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Efficient Two-Phase Multiobjective Sparse Unmixing
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Abstract—In our previous work, a two-phase multiobjective
sparse unmixing (Tp-MoSU) approach has been proposed, which
settled the regularization parameter issues of the regularization
unmixing methods. However, Tp-MoSU has limited performance
in identifying the real endmembers from the highly noisy data in
the first phase and cannot effectively exploit the spatial-contextual
information in the second phase because of the similarity measure
it used. To settle these two problems, a composite spectral similarity
measure is first constructed by fusing the spectral correlation angle
and the Euclidean distance. It is used instead of the Frobenius
norm to measure the unmixing residuals in the first phase because
it considers both the shape and amplitude discrepancy between
two spectra simultaneously. Then, the L2,∞ norm is used instead
of the l2 norm to measure the unmixing residuals in the second
phase, and the initialization, recombination, mutation, and local
search strategies are also elaborately redesigned to help reduce
this new objective, based on which the unmixing tasks of all pixels
in a hyperspectral image can be completed at once. Therefore, this
new measure facilitates the estimation of the abundances as a whole,
and thus, the spatial-contextual information can be better exploited
to improve the estimated abundances. Besides, the time efficiency
for abundance estimation is also greatly improved. Experimental
results demonstrate that the proposed method (termed as Tp-
MoSU+) outperforms Tp-MoSU in both of the two phases under
heavy noise and outperforms the tested regularization algorithms
in estimating the abundances.

Index Terms—Composite spectral similarity measure, highly
noisy data, L2,∞ norm, multiobjective sparse unmixing, spatial-
contextual information, time efficiency.

I. INTRODUCTION

HYPERSPECTRAL imaging is currently able to acquire
tens to hundreds of contiguous spectral bands, which pro-

vide much more information about a scene than the spaced spec-
tral bands obtained by multispectral imaging, not to mention the
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RGB image, which contains only three bands [1]. This attribute
facilitates the identification and classification of objects [2], [3],
and the analysis of potential substances in hyperspectral scene
via the spectroscopic technique. Thus, the hyperspectral image
has been widely used in the environmental monitoring [4], min-
eral exploration [5], surveillance [6], biomedical and biometric
applications [7], [8], etc. Unfortunately, hyperspectral imaging
cannot be implemented at a pure pixel level under the current
conditions due to the insufficient spatial resolution of sensors,
so most pixels in hyperspectral imagery are mixed [1], [9].
Therefore, spectral unmixing is in great demand to disclose the
underlying materials, which jointly occupy each mixed pixel.

Under different simplified scattering assumptions, the spectral
signatures of different materials are mixed in either linear or
nonlinear manner [9]. If the secondary reflections and/or mul-
tiple scattering effects are negligible as opposed to the primary
scattering in the data collection procedure [10], the linear mixing
will dominate the mixing process [1]; otherwise, the nonlinear
mixing will dominate. Although there is a growing trend of focus
on the nonlinear mixing recently, the linear mixing is still widely
investigated in many works [10] because of its computational
tractability and flexibility [11].

A linear mixing model (LMM) assumes that the detected
spectrum of one pixel in a hyperspectral imagery can be ex-
pressed as a linear combination of pure spectral signatures of
the materials contained in it [1]. Therefore, the task of linear un-
mixing is to identify a collection of pure spectral signatures (end-
members), together with their combination coefficients (abun-
dances), which indicate their respective proportion in that pixel.
To meet the physical interpretability, the abundances of materials
for each pixel are usually constrained to be nonnegative and
sum-to-one, which are simply denoted as ANC and ASC [12],
respectively. As indicated in [13], the statistical dependence
of abundances ensured by the ASC, together with the high
dimensionality of the hyperspectral data, makes hyperspectral
unmixing (HU) out of reach for most classical source separation
algorithms. The existing HU methods can be classified into
geometrical based, statistical based, and sparse regression based
according to [9].

Geometrical-based approaches attempt to identify the vertices
of a simplex, which happen to span the hyperspectral data
space, as endmembers either with [14] or without [15] the pure
pixel assumption. However, this kind of approach has poor
performance on highly mixed spectra [16]. In this case, the
statistical-based approaches are viable alternatives at an extra
cost of computational complexity. Statistical-based approaches
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use a posterior estimation of unknowns (endmembers and abun-
dances) as the inference engine to impose priors and model
the statistical variability so that the final solution has physical
meaning [9]. The sparse-regression-based approach has been
proposed in the past ten years benefiting from the increasingly
available spectral libraries. This kind of approach assumes that
the underlying endmembers in the mixed pixels are included in
an overcomplete spectral library known a priori; spectral unmix-
ing is thus reduced to a sparse regression problem with respect
to the abundances using the overcomplete spectral library. This
attribute is attractive since the correct estimation of endmembers,
which is a difficult task, is eliminated. Because the abundances
of endmembers for each pixel are constrained by ASC and ANC,
and the spectral signatures in a spectral library tend to be highly
correlated, the sparse regression problem cannot be well solved
by the standard sparse regression algorithms, which has been
confirmed by the experiments in [12].

In order to explore the capacity of sparse regression in
HU, a great variety of regularization approaches have been
proposed successively. These approaches generally optimize
a linear weighted function consisting of an unmixing residual
term, a sparse regularizer, and/or a spatial regularizer derived
from prior information. Commonly used unmixing residual
terms include the l2 norm based [13], l1 norm based [17], and
l2,1[18] norm based in order to better handle the Gaussian noise,
impulse noise, stripe noise, and outliers in hyperspectral data.
As for the sparse regularizer, the l1 norm was first used instead
of the l0 norm to induce sparse abundance matrix [10], [13]
because the l0-norm-based regularizer is nonconvex and hard to
optimize. Then, the l2,1 norm was given preference to induce
sparse rows in the abundance matrix [19] based on the finding
that all pixels of an image share a small set of endmembers
in the spectral library. In order to study the utilization of the
spatial information in estimating abundance, both the local and
global spatial regularizers have been successfully established.
The local spatial regularizers such as the total variation (TV)
regularizer [20] and the multiscale spatial regularizer [21] were
established based on the fact that the adjacent pixels are possibly
similar in components and their proportions, while the global
spatial regularizers such as the nonlocal means regularizer [22],
[23] were established to exploit similar patterns throughout the
whole image. A patch-based spatial–spectral kernel method pro-
posed in [24] can even capture the homogeneous neighborhood
adaptively to exploit the spatial–spectral information as much
as possible. Furthermore, researchers are proposing more and
more regularizers of various forms to exploit the spatial–spectral
information more flexible such as the rolling-guidance-based
regularizer [25] and the weighted nonlocal low-rank tensor [26],
etc. All these approaches have achieved promising unmixing
results, but they need to select suitable regularization parameters
and require the convexity and differentiability of their objective
functions.

In fact, the sparse unmixing problem is essentially a multi-
objective optimization problem because minimizing unmixing
residuals, inducing sparsity, and exploiting spatial information
with regard to the abundance matrix are three conflicting ob-
jectives. In [27], we proposed a multiobjective sparse unmixing

method and designed an effective cooperative coevolutionary
algorithm for it, but the computational complexity is unsatisfac-
tory especially when an image has tens of thousands of thou-
sands of pixels. A multiobjective optimization method based on
NSGA-II was proposed in [28], which used flipping to iden-
tify the real endmembers. However, the gene exchange among
individuals was not considered, and the nondominated sorting
strategy used in NSGA-II was time-consuming. Thereafter,
different multiobjective-optimization-based unmixing methods
were proposed by introducing spectral priors or spectral process-
ing techniques into the multiobjective modeling and optimizing
and optimizing processes, e.g., the spectral- and multiobjective-
based sparse unmixing [29], the classification-based model
for multiobjective sparse unmixing [30], and the dictionary-
pruning-based multiobjective sparse unmixing [31]. In our pre-
vious work, we proposed a two-phase multiobjective sparse
unmixing (Tp-MoSU) method [32], which identifies the real
endmembers and estimates abundances in two phases. In each
phase, a biobjective optimization problem was established to
optimize the unmixing accuracy and the objective derived from
prior information. Tp-MoSU exhibited good performance in
identifying real endmembers and estimating abundances in most
cases, but it still has limitations. In the first phase, Tp-MoSU has
limited performance in identifying the real endmembers under
heavy noise because the unmixing residuals measured by the
Frobenius norm (F -norm) are sensitive to the gain and offset
of the spectral amplitude caused by heavy noise. In the second
phase, limited by the optimization ability of the constructed ob-
jective and the designed algorithm, the abundance estimation can
only be implemented columnwisely, which is time-consuming,
and cannot exploit the spatial-contextual information well.

To settle the above exposed problems, we propose an effi-
cient two-phase multiobjective sparse unmixing (Tp-MoSU+)
approach by designing more suitable similarity measure in
this article. First, we thoroughly analyze the underlying reason
for the poor performance of Tp-MoSU in identifying the real
endmembers under heavy noise and point out the limitations
of F -norm-based residual objective used in the first phase of
Tp-MoSU. Then, a CSS measure is established to overcome the
limitations. In the second phase, we first analyze the possible
reasons for why Tp-MoSU cannot estimate the abundances
as a whole and then construct an L2,∞-norm-based residual
objective, which measures the maximum unmixing residuals
among all the pixels. We thus optimize this objective and the
TV regularizer simultaneously to estimate the abundances. The
evolutionary operators are also elaborately redesigned to help
reduce the reconstructed objective in order to facilitate the
estimation of abundances for all pixels as a whole. The main
advantages of Tp-MoSU+ are as follows.

1) Tp-MoSU+ constructs a CSS measure to evaluate the
unmixing residuals, which considers both the spectral
shape and amplitude discrepancy between the original and
reconstructed spectra, thus achieving better performance
on highly noisy data.

2) Tp-MoSU+ facilitates the estimation of abundances as a
whole using an L2,∞-norm-based residual objective and
the reconstructed evolutionary operators and thus greatly
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reduces the computational complexity and improves the
utilization of spatial-contextual information among the
adjacent pixels of an image.

The remainder of this article is organized in the following
steps. Section II reviews our previous two-phase multiobjective
optimization model for sparse unmixing. Section III estab-
lishes Tp-MoSU+ gradually based on the quantitative analysis.
Section IV introduces the solving algorithm for Tp-MoSU+
model. Section V verifies Tp-MoSU+ using the synthetic as well
as real datasets. Section VI concludes this article.

II. MULTIOBJECTIVE OPTIMIZATION FOR SPARSE UNMIXING

In this section, we mainly review the commonly used linear
sparse unmixing model and illustrate how the multiobjective
optimization serves sparse unmixing tasks.

The LMM with ANC and ASC can be described as

Y = AX +N

s.t. X ≥ 0,1T
q X = 1T

N (1)

whereY L×N is an observed hyperspectral image withN pixels,
each of which hasL spectral bands.AL×q is a matrix containing
q spectral signatures (endmembers), and Xq×N is the corre-
sponding abundance matrix. N models the additive noise in the
observation process. Note that X ≥ 0 should be understood in
an elementwise sense.

In sparse unmixing, an overcomplete spectral library is di-
rectly assigned to the matrix A, so the abundance matrix X
should be sparse, which can be induced by the sparse regularizer.
In addition, the spatial-contextual information can be exploited
by a suitable spatial regularizer. Therefore, sparse unmixing
tasks generally optimize

min
X
‖Y −AX‖F + λ1Jsps (X) + λ2Jspt (X)

s.t. X ≥ 0, 1T
q X = 1T

N (2)

where λ1 and λ2 are two regularization parameters. Jsps(X)
denotes the sparse regularizer, and usually, Jsps(X) = ‖X‖2,1
[19]; Jspt(X) denotes the spatial regularizer such as the TV [20]
and nonlocal means regularizers [22]. To eliminate the regular-
ization parameter issue, the interplay of regularizers, and the
drawback of “decision ahead of solution” behavior, we proposed
a Tp-MoSU method in [32] instead of the model (2) within the
multiobjective evolutionary algorithm based on decomposition
(MOEA/D) framework [33].

Tp-MoSU identifies the real endmembers and estimates their
abundances in two successive phases. In the first phase, it
identifies the real endmembers with a subset selection problem
by minimizing the unmixing residuals and the number of real
endmembers as

min
I

: {‖Y −AIXI‖F , ‖I‖0} (3)

where I is a binary vector whose length equals to the column
number of A, AI consists of the columns of A corresponding
to the nonzero elements of I , and XI = (AT

I AI)
−1AT

I Y . The

objective ‖I‖0 plays a similar role as the sparse regularizer
in (2).

Once the optimal binary vector Iopt is obtained, the real
endmembers (M = AIopt ) are also determined. In the second
phase, Tp-MoSU estimates the abundance vector of the jth pixel
(i.e., Sj) with

min
Sj≥0
{‖Y j−MSj‖2 , Jspt(Sj)}, j=1, 2, . . ., N. (4)

Note that the ASC in (2) is not imposed in this model because
the ANC can impose a generalized ASC potentially [10]. Both
problems (3) and (4) are decomposed into a series of scalar sub-
problems using the Tchebycheff approach within the MOEA/D
framework and then solved by the designed evolutionary al-
gorithms. For more details about how the Tp-MoSU model is
established and solved, readers are suggested to refer to [33] and
[32].

III. TP-MOSU+ MODELING

This section mainly analyzes the limitations of Tp-MoSU and
explains our motivation for improving each of the two phases.
In the first phase, we first analyze the disability of the F -norm in
utilizing the spectral shape features while measuring the spectral
similarity and then construct a CSS measure to exploit both the
spectral amplitude and shape discrepancy between the original
and reconstructed spectra. In the second phase, we first analyze
the reasons for the limited efficiency of Tp-MoSU in exploiting
the spatial-contextual information and then construct an L2,∞-
norm-based residual objective and redesign the optimization
operators to estimate the abundance matrix as a whole, thus
better exploiting the spatial-contextual information and reducing
the time complexity.

A. Composite Spectral Similarity Measure

Spectral similarity measure is very important in spectral
similarity analysis, e.g., spectrum reconstruction and spectral
clustering. In Tp-MoSU [32], we simply used the F -norm to
evaluate the difference between the original and reconstructed
spectra, and the experimental results showed that Tp-MoSU
achieved better performance in identifying the real endmembers
under slight noise, but limited performance under heavy noise.
To better describe the reason, we denote the gain and offset in
the spectral amplitude as follows:

vg = k � v (5a)

vo = v+b (5b)

where v is the original spectral vector, and k and b are the gain
and offset vectors, respectively.� and+ denote the elementwise
multiplication and addition, respectively.

We now present two examples to illustrate the sensitivity of
the F -norm (i.e., the l2 norm when measuring vectors) to the
gain and offset in the spectral amplitude:

1) Example 1 (k or b Is a Constant Vector): As shown
in Fig. 1(a), assuming that y1 is the reference spectral vec-
tor, y2 and y3 are two test spectral vectors such that y3 =
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Fig. 1. (a) and (b) Gain and offset effects of the spectral amplitude on the
spectral similarity based on l2-norm.

TABLE I
l2-NORM AND SAM (RAD) OF (y1, y2) AND (y1, y3) BEFORE AND AFTER

THE VECTOR NORMALIZATION IN EXAMPLE 1

(0.5, 0.5, . . . , 0.5)� y1. Table I presents the l2-norm and spec-
tral angle mapper (SAM) of (y1, y2) and (y1, y3) before and
after the vector normalization. From this table, we can find that
the l2-norm between the spectral vector y1 and y3 is obviously
larger than that betweeny1 andy2. Therefore,y1 is more similar
to y2 than to y3 in terms of the l2-norm. However, the vector
y3 is actually a scaling vector of y1 as in the assumption, so y1

is more similar to y3 than to y2 in terms of the SAM, which
measures the spectral similarity based on the spectral angle [1],
i.e.,

SAM(y1,y2) = arccos
yT
1 y2

‖y1‖2‖y2‖2 (6)

2) Example 2 (k and b Are Nonconstant Vectors): As shown
in Fig. 1(b), we still assume that y1 is the reference spectral
vector, y2 and y3 are two test spectral vectors, but k and b

TABLE II
l2-NORM AND SAM (RAD) OF (y1, y2) AND (y1, y3) BEFORE AND AFTER

THE VECTOR NORMALIZATION IN EXAMPLE 2

are no longer constant vectors. Table II presents the l2-norm
and SAM of (y1, y2) and (y1, y3) before and after the vector
normalization. From this table, we can find that the l2-norm
between the spectral vector y1 and y2 is obviously larger than
that between y1 and y3. Therefore, y1 is more similar to y3 than
to y2 in terms of the l2-norm. However, the SAM between the
vector y1 and y3 is larger than that of y1 and y2, so y1 is more
similar to y2 than to y3 in terms of the SAM.

From the above two examples, we can see that the perfor-
mance of l2-norm in measuring the spectral similarity is easy
to be degraded by the gain and offset in the spectral amplitude.
The reason lies in that the l2-norm purely measures the amplitude
difference between spectra and, thus, is oversensitive to the gain
and offset in the spectral amplitude [34]. In fact, the information
associated with a spectral vector includes both the spectral
amplitude and the spectral shape along the spectral bands. There-
fore, the F -norm purely accumulating the amplitude difference
in terms of the l2-norm is incapable of utilizing the shape features
to measure spectral similarity.

In order to utilize both the spectral shape and amplitude
features in measuring spectral similarity, we need to connect the
l2-norm with a spectral similarity measure, which is constructed
merely based on the spectral shape features. Fortunately, the
spectral correlation angle (SCA) [35] happens to hit the spot,
which is defined as

SCA (yi,yj) = arccos [ρ (yi,yj)] (7)

where yi and yj are two column vectors, SCA ∈ [0, π], and
ρ(·, ·) denotes the Pearson correlation coefficient

ρ (yi,yj) =
〈yi − ȳi,yj − ȳj〉
‖yi − ȳi‖2‖yj − ȳj‖2

(8)

where ȳi and ȳj are the mean values of yi and yj , respectively.
Thus, SCA is invariant to the constant gain and offset in the
spectral amplitude, i.e.,

SCA (yi,yj) = SCA (yi, kyj + b) , k, b 	= 0 (9)

so it mainly calculates the spectral shape differences between
two spectra.

To connect the l2-norm and SCA, the multiplication rather
than addition is used because the addition cannot balance the
effects of l2-norm and SCA when they have magnitude discrep-
ancy. Therefore, a novel composite spectral similarity measure
is constructed as the product of the l2-norm and SCA, i.e.,

CSS(Y , Ŷ )=
N∑
j=1

‖Y j − Ŷ j‖2 ·SCA
(
Y j , Ŷ j

)
(10)



2422 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

where Yj and Ŷj are the jth columns of Y and Ŷ , respectively.
As a result, the first phase of Tp-MoSU+ optimizes

min
I

: {CSS(Y ,AIXI), ‖I‖0} (11)

where the vector I and the matrices AI and XI are the same
as in (3).

B. L2,∞-Norm-Based Residual Measure

In the second phase of Tp-MoSU, the model (4) is solved
columnwisely (i.e., pixel-by-pixel) because the abundance ma-
trixS cannot be estimated as a whole by the designed algorithm.
Therefore, optimizing the model (4) is a very tedious and time-
consuming task, and the spatial-contextual information among
adjacent pixels cannot be effectively exploited.

In fact, we have attempted to estimate the whole abundance
matrix S in a single run using the algorithm in Tp-MoSU, but
the unmixing residual objective decreased hardly before the
individuals converge to the Pareto-optimal set. By analyzing
the change of unmixing residuals of each pixel as the individual
evolves, we found that there always exist some pixels whose
unmixing residuals increase, which obstructs the reduction of
the total unmixing residuals. Now, we attempt to analyze the
possible reasons for the increase below.

In Algorithm 3 of Tp-MoSU [32], the individuals are evolved
with the recombination, mutation, and local search operators as
the iteration goes, which may be the reasons for the increase in
the unmixing residuals of some pixels. Now, we analyze their
effects on the unmixing residuals of pixels, respectively.

1) Recombination: If the abundance matrix S is estimated
as a whole, the linear recombination used in Tp-MoSU should
be extended to

S̄ = λSk + (1− λ)Sl (12)

where Sk and Sl are two parent individuals, S̄ is the
offspring, and λ is the combination coefficient. Denoting
δ = Y j −MS̄j , δk = Y j −MSk

j , and δl = Y j −MSl
j ,

then the unmixing residuals of the jth pixel corresponding to
the offspring S̄ can be calculated as

‖δ‖2 = ‖λδk + (1− λ)δl‖2. (13)

Thus, ‖δ‖2 is not guaranteed to be less than both ‖δk‖2 and
‖δl‖2. For example, when δTk δl ≥ min{‖δk‖22, ‖δl‖22},
‖δ‖22 = ‖λδk + (1− λ)δl‖22

= λ2‖δk‖22 + (1− λ)2‖δl‖22 + 2λ(1− λ)δTk δl

≥ [λ2+(1−λ)2+2λ(1−λ)]min{‖δk‖22, ‖δl‖22}
= min{‖δk‖2, ‖δl‖2}. (14)

Therefore, the recombination process may be the reason for
the increase in the unmixing residuals of some pixels as the
individual evolves.

2) Mutation: If the abundance matrix S is estimated as a
whole, the Gaussian mutation operator used in Tp-MoSU is

better to be kept invariant, i.e.,

p(Sj ← S̄j) =
1√
2πσ

exp

(
−
(
Sj − S̄j

)2
2σ2

)
(15)

where j = 1, 2, . . . , N , and σ is a positive constant controlling
the mutation range. This is because different columns of S̄ have
different magnitudes, it would be more reasonable to mutate
them columnwisely. Obviously, ‖Y j −MS̄j‖22 is not neces-
sarily less than ‖Y j −MSj‖22, so this mutation process may
also be the reason for the increase in the unmixing residuals of
some pixels as the individual evolves.

3) Local Search: If the abundance matrix in the tth iteration,
i.e., S{t}, is estimated as a whole, the multiplicative update rule
used in Tp-MoSU should be extended to

S{t+ 1} = S{t} � (MTY )� (MTMS{t}) (16)

where � and � denote the elementwise multiplication and
division, respectively. In fact, (16) can be written in a gradient
descent form columnwisely [36] as

Sj{t+ 1} = Sj{t}+ ηj [(M
TY )j − (MTMS{t})j ]

(17)
where ηj = Sj{t} � (MTMS{t})j . Therefore, this local
search method guarantees to reduce the unmixing residuals of
each pixel as the individual evolves.

In summary, both the recombination and mutation processes
could be the reasons for why the Tp-MoSU algorithm does not
converge when estimating the abundance matrix S as a whole.

After reviewing the recombination operator (12) and the mu-
tation operator (15), we find that (12) and (15) recombine and
mutate all the columns of the parent individuals indiscriminately.
This has the potential to reduce the unmixing residuals of some
pixels, but may also increase that of the others at the same time,
thus leading to the increase of the total unmixing residuals.
To solve this problem, we need to reestablish the model and
reconstruct the optimization operators to optimize the unmixing
residuals for each pixel independently. In addition, to reduce the
total unmixing residuals of all the pixels more efficiently, we
should focus mainly on the pixels with high unmixing residuals
and optimize their abundances without worsening that of the
others. However, theF -norm-based objective roughly calculates
the total unmixing residuals of all the pixels, so the abundances
of the targeted pixels can hardly be optimized independently.

In order to meet the above intention, an L2,∞-norm-based
residual objective is established as

OBJ2 = ‖Y −MS‖2,∞ (18)

where ‖C‖2,∞=max{‖C(:, j)‖2, j=1, 2, . . ., N.}. This ob-
jective measures the maximum unmixing residuals among all
the pixels, so it is targeted on the pixel, which ranks the first
in occupying the unmixing residuals. In addition, the unmixing
residuals of each pixel can be obtained while calculating (18).
Therefore, this objective is more conducive to optimizing the
unmixing residuals of each pixel independently. Finally, by
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reducing the objective OBJ2 without increasing the unmix-
ing residuals of the other pixels, the total unmixing residuals
‖Y −MS‖F can be reduced collaboratively.

As a result, the second phase of Tp-MoSU+ optimizes

min
S≥0

: {OBJ2, Jspt(S)}. (19)

Based on the above analysis, in order to reduce the unmixing
residuals of all the pixels collaboratively, we need to redesign
the optimization operators to match the new objective (18) in
the following section.

IV. ALGORITHMS FOR TP-MOSU+

Although the objective in each phase of Tp-MoSU+ has been
reestablished, the algorithmic framework for Tp-MoSU can still
be used to optimize Tp-MoSU+ because of its extensibility. In
the following, we analyze whether the optimization operators in
the algorithmic framework should be redesigned or not.

In the first phase, the only difference between Tp-MoSU and
Tp-MoSU+ is the unmixing residual objective, so the endmem-
ber selection algorithm designed for Tp-MoSU in [32] can be
directly used for Tp-MoSU+. Therefore, in order to highlight the
strength of the CSS measure as compared with the F -norm, we
do not make any change to the optimization algorithm to avoid
unpredictable effects. In addition, among all the Pareto optimal
solutions obtained by the endmember selection algorithm, the
knee point search strategy [37] is still used to decide the final
solution because this solution generally corresponds to the real
endmembers as proved in [32].

In the second phase, we need to redesign the optimization
operators within [32, Algorithm 3] for Tp-MoSU+ to match the
constructed objective (18). The details are as follows.

1) Initialization: Because the real endmembers (M ) have
been identified, the initial population for the abundance matrix
S is partly generated randomly to create population diversity
and partly configured the same as [32, Algorithm 1] to approach
the convergence region.

2) Evaluation: Each individual Si (i = 1, 2, . . . , popsize.)
in the current population is evaluated using the objective (19),
and the unmixing residuals of each pixel corresponding to the
ith individual Si are stored in Gi for later use

Gi={gij |gij=‖Y j −MSi
j‖2, j=1, 2, . . . , N} (20)

where Si
j denotes the jth column of Si, and gij denotes its

unmixing residuals.
3) Recombination: Assuming that Sk and Sl (Sk 	= Sl) are

parent individuals to two different neighbors of the ith subprob-
lem, respectively, in order to inherit good genes from both of the
two parents, the offspring S̄

i is generated as

S̄i
j =

{
Sk

j , g
k
j ≤ glj ,

Sl
j , otherwise

j = 1, 2, . . . , N (21)

and thus the unmixing residuals of each pixel corresponding to
S̄

i are also inherited from the parents as

Ḡi={ḡij |ḡij=min{gkj , glj}, j=1, 2, . . . , N.} (22)

Therefore, this offspring S̄
i is guaranteed to be better than both

of the parents Sk and Sl in terms of the unmixing accuracy.
4) Mutation: In order to reduce the residual objective (18)

efficiently, we select the abundance vector with probability
proportional to its unmixing residuals such that the abundance
vector with larger unmixing residuals can be mutated with a
larger probability. Therefore, based on the unmixing residuals
(22) of all pixels, the jth (j = 1, 2, . . ., N.) column of the
offspring S̄

i is selected using the roulette wheel selection [38]
with probability

pj =
∥∥∥Y j −MS̄

i
j

∥∥∥
2

/ N∑
j=1

∥∥∥Y j −MS̄
i
j

∥∥∥
2

(23)

and then mutated to Si with probability (15).
5) Local Search: Because improving the abundance matrix

S using (16) guarantees to reduce the unmixing residuals of each
pixel, the multiplicative update rule (16) is still used as the local
search method.

With the above redesigned evolutionary operators, we can
optimize the objective (19) within [32, Algorithm 3] and obtain
a set of Pareto optimal solutions in a single run. In this way, the
computational complexity for estimating the abundance matrix
can be greatly reduced, and the spatial-contextual information
among adjacent pixels can be better utilized. In addition, among
all the obtained Pareto optimal solutions, the one with the least
unmixing residuals is selected as the final abundance matrix
because accuracy is the primary goal of unmixing tasks.

V. EXPERIMENTAL STUDIES

In this section, the proposed Tp-MoSU+ is tested in three
steps. First, the capability of the first phase in identifying the
real endmembers is investigated with the synthetic data be-
cause the ground-truth information is available to verify the
proposed method quantitatively. Second, the capability of the
second phase in estimating the abundances is tested with two
representative and two challenging synthetic datasets. Finally,
the proposed Tp-MoSU+ is used to unmix a real hyperspectral
image in compare with some state-of-the-art unmixing methods.
In summary, these three steps can provide valuable insight into
the overall effectiveness of the proposed Tp-MoSU+ for HU.

The parameters in the two phases of Tp-MoSU+ and Tp-
MoSU are set identically. Specifically, the population size, the
maximum iteration number, and the crossover probability in the
two phases are set equally to 100, 200, and 1, respectively. The
neighbor sizes in the two phases are set to 15 and 10, respectively.
The mutation probabilities in the two phases are set to 1/q and
1/k, respectively, where q is the size of the spectral library, and k
is the number of the estimated endmembers in the first phase. The
parameter σ in the second phase is set to one-thirtieth magnitude
of each individual. To ensure the reliability, the experiments are
repeated for 20 times, and their average results are presented.

A. Experiments on the First Phase of Tp-MoSU+

Because Tp-MoSU+ is established within the two-phase mul-
tiobjective optimization sparse unmixing framework, and the
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TABLE III
RESULTS OF Tp-MOSU+ IN IDENTIFYING VARYING NUMBER OF REAL ENDMEMBERS UNDER VARYING NOISE LEVELS AS COMPARED WITH Tp-MOSU BASED ON

THE LIBRARY A1(THE VALUES IN THE FIRST/SECOND COLUMN BELOW EACH INDICATOR ARE OBTAINED BY Tp-MOSU+/Tp-MOSU)

TABLE IV
RESULTS OF Tp-MOSU+ IN IDENTIFYING VARYING NUMBER OF REAL ENDMEMBERS UNDER VARYING NOISE LEVELS AS COMPARED WITH Tp-MOSU

BASED ON THE LIBRARY A2

CSS measure in the first phase of Tp-MoSU+ is constructed
on the basis of analyzing the limitations of Tp-MoSU under
heavy noise, Tp-MoSU is used as a comparison to verify the
effectiveness of CSS measure in this experiment.

The synthetic data used in this experiments are generated
based on the LMM (1) using the endmembers chosen from
the USGS digital spectral library—splib06.1 In order to study
the performance of the CSS measure under spectral signatures
with different mutual coherence (i.e., correlation), three libraries
A1, A2, and A3 are obtained by pruning the USGS library
with the spectral angle distance of 0◦, 3◦ and 5◦, respectively,
and thus, their mutual coherence is decreasing, namely, the
correlation between spectral signatures of the library is decreas-
ing. Then, the synthetic data with 1000 pixels are generated
using the endmembers chosen from the library A1, A2, and
A3, respectively. In order to study the performance of the CSS
measure under heavy additive noise, the Gaussian white noise
with varying SNR (SNR ≡ 10log10(‖AX‖22/‖N‖22)) from 5
to 20 with a step size of 5 is imposed on each synthetic data,
respectively. To quantify the performance of the constructed CSS
measure of Tp-MoSU+ in identifying the real endemembers, the
correct estimation rate (CER) and the average number (AN) of
accurately estimated endmembers defined in [32] are used as
two indicators. Specifically,

CER = NC/NT (24)

and

AN =

NT∑
n=1

Nn

/
NT (25)

where NC is the frequency of the correct identification of all the
real endmembers, NT is the total number of trials, and Nn is
the number of accurately identified real endmembers in the nth
trial.

The results of Tp-MoSU+ in identifying varying number of
real endmembers (denoted as p) under varying noise levels as
compared with Tp-MoSU based on the library A1, A2, and A3

are listed in Tables III–V, respectively. Based on these results,
we analyze the performance of Tp-MoSU+ against the varying
number of real endmembers, the varying noise level, and the
varying mutual coherence of spectral library, respectively, as
follows.

1) Varying Number of Real Endmembers: The AN and CER
values obtained by Tp-MoSU+ and Tp-MoSU in identifying
varying number of real endmembers under fixed SNR and fixed
spectral library are listed in each row of Tables III–V. From these
three tables, we find that almost all the AN values obtained by
Tp-MoSU+ are larger than that obtained by Tp-MoSU under
the same noise level and the same spectral library. Besides, the
CER value obtained by Tp-MoSU+ is generally larger than that
obtained by Tp-MoSU under the same noise level and the same
spectral library unless they are all equal to zero. This verifies
that Tp-MoSU+ outperforms Tp-MoSU in identifying varying
number of real endmembers under the same noise level and the
same spectral library.

Furthermore, the AN value increases quite slow and some-
times even decreases with the increasing number of real end-
members especially when the SNR has low value, and the
spectral library has high mutual coherence. For example, when
the number of real endmembers increases, the AN value in the
first row of Table III decreases in general, while that in the
bottom row of Table V increases significantly. In addition, the
CER values in the lower left corner of each table are larger
than the values elsewhere, and the CER values in Table V are
larger than that in Table III correspondingly. This discloses that
the proposed Tp-MoSU+ has increasing difficulty in identifying
all the real endmembers when their number increases, and this
situation is increasingly severe with the increasing noise level
and increasing mutual coherence of the spectral library.

2) Varying Noise Level: The AN and CER values obtained
by Tp-MoSU+ and Tp-MoSU in identifying the same number of
real endmembers under different noise levels are listed in each
column of Tables III–V. From each of these three tables, we find

1[Online]. Available: http://speclab.cr.usgs.gov/spectral.lib06

http://speclab.cr.usgs.gov/spectral.lib06
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TABLE V
RESULTS OF Tp-MOSU+ IN IDENTIFYING VARYING NUMBER OF REAL ENDMEMBERS UNDER VARYING NOISE LEVELS AS COMPARED WITH Tp-MOSU

BASED ON THE LIBRARY A3

that almost all the AN values obtained by Tp-MoSU+ are larger
than that obtained by Tp-MoSU for the same number of real
endmembers under the same noise level, and the corresponding
CER values obtained by Tp-MoSU+ are generally larger than
that obtained by Tp-MoSU unless they are all equal to zero. This
verifies that Tp-MoSU+ outperforms Tp-MoSU in identifying
the same number of real endmembers based on the same spectral
library when the noise level changes.

Furthermore, the AN value obtained by Tp-MoSU+ increases
in identifying the same number of real endmembers when the
SNR increases, i.e., the noise level decreases. In addition, the
CER value obtained by Tp-MoSU+ also increases in identifying
the same number of real endmembers when the SNR increases
unless it is always equal to zero. This reveals that the proposed
Tp-MoSU+ can identify the real endmembers more easily when
the noise level decreases.

3) Varying Mutual Coherence of Spectral Library: The AN
and CER values obtained by the proposed Tp-MoSU+ in iden-
tifying real endmembers under the spectral library A1, A2, and
A3 are listed in Tables III–V, respectively. From these tables,
we find that the AN value obtained by Tp-MoSU+ in identifying
the same number of real endmembers under the same noise level
increases when the spectral library changes from A1 to A2, and
A2 to A3. In addition, the corresponding CER value obtained
by Tp-MoSU+ also increases when the spectral library changes
from A1 to A2, and A2 to A3 unless it is always equal to zero.
Furthermore, the proposed Tp-MoSU+ can rarely identify all the
real endmembers based on the library A1 (as shown by the few
number of nonzero values of CER in Table III), but it can achieve
more success in identifying all the real endmembers based on the
library A3 (as shown by the relatively large number of nonzero
values of CER in Table V). All these findings suggest that the
performance of Tp-MoSU+ in identifying real endmembers will
be degraded by the increasing mutual coherence of the spectral
library.

4) Brief Summary: Tp-MoSU+ generally outperforms Tp-
MoSU in identifying the varying number of real endmembers
under different heavy noise based on the spectral library with
different mutual coherence, which verifies the effectiveness of
the CSS measure in fusing the spectral shape and amplitude
features to measure spectral similarity.

B. Experiments on the Second Phase of Tp-MoSU+

This subsection mainly investigates the performance of the
second phase of Tp-MoSU+ in estimating the abundances for
the identified endmembers in the first phase. In order to pro-
vide quantitative as well as qualitative analysis, four advanced

regularization methods, including SUnSAL-TV [20], RS-
FoBa [39], SUnSPI [40], MUSIC-CSR [41], and CSUnL0 [29]
together with Tp-MoSU [32], are used for comparison. Specif-
ically, SUnSAL-TV is a representative in exploiting similar
components among the adjacent pixels; RSFoBa is a repre-
sentative greedy approach; SUnSPI is a representative in us-
ing prior spectral signatures; MUSIC-CSR is a representative
collaborative sparse unmixing approach; CSUnL0 is a repre-
sentative collaborative sparse-inducing approach; Tp-MoSU is
a state-of-the-art multiobjective optimization approach which
performs well in identifying real endmembers and estimat-
ing abundances. Therefore, these approaches are able to in-
vestigate the capability of Tp-MoSU+ in different aspects.
In order to verify the effect of the local search operator,
the Tp-MoSU+ excluding the local search [termed as Tp-
MoSU+(N)] is also executed for comparison. In order to pro-
vide convincing comparison, the regularization parameters in
these four regularization approaches are carefully tuned to a
good state. The frequently used signal-to-reconstruction error
(SRE = 20 log10(E[‖S‖2]/E[‖S − Ŝ‖2]), where Ŝ is the es-
timated abundances) is used to evaluate the quality of estimated
abundances because it can provide the relative intensity of the
abundance to its reconstruction error [10].

1) Experiments on Synthetic Data 1: The first synthetic data
is an image with 75× 75 pixels and each of the pixel has 224
spectral bands. These data are generated based on the LMM
according to the method provided in [42], which uses five end-
members randomly selected from a sublibrary with 240 spectral
signatures of the USGS and five well-designed patch-based
abundance matrices as shown in Fig. 2(b)–(f). The background
regions in the five abundance matrices have the abundance value
of 0.1149, 0,0741, 0.2003, 0.2055, and 0.4051, respectively. As
illustrated in Fig. 2(a), the numbers below each patch specify
the component endmembers, so the patches in each band of the
image include both pure and mixed endmembers ranging from 2
to 5. Therefore, synthetic data 1 is suitable to study the capability
of Tp-MoSU+ comprehensively.

In order to study the capability of Tp-MoSU+ in estimating
the abundances under different noise interference, the Gaus-
sian white noise of different levels, i.e., SNR = 20, 30, 40, 50,
respectively, is imposed on synthetic data 1. The estimated
abundances for the noisy data obtained by different algorithms
are partly presented in Fig. 3, the average SRE values obtained
by these algorithms under different noise levels are listed in
Table VI, and the regularization parameter settings in the four
regularization methods are also presented in the table.

Fig. 3 presents the abundances of the first and fifth endmem-
bers obtained by different algorithms for the noisy data with
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Fig. 2. True fractional abundances of synthetic data 1. (a) 25th band of the simulated image. (b) Abundance 1. (c) Abundance 2. (d) Abundance 3. (e) Abundance
4. (f) Abundance 5.

Fig. 3. Estimated abundances of the endmembers (Top row) 1 and (Bottom row) 5 for the noisy data 1 (SNR = 30) obtained by different algorithms. (a) and (i)
SUnSAL-TV. (b) and (j) RSFoBa. (c) and (k) SUnSPI. (d) and (l) MUSIC-CSR. (e) and (m) Tp-MoSU. (f) and (n) CSUnL0. (g) and (o) Tp-MoSU+(N). (h) and
(p) Tp-MoSU+.

TABLE VI
SRE OF THE PROPOSED Tp-MOSU+ AGAINST THE COMPARISON ALGORITHMS ON THE SYNTHETIC DATA 1 WITH DIFFERENT NOISE LEVELS

SNR = 30. It can be seen from Fig. 3(a)–(p) that the abundances
obtained by RSFoBa, SUnSPI, MUSIC-CSR, CSUnL0, and
Tp-MoSU+(N) contain much more noise than that obtained
by SUnSAL-TV, Tp-MoSU, and Tp-MoSU+. Among the latter
three algorithms, the abundances obtained by SUnSAL-TV are
more smooth than that obtained by Tp-MoSU and Tp-MoSU+,
but some patches in the abundances are missing due to the TV
regularizer [e.g., see Fig. 3(a)]. By comparing the abundances
obtained by Tp-MoSU and Tp-MoSU+, we find that the abun-
dances of the first endmember obtained by Tp-MoSU contain
less noise than that obtained by Tp-MoSU+, but the abundances
of the fifth endmember obtained by Tp-MoSU contain much
more noise than that obtained by Tp-MoSU+. This reveals
that Tp-MoSU+ can obtain visually comparable abundances to
Tp-MoSU.

From the SRE values presented in Table VI, we find
that the SRE values obtained by SUnSAL-TV and SUnSPI are
comparable under different noise levels; the SRE values obtained
by RSFoBa, MUSIC-CSR CSUnL0, and Tp-MoSU+(N) are
comparable under different noise levels, which are larger
than those obtained by SUnSAL-TV and SUnSPI under the
same noise level, but the SRE values obtained by Tp-MoSU+
and Tp-MoSU are larger than those obtained by the above

five methods, which reveals that the abundances obtained
by Tp-MoSU+ and Tp-MoSU are of the highest quality, and
the local search operator is effective in helping Tp-MoSU+
converge quickly. In addition, the SRE values obtained by
Tp-MoSU+ are larger than those obtained by Tp-MoSU under
heavy noise, i.e., SNR = 20, 30, but smaller under mild noise,
i.e., SNR = 40, 50. The reason may lie in that Tp-MoSU
estimates abundances columnwisely, while Tp-MoSU+
estimates abundances as a whole, which is able to exploit
more spatial-contextual information among adjacent pixels.
This helps a lot in improving the abundance quality under heavy
noise. However, under mild noise, Tp-MoSU achieves better
performance than Tp-MoSU+ because estimating abundances
pixel-by-pixel is beneficial for the algorithm to converge better.

Considering the qualitative as well as quantitative results, our
proposed Tp-MoSU+ achieves better performance in estimating
abundances than the regularization algorithms under different
noise levels. It also obtains slightly better performance than Tp-
MoSU in estimating abundances under heavy noise, but obtains
slightly worse performance under mild noise.

2) Experiments on Synthetic Data 2: Synthetic data 2 is
an image containing 100× 100 pixels and each pixel has 224
spectral bands. These data are generated based on the LMM
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Fig. 4. True fractional abundances of synthetic data 2. (a) One band of the simulated image. (b) True abundance 1. (c) True abundance 2. (d) True abundance 3.
(e) True abundance 4. (f) True abundance 5. (g) True abundance 6. (h) True abundance 7. (i) True abundance 8. (j) True abundance 9.

Fig. 5. Estimated abundances of the endmembers (top row) 1, (middle row) 4, and (bottom row) 9 for the noisy data 2 (SNR = 30) obtained by different
algorithms. (a), (i), and (q) SUnSAL-TV. (b), (j), and (r) RSFoBa. (c), (k), and (s) SUnSPI. (d), (l), and (t) MUSIC-CSR. (e), (m), and (u) Tp-MoSU. (f), (n), and
(v) CSUnL0. (g), (o) and (w) Tp-MoSU+(N). (h), (p), and (x) Tp-MoSU+.

TABLE VII
SRE OF THE PROPOSED Tp-MOSU+ AGAINST THE COMPARISON ALGORITHMS ON THE SYNTHETIC DATA 2 WITH DIFFERENT NOISE LEVELS

according to the method provided in [20] and [42], which uses
nine endmembers randomly selected from a sublibrary with
240 endmembers of the USGS library. The abundances of these
endmembers follow a Dirichlet distribution uniformly over the
probability simplex [14]. The abundances shown in Fig. 4 exhibit
various spatial features, which are suitable for investigating the
capability of the spatial similarity exploiting objective (i.e., the
TV regularizer) in the proposed Tp-MoSU+.

In order to study the capability of Tp-MoSU+ in estimating
the abundances under different noise interference, the Gaussian
white noise with SNR = 20, 30, 40, 50, respectively, is imposed
on the synthetic data 2. The estimated abundances for the noisy
data obtained by different algorithms are partly presented in
Fig. 5, the SRE values obtained by these algorithms are presented
in Table VII, and the regularization parameter settings in the four
regularization methods are also listed in the table.
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TABLE VIII
SRE VALUES OBTAINED BY Tp-MOSU+ UNDER DIFFERENT PROPORTIONS OF OUTLIERS AND VARYING NUMBER OF ENDMEMBERS (SNR = 40 dB)

Fig. 5 presents the abundances of the first, fourth, and ninth
endmembers obtained by different algorithms for the noisy
data with SNR = 30. It can be seen from Fig. 5(a)–(x) that
the abundances obtained by RSFoBa, SUnSPI, MUSIC-CSR,
CSUnL0, and Tp-MoSU+(N) contain too much noise in their
blue background regions [e.g., see Fig. 5(j)–(l) and (n)–(o)]
than that obtained by SUnSAL-TV, Tp-MoSU, and Tp-MoSU+.
Among the latter three algorithms, the abundances obtained by
SUnSAL-TV are too smooth so that some little patches are lost
and a lot of edges are degraded and indistinct as compared with
the true abundances [e.g., see Fig. 5(i) and (q)]. The abundances
obtained by Tp-MoSU+ and Tp-MoSU are similar and almost
the same as the true abundances visually. Therefore, Tp-MoSU+
can achieve comparable performance to Tp-MoSU in estimating
abundances, which is better than the other four regularization
algorithms.

From the SRE values presented in Table VII, we find that
the SRE values obtained by SUnSAL-TV and SUnSPI are
comparable under different noise levels, the SRE values obtained
by RSFoBa, CSUnL0, and MUSIC-CSR are comparable under
different noise levels, which are larger than that obtained by
SUnSAL-TV and SUnSPI under the same noise level, while
the SRE values obtained by Tp-MoSU+ and Tp-MoSU are
larger than that obtained by these four regularization methods,
which means that the abundances obtained by Tp-MoSU+ and
Tp-MoSU are of the highest quality. The SRE values obtained
by Tp-MoSU+(N) are far less than that obtained by Tp-MoSU+,
which verifies the effectiveness of the local search operator
(16). In addition, the SRE values obtained by Tp-MoSU+ are
larger than that obtained by Tp-MoSU under heavy noise, i.e.,
SNR = 20, 30, while smaller under mild noise, i.e., SNR =
40, 50. These observations are similar to that obtained on the
synthetic data 1 based on the SRE values, so the reasons ex-
plained previously are still effective.

Considering the qualitative as well as quantitative results, our
proposed Tp-MoSU+ achieves better performance in estimating
abundances than the regularization algorithms under different
noise levels. It can also obtain slightly better performance than
Tp-MoSU in estimating abundances under heavy noise, but
obtains slightly worse performance under mild noise.

3) Robustness to the Outliers and Mismatches: Since the
L2,∞-norm-based residual objective in the second phase of
Tp-MoSU+ measures the maximum unmixing residuals among
all the pixels, it may be susceptible to outliers and mismatches
between hyperspectral data and the spectral library. In this
subsection, we mainly investigate the effects of these two points
on the performance of Tp-MoSU+ when estimating abundances.
To investigate the negative effects of outliers, we generate the

TABLE IX
SRE VALUES OBTAINED BY Tp-MOSU+ AND Tp-MOSU WHEN THERE EXIST

MISMATCHES BETWEEN HYPERSPECTRAL DATA AND THE SPECTRAL LIBRARY

(SNR = 40 dB)

hyperspectral data containing different proportions of outliers
using varying number of endmembers. The SRE values obtained
by Tp-MoSU+ are presented in Table VIII. From this table,
it can be found that the SRE value obtained by Tp-MoSU+
under the fixed number of endmembers changes slightly as the
proportion of outliers increases from 0% to 10%. This reveals
that a few outliers in hyperspectral data make little difference to
the performance of Tp-MoSU+ when estimating abundances.

To investigate the negative effects of mismatches, we generate
the hyperspectral data containing a few pixels whose endmem-
bers are not fully presented in the spectral library. The SRE
values obtained by Tp-MoSU+ are presented in Table IX. From
this table, it can be found that the SRE values obtained by
Tp-MoSU+ are generally smaller than that obtained without
outliers and mismatches under the same number of endmembers
(as presented in the third column of Table VIII). This reveals
that mismatches between hyperspectral data and the spectral
library will downgrade the performance of Tp-MoSU+. How-
ever, by comparing the SRE values obtained by Tp-MoSU+
and Tp-MoSU under the same condition, it can be found that
the performance of Tp-MoSU+ is not worse than Tp-MoSU
when estimating abundances. This reveals that the L2,∞-norm-
based residual objective together with the redesigned operators
is not necessarily sensitive to the mismatches. Although the
performance of Tp-MoSU+ is inevitably downgraded by the
mismatches, that is the limitation of all spectral-library-based
approaches.

From the above analysis, it can be concluded that Tp-MoSU+
is relatively robust to the outliers and mismatches between
hyperspectral data and the spectral library. The reasons may
be as follows. First, although the L2,∞-norm-based residual
objective is susceptible to outliers and mismatches, and the
redesigned mutation operator optimizes their abundances with
higher probability, the abundances of the other pixels also have
certain probability to search their best because of the roulette
wheel selection method. Second, the recombination operator
optimizes the abundances of each pixel independently and en-
sures the inheritance of the best abundances found for each
pixel so far. Third, the local search operator guarantees to
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Fig. 6. USGS map showing the distribution of different minerals in Cuprite
mining district in Nevada.

reduce the unmixing residuals for each pixel, i.e., optimize the
abundances for each pixel as the iteration goes. In summary,
the redesigned genetic and local search operators can overcome
the optimization difficulties caused by the L2,∞-norm-based
residual objective.

4) Brief Summary: Our proposed Tp-MoSU+ is able to
achieve comparable performance to Tp-MoSU and better per-
formance than the regularization algorithms in estimating abun-
dances, and it is more suitable for the highly noisy data because it
can exploit more spatial-contextual information than Tp-MoSU
to improve the quality of the estimated abundance. In addition,
Tp-MoSU+ is relatively robust to the outliers and mismatches
between hyperspectral data and the spectral library because of
the elaborately redesigned genetic and local search operators.

C. Experiments on Real Hyperspectral Image

In this subsection, part of the well-known hyperspec-
tral scene—airborne visible infra-red imaging spectrometer
(AVIRIS) cuprite data2—is used to verify the proposed Tp-
MoSU+. The portion (enclosed by the red rectangle in Fig. 6)
used in our experiment corresponds to a subset with 250× 191
pixels of the sector labeled f970619t01p02r02 in the online
data.3 Considering the water absorption and low SNR, we re-
moved the 1–2, 105–115, 150–170, and 223–224 bands, leaving
a total number of 188 bands. Fig. 6 shows the distribution of
materials in the cuprite dataset (detected in 1995) produced by
the Tricorder 3.3 software. Because the available AVIRIS cuprite
data used in this experiment were detected in 1997, the map
shown in Fig. 6 can only be used as a reference for qualitative
analysis of the materials.

Before unmixing, the USGS library is pruned with only 240
spectral signatures left because too much similar endmembers

2[Online]. Available: http://aviris.jpl.nasa.gov/html/aviris.freedata.html
3[Online]. Available: http://www.lx.it.pt/%7ebioucas/code/

TABLE X
EXECUTION TIME (S) OF ALL THE UNMIXING ALGORITHMS ON THE

ABOVE THREE DATASETS

will downgrade the unmixing performance, and the hyper-
spectral data are also preprocessed to eliminate mismatches
between its spectra and the spectral library [20]. The num-
ber of estimated endmembers obtained in the first phase of
Tp-MoSU+ is 11. Fig. 7 presents a qualitative comparison
among the fractional abundances of the minerals: Kaolinite
wxl, Alunite+Kaolinite and/or Muscovite, and Jarosite obtained
by different algorithms. The parameters used in SUnSAL-TV,
RSFoBa, SUnSPI, MUSIC-CSR, and CSUnL0 are tuned for
better performance. Specifically, (λ = 1e− 4, λTV = 1e− 4),
(λ = 1), (λS = 1e− 4, λP = 1e− 3), (λC = 0.01), and (λ =
6× 10−5) for the above algorithms, respectively.

The Tricorder software analyzes hyperspectral data in a pixel
level and marks each pixel with the most presentative material
in it, so the abundance map of each material shown in Fig. 6 is
keen-edged, but the comparison algorithms and the proposed
Tp-MoSU+ attempt to interpret the hyperspectral data in a
subpixel level and represent each pixel with several minerals, so
the abundance map obtained by these algorithms are gradually
varied. Therefore, the unmixing algorithms are able to obtain
more realistic results than the Tricorder software. In addition,
the dominated mineral in each pixel obtained by the unmixing
algorithm is generally consistent with that identified by the
Tricorder software. As can be seen from Fig. 7, our proposed
Tp-MoSU+ is able to obtain comparable abundances to the
comparison algorithms, and all the abundances obtained by these
algorithms have their own highlights except for Tp-MoSU+(N),
which does not converge completely.

D. Execution Time

The average execution time of the proposed method and com-
parison methods in 20 repeated times is presented in Table X,
where the execution time of the two phases of Tp-MoSU and
Tp-MoSU+ is listed separately with “+.” All the experiments
are implemented by MATLAB 2014a software on a PC with a
3.20-GHz Intel CPU and 8-GB memory. Note that Tp-MoSU+
and Tp-MoSU can obtain 101 solutions in a single run, while
the others only obtain one solution. Therefore, our proposed
Tp-MoSU+ ranks the third among all the algorithms in terms of
the average time per solution. Although the running time of the
first phase of Tp-MoSU+ is two or three times that of Tp-MoSU
because of the calculation of CSS measure, the second phase of
Tp-MoSU+ is far more quickly than that of Tp-MoSU because
it can estimate the abundance matrix in a single run and thus
greatly reduces the time complexity.

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://www.lx.it.pt/&percnt;7ebioucas/code/
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Fig. 7. Estimated abundances of the minerals: Kaolinite wxl, Alunite+Kaolinite and/or Muscovite, and Jarosite (from the top row to the bottom row) for the
AVIRIS Cuprite data obtained by different algorithms (from the left to the right column: SUnSAL-TV, RSFoBa, SUnSPI, MUSIC-CSR, Tp-MoSU, CSUnL0,
Tp-MoSU+(N), and Tp-MoSU+).

VI. CONCLUSION

This article focused on the limitations of Tp-MoSU method
and proposed an effective Tp-MoSU+ method within the two-
phase sparse unmixing framework. In the first phase, a CSS
measure was constructed by fusing the SCA and Euclidean
distance, which considers both the spectral shape and amplitude
differences between spectra. In the second phase, an L2,∞-
norm-based residual objective was established, which aimed to
facilitate the estimation of the abundances as a whole. The ini-
tialization, recombination, mutation, and local search strategies
in the second phase were redesigned to accelerate the decrease
of the unmixing residuals for all pixels efficiently.

Experimental results in the first phase demonstrated that the
proposed Tp-MoSU+ outperformed Tp-MoSU in identifying
the varying number of real endmembers from highly noisy
data under spectral library with varying mutual coherence. Ex-
perimental results in the second phase demonstrated that the
proposed Tp-MoSU+ could obtain visually better abundances
than regularization algorithms and visually comparable abun-
dances to Tp-MoSU under different noise levels. Furthermore,
Tp-MoSU+ can estimate the abundance matrix as a whole and
thus greatly reduce the time complexity and exploits more
spatial-contextual information to improve the quality of the
estimated abundance especially under heavy noise. Because of
the advanced performance and the computational tractability,
Tp-MoSU+ is an excellent choice for the HU tasks.
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