC data can significantly facilitate change detec-
tion and growth prediction. Moreover, the temporal dependency
embedded in multitemporal data can be utilized to enhance
the classifier performance. Vuolo et al. [34] tested the effect
of adding temporal information as additional features for crop
classification. The classification accuracy showed considerable
improvement after the utilization of temporal information. How-
ever, in practice, it is still challenging to find an effective method
for multitemporal LULC classification. Conventional methods

of temporal feature extraction have many limitations, includ-
ing time-consuming manual feature engineering and predefined
rules that lack of flexibility [9].

In the domain of DL, models of RNNs, including long short-
term memory (LSTM) and gated recurrent units, are designated
for processing sequential temporal data. Subsequently, to har-
ness the power of RNNs for processing spatial–temporal sequen-
tial data, efforts of integrating CNNs and RNNs have been made.
A Convolutional LSTM (ConvLSTM) network is proposed
for anticipating future precipitation [31]. Given multitemporal
land use data is inherently spatial–temporal sequential data,
recurrent convolutional structures have been applied for LULC
classification and prediction. In this manner, the framework of
ConvLSTM has been deployed in the field of remote sensing.
Mou et al. [35] integrated CNN and LSTM layers to form a
recurrent CNN for detecting land cover changes. Moreover,
Rußwurm and Körner [36] proposed an encoder structure with
recurrent convolutional layers for land cover classification. This
structure can utilize the temporal interdependency embedded in
the input data. As a result, they improved classification accuracy
as well as alleviated the pre-processing work regarding minor
missing information (e.g., clouding filling).

Although the model of ConvLSTM is designed for processing
spatial–temporal data, the structure of a simple ConvLSTM
model does not have advantages for the task of pixel-based
classification. To cope with this issue, attempts of combining
ConvLSTM with FCNs have been made. Milletari et al.
[37] proposed a coarse-to-fine context memory framework for
medical image segmentation, which uses ResNet as encoder and
ConvLSTM layers as decoder. Each ResNet block in the encoder
is timely distributed with its counterpart ConvLSTM layer in
the decoder. Such structure enables feature interpretation based
on coarse-to-fine context information, and allowed higher
classification accuracy of image data than a simple UNet.
Moreover, Azad et al. [38] developed a ConvLSTM U-Net
model for medical image segmentation, which employed
bidirectional ConvLSTM layers in the decoder part of a U-Net.
This framework presented better segmentation performance
due to its ability of abstracting more discriminative features. As
for the applications of semantic segmentation tasks for remote
sensing imagery, Gallego et al. [39] used ConvLSTM unites
as the first layer in autoencoders for segmenting oil spills from
side-looking airborne radar imagery. Similarly, Teimouri et al.
[40] adopted ConvLSTM layers at the last stage of an FCN for
classifying various crop types from SAR data.

From a unifying perspective, it can be argued that coupling
OBV with relearning methods can reasonably optimize classi-
fication boundaries and improve class separability. However,
to the best of our knowledge, approaches which internalize
those processing principles in a beneficial way for multitemporal
models are currently absent. Consequently, in this article, we aim
to uniquely examine the benefits of temporal dependency in a
deep relearning context. For this purpose, we propose a hybrid
framework for efficient multitemporal LULC classification of
VHR remote sensing imagery. The framework adopts a recurrent
convolutional structure as LULC classifier, which is integrated
with postclassification relearning for model improvement. At
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Fig. 1. Overview of the two proposed multitemporal relearning frameworks. (a) Pixel-based relearning with OBV as CPP. (b) OBV-based relearning with OBV
as CPP. (c) Structure of a ConvLSTM layer. (d) Structure of a ConvLSTM cell inside the ConvLSTM layer.

the relearning stage, the consecutive temporal outcomes of a
ConvLSTM-based model were utilized to extend the original
input space in the temporal dimension. Then the classifier was
retrained using the extended input space to improve its class
separability. The relearning process was iteratively conducted to
achieve an optimal result. The various combinations of relearn-
ing strategies, including OBV-based relearning and pixel-based
relearning, were tested and evaluated in an exhaustive manner.
The proposed framework was examined with complex classifi-
cation categories with relatively few labeled pixels in order to
show that this framework has potential to be applied for a wide
range of multitemporal LULC tasks.

The rest of the article is organized as follows: Section II
introduces each component of the proposed framework. The
experiment datasets and setup are described in Section III. Then
we report the results of experiments in Section IV and finally
Section V concludes this article.

II. PROPOSED METHODOLOGY

An overview of the proposed methods is provided in Fig. 1.
They build upon an advanced UNet-ConvLSTM model for
multitemporal LULC classification (Section II-A). Subsequent
to that, the outputs are processed with an OBV method

(Section II-B) to both eventually enhance the classification
output and establish a further input for an iterative relearning
strategy (Section II-C).

A. Convolutional Neural Network Models

1) UNet Model for Semantic Segmentation: It has been
widely recognized that FCNs can achieve robust performance in
the tasks of LULC classification. UNet, a semantic segmentation
model built upon conventional FCNs, was first introduced by
Ronneberger et al. [41] for biomedical image segmentation. The
name of “UNet” comes from its distinctive u-shaped encoder–
decoder architecture, which presents the down-sampling and
up-sampling process. To be more specific, the down-sampling
part of the network acts as the encoder, which extracts fea-
tures through convolutional layers and downscales data by
max pooling layers at multiple scales. Then the up-sampling
part of the network functions as the decoder, which expands
the down-sampled data at each scale to match its counterpart
layer of the encoder. The encoder and the decoder form a
more or less symmetric structure. This structure of UNet fa-
cilitates feature extraction at multiple scales, which enables the
classifier to consider both global context and local high-level
features.
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Another distinctive feature of UNet comprises the skip con-
nections between encoder and decoder, which concatenate the
low level, coarse feature maps in the encoder with the high
level, fine feature maps in the corresponding scale of decoder
[42]. Such skip connections between the encoder and decoders
can effectively restore the fine-grained features in the model
output.

UNet-based models exhibited promising performance when
being applied on tasks of pixelwise image segmentation, in-
cluding high spatial resolution aerial photo and remote sensing
images [43]. Comparing with conventional CNNs that require a
large amount of training data, UNet excels at achieving precise
segmentations with much fewer training images [41] and less
training time. However, in the process of fusion features ex-
tracted by encoder and decoder, the low-level features generate
noise in high-level features, therefore result in blurring seg-
ment boundaries [44]. Furthermore, although UNet has robust
performance in semantic segmentation tasks, a two-dimenional
(2-D) UNet does not consider temporal dependency in
the data.

In this article, we deploy UNet as a benchmark model to
compare the effects of relearning strategies on a single-temporal
model with multitemporal models.

2) ConvLSTM Models for Spatial–Temporal Data: ConvL-
STM, first proposed by X. Shi et al. [45], is developed based
on the structure of fully connected LSTM (FC-LSTM). Similar
with FC-LSTMs, ConvLSTM structures contain hidden states
H1, …, Ht, and cell states C1, …, Ct. The hidden states can
be regarded as cell outputs. The cell states function as the
memory of layer, the information in which can be selectively
updated or discarded. In a ConvLSTM model, convolutional
structures are deployed to replace the full connected layers
for input-to-state and state-to-state transition. In this manner,
both temporal consistency and spatial correlation are taken into
consideration in a ConvLSTM model.

Multiple ConvLSTM layers can be stacked together to form
more complex structures. The input space of a ConvLSTM layer
X ∈ Rt×h×w×c , in which t, h, w, and c, respectively, refer to
time steps, height, width, and channels. A simple ConvLSTM
model consists of multiple ConvLSTM layers, and a ConvLSTM
layer contains several ConvLSTM cells. The number of ConvL-
STM cells in a ConvLSTM layer corresponds to the number
of time steps of the dataset. Each cell takes Xt ∈ Rh×w×c as
input, and generates its hidden state Ht ∈ Rh×w×c and cell state
Ct ∈ Rh×w×c at time step t. The cell output Ht and state Ct

are controlled by three gates (i.e., forget gate ft, input gate it,
and output gate ot), which have same spatial dimensions (i.e.,
Rh×w×c). The three gates are computed by corresponding learn-
able weights and biases with activation functions [Fig. 1(d)]. The
key equations of a typical ConvLSTM layer can be described as
follows [45]:

it = σ (Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi) (1)

ft = σ (Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf ) (2)

ot = σ (Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo) (3)

Ct = ft ◦ Ct−1 + it ◦ tanh (Wxc ∗Xt +Whc ∗Ht−1 + bc)
(4)

Ht = ot ◦ tanh (Ct) (5)

where W and b refer to weight and bias, σ and tanh refer
to sigmoid activation function and tanh activation function.
“∗” denotes the convolution operator and “◦” represents the
Hadamard product.

3) Integrating UNet and ConvLSTM for Multitemporal
LULC Classification: In essence, consecutive time steps of
LULC maps are spatial–temporal sequences. As such, multitem-
poral LULC classification is not only an image segmentation
problem, but also contains issues related to the encoding of
spatial-temporal relationships (i.e., urban transition rules).

As discussed in Section I-D, the integration of ConvLSTM
units with FCNs can facilitate the extracted spatial–temporal
features for image segmentation. Therefore, to develop efficient
methods for multitemporal LULC classification, this article in-
corporates ConvLSTM layers into a UNet-like encoder–decoder
structure to form an architecture named as UNet-ConvLSTM.

The encoder part of the UNet-ConvLSTM follows a con-
tracting path, which adopts convolutional layers for retrieving
spatial features and max pooling layers for down-sampling
and getting global context information. The decoder part of
the model follows an expanding path, which stacks multiple
ConvLSTM layers for extracting temporal relationships. On top
of the encoder–decoder structure, the corresponding encoder and
decoder blocks are concatenated by the skip connections (Fig. 1),
which aims to integrate low-level spatial features with high-level
spatial–temporal features. Furthermore, considering the datasets
only contain four time steps, which can be regarded as short-term
prediction problems for LSTM models, therefore it is not neces-
sary to implement a complex ConvLSTM structure. To reduce
the complexity of the integration of UNet and ConvLSTM, the
depth of the encoder–decoder structure of UNet-ConvLSTM
was decreased to two down-sampling scales.

B. Object-Based Voting (OBV)

OBV has been tested and proven to be an effective CPP
method for CNNs [18]. Therefore, coupling OBV with relearn-
ing is very likely to bring improvements to initial model outputs.
In this article, a combination of OBV and relearning is adopted
as one of the main relearning strategy categories (Fig. 1). The
process of conducting OBV-based relearning is described in
Section II-C. Furthermore, OBV is also used as a simple CPP
method at the last step for benchmarking. The detailed process
of conducting OBV can be described as follows:

For pixels x in the image I , they are partitioned into objects
according to a scale parameter s. As shown in Fig. 2, an optimal
value of s can be selected through exhaustive tests of a set of
values S ∈ {. . . , s− 1, s, s+ 1, . . .}. In general, multiscale
segmentation can be conducted following the constraint:

∪
Os−1

i ⊆Os
j

Os−1
i = Os

j . (6)
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Fig. 2. Effects of applying object-based voting (OBV) with different scale
parameters on a pixel-level classification map.

Segments Os
j with larger scale s are generated based on the

segments Os−1
i of smaller scale s− 1. Subsequently, the gen-

erated object-based segments are aggregated with pixel-based
labels of the classification maps produced by LULC classifiers.
Then pixels inside the object-based segments of each scale are
processed by majority voting to update the values of labels:

F s
j = argmax

(
f
(
Os

j

))
(7)

where f(Os
j ) refers to the frequency of each label inside an

object Os
j . After the OBV postprocessing, the most frequent

label is assigned to all the pixels inside the objectOs
j .F s

j denotes
the updated pixel labels at level s. After comparisons of F s

j with

ground truth F gt
j an optimal scale can be determined.

C. Postclassification Relearning

A simple postclassification relearning has three main consec-
utive steps: 1) a pixel-based supervised model is trained with
multispectral features Fs as initial input; 2) the overlap-tile
strategy segmentation [41] is deployed to obtain a seamless
classification map by the trained model, whereas the result-
ing two dimensional classification map can be regarded as an
additional feature Fp; 3) then Fs and Fp are stacked together
at the beginning of each relearning phase to form an extended
input space F′

s for the next phase of relearning. The purpose of
this concatenation operation is to generate new features that are
likely to be beneficial for improving the discriminative capability
of the model. As such, the process from step 1 to step 3 can be

carried out iteratively to seek an optimal result. Two main types
of relearning strategies were tested in this article, pixel-based
relearning [Fig. 1(a)] and OBV-based relearning [Fig. 1(b)]. The
former refers to using the output of the initial trained model, a
pixel-based classification map, as a relearned feature Fp. Then
Fp is concatenated with the initial multispectral input features
Fs to form a new input for the next iteration of relearning. The
latter adds an extra step of applying OBV on Fp to generate
a postprocessed output Fobv, which is then concatenated with
Fs for OBV-based relearning. The reason of adding the extra
step of OBV is because the OBV-processed results can yield
improvement regarding classification accuracy, which means
thatFobv tends to have higher classification accuracy thanFp. As
such, the extend input space F′

s generated with Fobv is likely to
provide the next relearning phase with better guided information
for LULC classification.

III. DATASETS AND EXPERIMENTAL SETUP

A. Study Area

Our study area includes a suburban area situated at the city
border of Dongguan and Shenzhen, Pearl River Delta, southern
China. Shenzhen and Dongguan have experienced rapid urban-
ization over the last four decades. During such expansion, a
significant number of rural villages have been merged into the
urban area, resulting in the prevalence of urban villages. Due
to the complex social-economic development in China, these
urban villages have unique building morphologies compared
with informal settlements elsewhere [46]. More specifically,
the informal settlements in Pearl River Delta mostly have their
original rural settlements as old cores [47]. These old cores have
been gradually encompassed by highly dense mid-rise informal
settlements (so-called “handshake buildings”) that were rede-
veloped on the plots of original rural settlements. The advent of
DL provides new opportunities for remote sensing community
to map informal settlements [23], [48]. In this article, we adjust
the LULC category according to the local context to include
“informal settlements” and the related “rural settlements” in the
category.

B. Datasets

Two datasets were deployed for a quantitative evaluation
of the models. Both datasets have a spatial coverage of 90
km2. Each dataset contains four time steps with an interval of
approximately 5 years (Fig. 3). Due to the limited availability of
temporal sequences, the datasets are from two sensor sources:
WorldView-2 and QuickBird. The WorldView-2 data covers the
years 2012 and 2018, and the QuickBird data covers the years
2002 and 2007. In terms of the spatial resolution, the data from
both sources have a spatial resolution of 0.5 m with an image
size of 4096 × 4096 pixels. Regarding the spectral resolution,
QuickBird data contains four spectral bands, which are red,
blue, green, and NIR. Although WorldView-2 data provides
eight spectral bands, only four spectral bands (red, blue, green,
and NIR1) are used to match the four corresponding bands of
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Fig. 3. Multitemporal VHR imagery and corresponding ground truth labels of dataset I.

QuickBird data. All the ground truth labels were manually made
under consideration of ancillary cadastral maps.

Satellite images were cropped into image tiles of 128 × 128
pixels with an overlap of 32 pixels for the purpose of increasing
the amount of training data. The total number of cropped patches
was 7056, 80% of which were randomly sampled for training and
20% were used for validation. To ensure a fair evaluation of all
the experimental approaches, a subset of the validation dataset
is selected as testing dataset for evaluation purposes. It should
be noted that the subset selectively consists of the areas of the
validation dataset that are not overlapped with training dataset,
i.e., areas which are strictly spatially disjoint [49]. Consequently,
the testing dataset consists of data that has completely not been
used for training.

The VHR satellite images enable the observation of various
building morphologies and different vegetation types, especially
the differentiation between original rural villages and follow-up
informal settlements in the study area. In total, 10 LULC classes
were defined in this article, including: “rural settlements,” “infor-
mal settlements,” “formal settlements,” “bare soil,” “grassland,”
“farmland,” “trees and bushes,” “water,” “roads,” and “other
impervious surface” (Fig. 4). It should be noted that the accuracy
of LULC classification can be largely subject to the settings of
LULC classes [10], larger numbers of LULC classes or semantic
categories could result in a decrease of classification accuracy.
Comparing with other commonly adopted LULC categories,
the inclusion of “informal settlements” and “rural settlement”
significantly increases the complexity of the classification task
due to their unique urban fabric and the need to incorporate large
amounts of semantic information.

C. Experimental Setup

Three convolutional models were built in this article, in-
cluding a simple UNet model, a simple ConvLSTM model
and an UNet-structured ConvLSTM model (Fig. 5). A simple

UNet model was built to create a baseline to compare with the
performance of the other two ConvLSTM-based models. The
three models were trained on a Nvidia GeForce RTX 2080 GPU
using Keras framework (Tensorflow backend). The parameters
for all the three models were set to be consistent; each model
has a batch size of six and uses “Adam” as the optimizer.
The loss function chosen was categorical cross-entropy, and
the initial learning rate was set to 10^-4, decreasing by a fac-
tor of 0.1 when validation loss stagnates for more than three
epochs.

The three models were tested following two main relearning
strategies: pixel-based relearning and OBV-based relearning.
Experiments on each relearning strategies were set to follow
three iterations to test to what extent this relearning strategy can
improve the initial result. For each relearning strategy, OBV was
applied to the relearned map after three iterations of relearning,
in other words, OBV was deployed at the last step to provide a
comparison with the iteratively relearned results.

In the process of segmenting an image into object-based
segments, three parameters were determined: “scale,” “shape,”
and “compactness.” Since the scale parameter plays the most
significant role regarding the effect of CPP, we kept “shape”
and “compactness” constant but tested a wide range of “scale”
parameters. “Shape” and “compactness” for all the approaches
were set to 0.3 and 0.3, respectively. A wide range of scale
parameters were tested with a linear ascending setting of S ∈
{10, 15, 20, 25, . . . , 115, 120}. Among the scale parameters in
set S, we selected a scale parameter that has the largest im-
provement on initial model prediction for all the OBV-related
approaches of each dataset.

Regarding the evaluation of classification results, the perfor-
mance of all the approaches were assessed by the overall ac-
curacy (OA) and Kappa coefficient. Perclass accuracy was also
assessed to examine the separability between classes, especially
for the effects of relearning approaches on the improvement of
classification accuracy in thematic classes.
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Fig. 4. Data settings for two study areas. (a) VHR imagery of dataset I. (b) Settings of validation data (highlighted) of dataset I. (c) Ground truth labels of dataset
I. (d) Settings of testing data (highlighted) of dataset I. (e) VHR imagery of dataset II. (f) Settings of validation data (highlighted) of dataset II. (g) Ground truth
labels of dataset II. (h) Settings of testing data (highlighted) of dataset II.

Fig. 5. Flowchart of the experiment setup. Multitemporal VHR images are first input in a CNN-based model for initial training to produce (1) initial pixel-based
classification maps, which are (2) postprocessed by OBV for benchmarking with relearning approaches; alternatively, the initial pixel-based classification maps
are aggregated with VHR images for (3) pixel-relearning; after three iterations of pixel relearning, the PR maps are processed by OBV to generate (4) PR-OBV;
following a similar work flow, (5) OBVR maps are generated after three iterations of aggregating OBV maps with VHR images. Finally, (6) OBVR–OBV maps
are produced by post-processing OBVR maps with OBV.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the overall performances of two re-
learning strategies applying on three different models. Moreover,
we compare the pixel accuracies of each LULC class for different
relearning methods. Visual observations were conducted for
evaluating the temporal correlations between the classifications
of each time steps.

A. Analysis of Segmentation Scale

The analysis of segmentation scale was conducted for each
model in the two datasets. An optimal segmentation scale for
each dataset varies from model to model. In dataset I, the optimal
segmentation scales for UNet model, simple ConvLSTM model
and UNet-ConvLSTM were 20, 85, and 70, respectively. In
dataset II, the counterpart scales were 55, 100, and 60.
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Fig. 6. Accuracy effects of OBV on the initial output of UNet-ConvLSTM
according to different scale parameters.

Although the optimal segmentation scales of a model are dif-
ferent in the two datasets, accuracy effects with different scales
of the same model share similar patterns. It can be observed that,
in both datasets, UNets required relatively smaller segmentation
scales to obtain an optimal improvement, whereas ConvLSTMs
demand larger scales to achieve more accuracy improvement
in OBV operation. As can be observed in Fig. 6, the accuracy
effects were optimal when the scale was around 60 to 80, smaller
or larger scale parameters receive less accuracy improvement.

B. Overall Accuracies and k Statistics

The initial training of three models followed by two relearning
strategies generated results for nine approaches, then OBV was
adopted as a last-step CPP method for each model to generate
benchmarks for the two relearning strategies. In all, 18 different
approaches for each dataset were evaluated and compared.

In general, as shown in Fig. 7, in both datasets I and II,
UNet-ConvLSTM with relearning strategies achieved the high-
est accuracy, 79.1% in dataset I and 84.4% in dataset II. UNet
with relearning strategies showed slightly less accuracy, the
best accuracy of UNet achieved in two datasets were 79% and
77.4%. Whereas the classification results achieved by a simple
ConvLSTM was much lower than the results achieved by the
other two models.

Before using OBV as a last-step CPP, both of pixel-based re-
learning and OBV-relearning presented improvements on model
performance. The accuracy of the initial training of all three
models significantly increased after applying the two relearn-
ing strategies. In dataset I, OBV-relearning approaches showed
higher kappa and OA values compared with initial training and
pixel-based relearning approaches in all three models. More
specifically, UNet-ConvLSTM with OBV-relearning achieved
the best performance in terms of kappa and OA, which were
75.2% and 79.2%, respectively; they increased 9% and 5.8%
compared with the initial training outcomes. However, for UNet-
ConvLSTM in dataset II, the OBV-relearning result achieved the

Fig. 7. Averaged Kappa and OA of 18 different approaches for the two test
datasets.

Fig. 8. Accuracy effects of UNet-ConvLSTM PR-OBV according to number
of classes.

same accuracy with its pixel-relearning result, both were the best
score of all the approaches in dataset II.

Furthermore, it was also observed that the two relearning
strategies have better effects on a UNet-ConvLSTM than a
UNet. In dataset I, the OA of UNet-ConvLSTM increased
from 73.4% to 79.2%; the OA of UNet raised from 71.8% to
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TABLE I
PRECLASS ACCURACY OF 18 DIFFERENT APPROACHES FOR DATASET I AND DATASET II

76.9%. The improvements were also significant in dataset II:
the OA of UNet-ConvLSTM climbed from 73.5% to 79.3%;
for UNet, it increased from 76.2% to 77.4%. It is also in-
teresting to observe that although in dataset II the UNet
had better initial prediction (76.2%) than UNet-ConvLSTM
(73.5%), the better effect of relearning strategies on the
later allowed it to surpass the relearned prediction of the
former.

When using OBV as a last-step CPP, the rates of improvement
were the most significant when applying on the results of initial

training and pixel-based relearning. After applying OBV as last-
step CPP on UNet-ConvLSTM, the accuracy of pixel-relearned
classification showed more considerable improvement than the
accuracy of OBV-relearned classification. In dataset II, the OA
of pixel-relearned UNet-ConvLSTM improved from 79.3% to
84.3%, whereas the OA of OBV-relearned UNet-ConvLSTM
only improved from 79.3% to 81.3%. Such effect also could
be seen in dataset I; this phenomenon is very likely due to the
effect of OBV has already been functional during the process
of OBV-relearning; therefore, its effect became less significant
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Fig. 9. Comparisons of year 2012 classification maps generated by 18 difference approaches in dataset I.

when using OBV as a last-step CPP on the OBV-relearned
result.

However, it is also evident from the results of both dataset I and
II, using OBV as last-step CPP did not bring improvements on
the classification result of all the approaches, a few exceptional
test results showed a decrease in the classification accuracy. For
instance, the OA of the OBV-relearned UNet-ConvLSTM in
dataset I dropped 0.2% after applying OBV CPP; also, the OA
of the pixel-relearned UNet in dataset II decreased 0.3% after
using OBV CPP.

In addition, the accuracy effects of UNet-ConvLSTM PR-
OBV according to number of classes have been studied (Fig. 8).
Besides the 10-class LULC categorization deployed in the main
experiments, a 4-class LULC category and a 7-class LULC
category were adopted for comparison. The 4-class categoriza-
tion consists of 1) vegetation, 2) urban extent, 3) soil, and 4)
water, and the 7-class categorization contains 1) farmland and
grassland, 2) formal settlements, 3) informal settlements (includ-
ing rural settlements), 4) other impervious surface (including
roads), 5) soil, 6) trees, and 7) water. As can be seen from
Fig. 8, in both dataset I and II, a smaller number of classes,
that need to be distinguished, allows obtaining a higher level of
accuracy.

C. Perclass Accuracies

As shown in Table I, in both dataset I and dataset II, all the top
scores in each LULC class were distributed in UNet-ConvLSTM
approaches. To be more specific, in dataset I, the best scores were
scattered in various relearning strategies of UNet-ConvLSTM.
The OBV-relearned UNet-ConvLSTM (UC-OBVR) captured

more best scores than others. It can also be seen that the perfor-
mance of the pixel-relearned UNet-ConvLSTM (UC-PR) was
just slightly better than the performance of the one adding OBV
as CPP (UC-PR-OBV). Whereas, in dataset II, most of the best
scores of LULC classes were achieved by UC-PR-OBV.

The results also show that simple ConvLSTM approaches
failed to recognize “informal settlements,” as well as showed the
poor performance of classifying “rural settlements” and “other
impervious surface.” These poor performances contributed to
the lowest OA comparing with the other two models.

The class-based accuracy reflected that thematic classes have
lower class separability than others. For example, “other imper-
vious surface,” having almost same spectral value with “roads,”
received the lowest accuracy in all the three models due to the
separability of the class is mainly based on semantic information.
Among all the LULC classes, relearning strategies had the most
significant improvement of accuracy in “grassland” and “imper-
vious surface.” The pixel accuracy of “grassland” was improved
from 56.5% to 74.5% by the pixel-relearned UNet-ConvLSTM
with OBV as CPP (UC-PR-OBV) in dataset I and improved from
48.9% to 77.2% by UC-PR-OBV in dataset II. Meanwhile, the
accuracy of “impervious surface” was improved from 49% to
71.1% by UC-PR-OBV in dataset II.

D. Visual Observation

In Figs. 9 and 18 approaches of the year 2012 classifica-
tion maps of dataset I were compared. It is evident that all
the simple ConvLSTM approaches showed poor performance
in terms of recognizing “informal settlements,” whereas UNet
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Fig. 10. Comparisons between PR-OBV-based approaches and ground truth images in dataset II. (a) Ground truth. (b) UNet-ConvLSTM initial training.
(c) UNet-ConvLSTM-PR-OBV. (d) UNet-PR-OBV. (e) ConvLSTM-PR-OBV.

approaches and UNet-ConvLSTM approaches showed satisfac-
tory results. This is very likely due to a ConvLSTM struc-
ture, which simply consist of a stack of ConvLSTM layers,
does not have the strength of encoder-decoder structures in
terms of extracting high-level spatial context features. Simi-
larly, it can be argued that the encoder-decoder structure of
UNet-ConvLSTM-based approaches is able to complement
the disadvantage of a ConvLSTM model in terms of extract-
ing high-level representation. As such, it is observed that the

classification maps of UNet-ConvLSTM-based approaches
achieved good performance in segmenting thematic classes.

Comparing UNet-ConvLSTM approaches and UNet ap-
proaches, the result of initial training of UNet-ConvLSTM pre-
sented noises in the classification labels, while the result of the
initial training of UNet shows the effect of blurring boundaries.
After three iterations of relearning, the OBV-relearned and pixel-
relearned results showed similar visual representations. Both
issues of the salt-and-pepper effects and blurring boundaries
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were considerably alleviated, especially in the results of UNet-
ConvLSTM. However, not all the notable changes after relearn-
ing brought improvements to the accuracy of classification maps.
For instance, a larger scale of OBV merged small segments into
big parcels, although this process was helpful for mitigating
salt-and-pepper effects, it resulted in wrongly classified pixels
(e.g., the result of UNet-ConvLSTM initial OBV mistakenly
classified parts of roads into trees and bushes).

As mentioned in the previous sections, the approaches of pixel
relearning with OBV as CPP (PR-OBV) in dataset II achieved
the best scores in both OA and preclass accuracy. In Fig. 10,
obtained temporal sequence by PR-OBV-based approaches in
dataset II are compared with the corresponding ground truth.
First, temporal consistency regarding LULC changes are ob-
vious in the ground truth maps, see Fig. 10(a). Furthermore,
the results show that UNet-ConvLSTM-PR-OBV successfully
captured such temporal consistency, see Fig. 10(c). In particular,
the “informal settlements” in the classification maps of UNet-
ConvLSTM grows in a consistent manner from the year 2002
to 2018. However, since UNet approaches did not take temporal
relationship into account, the four time steps of classification
maps generated by UNet-based approaches show inconsisten-
cies in the changes of many LULC classes. For instance, the
patterns of “informal settlements” obtained by UNet changed
into rural settlements then changed back to informal settlements
[Fig. 10(d)]. In contrast, the UNet-ConvLSTM approaches that
designed for spatial-temporal segmentation tasks showed better
performance regarding reflecting temporal consistency. Since
the capability of reflecting temporal consistency in classification
results is not only useful in improving classification accuracy,
but can be valuable in terms of change detection and trend
analysis. Such clear benefit of the UNet-ConvLSTM relearning
approaches should not be ignored.

E. Time Consumption of Relearning

The time consumption of pixel-based relearning and OBV-
based relearning of three models (i.e., UNet, ConvLSTM, and
UNet-ConvLSTM) was compared in Fig. 11. As mentioned,
all the training operations were carried on a Nvidia GeForce
RTX 2080 GPU using Keras framework (Tensorflow backend).
Except the initial training of three models, the relearning oper-
ations were conducted for three iterations in the experiments.
Since operating OBV is a manual process that does not involve
model training, the time consumption of OBV operation is not
included in this comparison. In total, six relearning approaches
were compared with a breakdown of time consumed in each
phase.

It can be observed that UNet-based approaches tend to
demand less training time to complete three iterations of
relearning (less than three hours), while UNet-ConvLSTM-
based approaches required almost double the training time (less
than 6 h). This is very likely due to the recurrent model structure
in ConvLSTM-based models containing more learnable param-
eters and therefore demanding more time for data processing. It
should be noted that, for the UNet-ConvLSTM-based methods
in both datasets, the pixel-based relearning approach is more
efficient than OBV-based relearning. By and large, the extra

Fig. 11. Training time consumption of different relearning approaches in
dataset I and dataset II.

training time of the proposed method appears to internalize a
good tradeoff given the achievement of a higher OA.

V. CONCLUSION

The main purpose of this article is to explore the extent to
which a hybrid multitemporal relearning method can improve
the accuracy of LULC classification. In this article, three CNN
models with two main relearning strategies, pixel-based relearn-
ing and OBV relearning, were tested and analyzed. OBV was
also deployed after each relearning approach as a last-step CPP
for benchmarking. The classification tasks are set to be complex
and challenging in order to test a wide range of capabilities
of different relearning approaches. The main findings are as
follows:

1) UNet-ConvLSTM outperforms UNet and the simple Con-
vLSTM by achieving higher classification accuracy, as
well as reflecting temporal consistency in multitemporal
LULC classification. It is because a UNet-ConvLSTM
takes advantages of encoder–decoder structures, as well
as exploits the temporal dependency embedded in the
multitemporal data.

2) Both pixel-representation relearning and OBR can im-
prove classification accuracy. When conducting OBR, the
process of selecting the most effective segmentation scale
is crucial, too large scales can result in a failure of pre-
serving small objects in the classification maps. It should
be noted that although OBV relearning could be more
effective in alleviating salt-and-pepper noise, conducting
OBV scale selection is a time-consuming process. Since
PR-OBV achieved similar, or even better, accuracy in
this article, an integration of multitemporal segmentation
model with PR-OBV proves to be an efficient method.
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3) The performance of pixel-relearning and OBV-relearning
can vary from model to model. Based on the test results
in this article, these two learning strategies can achieve
similar accuracy improvements. However, adding OBV as
a last-step CPP can boost the accuracy of pixel-relearning
approaches to a large extent than the OBV-relearning
approaches.

4) It is true that the optimal OA of classification maps
achieved in this article is not eminently high (e.g., over
90%). This is mostly due to the complex thematic LULC
class category in this study. Compared with formal settle-
ments, the difference between the building morphologies
of informal settlements and rural settlement remains very
subtle. Furthermore, the informal settlements in the study
area have tiny plot sizes and mostly scattering inside rural
settlements. These factors inevitably limited the optimiza-
tion of classification accuracy; however, these features are
not unique to this case study but reflect the reality of many
rapidly urbanizing cities around the world.

5) During the experiments, we observed that the accuracy
levels of the classification results have increased with an
increasing number of labeled samples (i.e., number of
the training patches). Moreover, considering that certain
thematic classes generally have lower class separability
than others and that training sets can be imbalanced, data
augmentation techniques could be specifically applied on
certain thematic classes to eventually enhance the discrim-
inative properties of classifiers generally. Consequently,
further improvements regarding the accuracy levels can be
expected when integrating larger training sets and tailored
augmentation procedures.

In summary, this article shows that a combination of spatial–
temporal models and corresponding suitable relearning strate-
gies can produce very promising LULC classification maps from
VHR satellite imagery, even for highly complex classification
tasks with limited training data. Assuming a longer temporal
sequence could better reflect features of temporal dependency,
further research could focus on testing and developing relearning
methods on very long temporal sequential data for optimizing
multitemporal LULC classification.
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