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Robust SAR Image Registration Using Rank-Based
Ratio Self-similarity

Xin Xiong , Guowang Jin , Qing Xu , and Hongmin Zhang

Abstract—Synthetic aperture radar (SAR) images in different
polarizations or from different sensors are becoming easily avail-
able, but registering these images is challenging because of the
presence of significant speckles in SAR images and the existence of
radiometric differences between images. To address the problems,
we propose a novel feature descriptor named rank-based ratio
self-similarity (RRSS) for robust SAR image registration. The
descriptor first calculates a ratio surface by replacing the distance
surface, as the use of the ratio is more robust to multiplicative
noise, and then sorts the ratio values to construct the rank surface.
Subsequently, the rank surface is partitioned into an index map,
and the index map is then transformed into the descriptor vector
based on a restricted adaptive binning grid to discriminatively
describe features. Furthermore, a rotation invariance enhancement
method is designed for the RRSS descriptor to efficiently calculate
descriptor vectors in multiple orientations. We conduct experi-
ments with six SAR image pairs of various bands, polarizations,
and resolutions from different sensors, including ALOS-PALSAR,
Gaofen-3, Sentinel-1, and TerraSAR-X. The results demonstrate
that the proposed descriptor is superior to state-of-the-art descrip-
tors and robust for SAR image registration.

Index Terms—Image registration, rank, ratio self-similarity,
synthetic aperture radar (SAR) image.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) images are an indispens-
able remote sensing data type because they are available at

all times and under all weather conditions [1]. Hence, they are
useful for diverse applications, such as image fusion, change
detection, and 3-D reconstruction. Image registration is a basic
process for these applications, the goal of which is to align two or
more images of the same scene captured by the same or different
sensors from different viewpoints or at different times [2]. Due
to the existence of geometric as well as radiometric differences
between the images and the presence of significant multiplicative
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speckles in the SAR images, SAR image registration is still a
challenging task.

Image registration has made great progress in recent decades.
Generally, the existing image registration methods can be di-
vided into two categories: intensity-based methods and feature-
based methods [3]. The intensity-based methods compare pre-
defined templates to search for optimal correspondences using
different kinds of similarity metrics, such as mutual information
(MI) [4], normalized cross-correlation coefficient (NCC) [5],
and cross-cumulative residual entropy [6]. Recently, some works
based on cross-correlation have been published in SAR image
registration [7], [8]. Although methods of this type can achieve
high accuracy, they are sensitive to geometric differences and
need substantial computational time for searching optimal cor-
respondences [9], [10].

Feature-based methods are more robust to geometric dif-
ferences and are generally faster than intensity-based meth-
ods [11]. These methods extract salient image features (i.e.,
points, lines, and regions) and identify reliable feature corre-
spondences by matching feature descriptors. In recent decades,
numerous feature-based methods were developed. Among them,
scale-invariant feature transform (SIFT) [12] is the most repre-
sentative because of its invariance to scale, rotation, and bright-
ness. Numerous SIFT-like methods have been proposed for SAR
image registration to reduce the influence of speckles. Methods
of this type include SIFT-OCT [13], which skips the features
detected at the first octave of the scale space pyramid; the bilat-
eral filter SIFT (BFSIFT) [14], adapted anisotropic Gaussian
SIFT (AAG-SIFT) [15], and nonlinear diffusion scale space
SIFT (NDSS-SIFT) [16], which use a bilateral filter, adapted
anisotropic Gaussian filter, and nonlinear diffusion method, re-
spectively, instead of a Gaussian filter to construct scale spaces;
and SAR-SIFT [17], which defines a new gradient obtained
from the ratio of the exponentially weighted averages (ROEWA)
algorithm. Another related and interesting method is the one
followed in [18], which combines image segmentation and SIFT.
Although the abovementioned methods have been successfully
applied to SAR image registration, they still face two problems.
The first is a lack of controllability in the number and distribution
of extracted features. Several studies have been devoted to solv-
ing this problem by using feature selection strategies [19]–[21].
Another problem, which has not been effectively solved, is that
the process of orientation assignment tends to be unreliable for
SAR images due to the interference of speckles [22], [23].

Additionally, radiometric differences exist between SAR im-
ages acquired in different polarizations or by different SAR
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sensors. Therefore, it is challenging to register such images.
Recently, Shechtman and Irani [24] introduced a descriptor
named LSS, which captures the shape properties of images.
LSS is stable to complex radiometric differences and has been
successfully applied to multispectral remote sensing image
registration [25]. Because of their insensitivity to radiometric
differences, several LSS-based descriptors have been developed.
Sedaghat et al. [26], [27] proposed the distinctive order-based
self-similarity (DOBSS) descriptor and the histogram of ori-
ented self-similarity (HOSS) descriptor for multisensor optical
image matching. Ye et al. [28] introduced a descriptor named the
dense LSS (DLSS) by integrating LSS descriptors of multiple
small regions for optical-to-SAR image template matching.
Our previous work [29] designed a novel descriptor named
the rank-based local self-similarity (RLSS), which used rank
values instead of correlation values. The RLSS descriptor was
also integrated to form the dense RLSS (DRLSS) descriptor
for optical-to-SAR image template matching. Although some
improvements in robustness have been made in the above-
mentioned LSS-based descriptors, the discriminability of these
descriptors is relatively poor in reliably distinguishing features
of SAR images as they are sensitive to speckles.

To solve the aforementioned limitations, an improved LSS
descriptor, named rank-based ratio self-similarity (RRSS), is
proposed for robust SAR image registration. In the descriptor,
the distance surface is replaced by a ratio surface to suppress
the speckles, and the rank surface is extracted from the ratio
surface to enhance the discriminability. Then, the rank surface is
partitioned into an index map, and the index map is transformed
into a descriptor vector based on a restricted adaptive binning
(RAB) grid. Furthermore, to avoid the process of orientation as-
signment, a rotation invariance enhancement method is designed
for the proposed descriptor.

The main contributions of this study are as follows.
1) An RRSS descriptor is proposed by constructing the rank

surface from the ratio surface to increase the distinctive-
ness against radiometric differences and the robustness to
speckles.

2) Based on the RAB grid, a rotation invariance enhancement
method is designed for the RRSS descriptor, which can
efficiently calculate descriptor vectors in multiple orien-
tations.

3) A comprehensive evaluation is made with state-of-the-art
methods using various SAR image pairs.

This article extends our previous work of the RLSS descrip-
tor [29] in two aspects. On the one hand, a Gaussian weighted
ratio surface that is robust to image speckles is designed, which
replaces the distance surface to construct the rank surface. On
the other hand, the rotation invariance enhancement method is
adopted, which is based on the RAB grid instead of the log-polar
grid.

The remainder of this article is organized as follows. The pro-
posed SAR image registration method is introduced in Section II,
with an emphasis on the construction of the RRSS descriptor.
Experimental results are presented in Section III. Finally, the
conclusion is given in Section IV.

Fig. 1. Flowchart of proposed method.

II. METHODOLOGY

This section details the proposed method for robust SAR
image registration. The proposed method includes three main
steps, as illustrated in Fig. 1. First, a KAZE detector [30], [31]
is used to extract reliable and sufficient feature points. Then,
the proposed RRSS descriptor is introduced to distinctively
describe these features. Finally, the nearest neighbor distance
ratio (NNDR) matching strategy [12] followed by the fast sample
consensus (FSC) algorithm [32] are performed to identify the
effective matches. After the three main steps, the sensed image
can be resampled to generate the registered image. The details
of the proposed method are presented in the following sections.

A. KAZE Detector

Typical feature point detectors include corner detectors such
as features from an accelerated segment test (FAST) [33],
Harris [34], and SAR-Harris [17], and blob detectors such
as SIFT [12], speeded-up robust features (SURF) [35], and
KAZE [31]. Compared to corner detectors, blob detectors are
more suitable for LSS-based descriptors. This is because these
descriptors are very sensitive to the central patch of the local
region (the small neighborhood of the feature point), and the
small neighborhood of the blob points is more stable for pixel
position errors than that of the corner points. In addition, due
to its excellent boundary retention ability, nonlinear diffusion
filtering was introduced into the Harris detector to extract highly
repetitive feature points under strong radiometric changes [36].
As a blob detector, KAZE detects feature points in nonlinear
scale spaces generated by nonlinear diffusion filtering. There-
fore, the KAZE detector is used for detecting stable and sufficient
feature points.

KAZE detects maximum response values of the scale-
normalized determinant of the Hessian at multiple scale levels
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Fig. 2. LSS descriptor generation. (a) Local feature region. (b) Correlation
surface. (c) Log-polar translated LSS descriptor.

as candidate feature points. That is,

LHessian = σ2
(
LxxLyy − L2

xy

)
(1)

where Lxx, Lyy , and Lxy are the second-order horizontal, ver-
tical, and cross derivatives, respectively. σ is the scale factor.
More details of the KAZE detector are well studied in [31].

B. LSS Descriptor

The proposed RRSS descriptor is an improved version of the
LSS descriptor. Before the RRSS descriptor is presented, the
LSS descriptor is briefly reviewed. The LSS descriptor is robust
to radiometric variations by capturing the shape properties of the
image [24]. It extracts local self-similar features of the center
patch and generates a descriptor vector based on the log-polar
grid.

The process of LSS descriptor generation is shown in Fig. 2.
In the local region centered at q (typically 20 pixels in radius and
S × S: 41 × 41 pixels in size), the distance surface SSDq(x, y)
is obtained by calculating the sum of square differences (SSD)
between the central patch (typicallyP × P : 5× 5 pixels in size)
and all surrounding patches,

SSDq(x, y) = ‖Mq(0, 0)−Mq(x, y)‖22 (2)

where Mq(0, 0) and Mq(x, y) represent the matrices of the
central patch and the surrounding patch, respectively. Then,
SSDq(x, y) is transformed into the correlation surface Sq(x, y),

Sq(x, y) = exp

(
− SSDq(x, y)

max (varnoise, varauto(q))

)
(3)

where varnoise is a constant corresponding to acceptable radio-
metric variations, and varauto(q) is the maximal variance of the
difference of all patches within a very small neighborhood of q
(1 pixel in radius) relative to the central patch. The correlation
surface Sq(x, y) is then transformed into a log-polar grid and
partitioned into 80 bins (20 angular bins and 4 radial bins). The
maximal correlation value in each bin is selected to generate
the descriptor vector. Finally, this descriptor vector is linearly
normalized to enhance the radiometric invariance.

C. RRSS Descriptor

The main limitation of the LSS descriptor for SAR image
registration is its relatively low discriminability. There are two
reasons for this. One reason is that the correlation surface is
sensitive to speckles, and thus, the descriptor cannot reliably
distinguish different features. Another reason is that the values
of the correlation surface for various local dissimilar features

are relatively low, but these features may be valid for finding
the correct correspondence. We propose the RRSS descriptor
to enhance the discriminability of the LSS descriptor. The
construction process of the proposed descriptor is illustrated in
Fig. 3. In the following, the details of the proposed descriptor
are presented.

1) Ratio Surface Construction: Different from constructing
the distance surface using SSD in LSS, we construct a new dis-
tance surface RSq(x, y), called the ratio surface, by calculating
the ratio between the central patch and all surrounding patches,
as follows:

RSq(x, y) = min

{
Mq(0, 0)

Mq(x, y)
,
Mq(x, y)

Mq(0, 0)

}
. (4)

On the ratio surface, the adjacent pixel values are strongly
correlated because the adjacent surrounding patches overlap.
Due to the correlation effects, the ratio surface will lose infor-
mation, which prevents reliable feature description. To reduce
the correlation effects, we introduce a Gaussian weight function.
Then, the weighted ratio surface is

WRSq(x, y) = G ·min

{
Mq(0, 0)

Mq(x, y)
,
Mq(x, y)

Mq(0, 0)

}
. (5)

The standard deviation of the Gaussian function is set to (P −
1)/4 = 1 based on multiple experiments.

2) Rank Surface Construction: The next step is to construct
the rank surface. Inspired by Spearman’s rank correlation co-
efficient or Spearman’s Rho, the rank values can replace the
intensity values for the correlation calculation [37]. The rank
is the relative position label or the order in the data list after
sorting (for example, descending order). It assesses monotonic
relationships rather than linear relationships, and thus, it is robust
to nonlinear radiometric differences between images. In LSS, the
features that are not similar to the central patch are missing in the
correlation surface. The rank values can be used as substitutes
for correlation values to reveal part of the missing information,
as shown in Fig. 4. Considering that (3) is a composite of
multiple functions and some of the functions are monotonic,
the calculation of the weighted ratio surface can be simplified
to calculate the rank surface,

RWRSq(x, y) = R (WRSq(x, y)) (6)

whereR represents the operation of obtaining the rank values by
sorting. Compared with (3), (6) increases the sorting operation
but reduces the calculation of the monotonic functions. Note that
the feature points on different scale layers have different sizes of
circular neighborhoods (kσ pixels in radius). The neighborhoods
are resampled to uniform circular regions (20 pixels in radius)
for calculating the rank surface.

Then, the rank surface is transformed into an index map by
partitioning the rank values. The number of pixels in the rank
surface is M , and the rank, thus, has a value range of [1...M ].
The value range is equally divided into three bins, and the bin
indices are sequentially numbered from 1 to 3. Here, the number
of bins is recommended to be 3 based on multiple experiments.
Therefore, each pixel of the rank surface has a unique bin index,
and the index map can be obtained.
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Fig. 3. Process of RRSS descriptor construction. (a) Local region. (b) Rank surface. (c) Index map. (d) Gridded index map. (e) RRSS descriptor.

Fig. 4. (a) Normalized local regions of image pair from ALOS-PALSAR,
up: HH polarization; down: HV polarization. (b) Correlation surfaces. (c) Rank
surfaces. (d) Index maps. In index maps, pixels numbered 1, 2, and 3 are marked
in red, green, and blue, respectively.

3) Grid Representation: The purpose of grid representation
is to divide the index map into multiple grid bins. LSS that
uses a regular log-polar grid is sensitive to pixel position errors
since the inner circular region is too small. Among the well-
known representation methods, descriptors with a log-polar grid
(GLOH [38] and DAISY [39]) are more adaptive to geometric
distortion than a descriptor with a square grid (SIFT) [12],
but the inner circular region is not divided into radial sectors,
which decreases the descriptor distinctiveness since some spatial
information is lost [40].

The adaptive binning [40] grid is adopted for grid represen-
tation. By partitioning the inner circular ring into fewer angular
bins than the outer circular ring in the descriptor structure, the
adaptive binning grid can avoid pixel location errors and increase
descriptor distinctiveness. r stands for the number of radial bins,
and set A = {a1, . . . , ar} is applied as the number of angular
bins. Fig. 3(d) provides an illustration of grid representation by
adaptive binning for r = 3, A = {3, 6, 9}.

4) Descriptor Vector Generation: After grid representation
of the index map, the numbers of pixels with different index
values in each bin are counted, and the ratios of the counted

numbers to the total number of pixels in the grid bin are taken
as the descriptor values. The ratio values for indices 1 and 3 are
retained, and those for index 2 are ignored. There are two reasons
for this. On the one hand, the ratio values for the three indices
are strongly related because their sum is 1. Thus, it is redundant
to use all three ratio values as the descriptor values. On the other
hand, pixels with indexes 1 or 3 are usually aggregated. Their
ratio values can better capture the local shape properties than
index 2. Fig. 3(c) shows an example index map and three index
submaps split from it. It can be found that the pixels with index
1 or 3 are aggregated, while those with index 2 are scattered.

The descriptor values of a bin are

Vi,j = Wi,j/Mi,j , i = 1, . . . , r j = 1, . . . , ai (7)

where Wi,j =
[
w1

i,j w3
i,j

]
is the counted number of pixels with

indices 1 and 3, and Mi,j is the total number of pixels in the bin.
Vi,j = [ v1i,j v3i,j ] is the descriptor value of the bin. Subscripts i
and j identify the position of the bin in the grid structure.

Then, the descriptor values of all bins are connected to gen-
erate the descriptor vector D as follows:

D = [D1, . . . , Dr] , Di = [Vi,1, . . . , Vi,ai
] (8)

where Di is the descriptor subvector for the ith ring. Obviously,
the dimension of the descriptor vector is 2

∑r
i=1 ai. To gain

invariance to radiometric changes, the vector finally needs to be
normalized.

D. Rotation Invariance of the RRSS Descriptor

The previous section analyzed the possibility of RRSS for
feature description and described the details of the descriptor
vector generation. Note that the construction process of the
abovementioned descriptor is based on the assumption that
there are no rotations between the two images; that is, rotation
differences are not considered. Undeniably, in most application
scenes, the rotation differences between remote sensing images
are very small. In addition, the images can be directly georefer-
enced using navigation information so that the rotation and scale
differences between images can be significantly reduced [41].
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Fig. 5. Geometric relationship between (a) regular log-polar grid and (b) RAB
grid.

However, the result is usually a local optimum to match an
image pair with rotation differences, even if the differences
are not significant. Therefore, the rotation differences cannot
be ignored, and special processing must be performed to keep
the descriptor rotationally invariant.

The most straightforward method is to perform the orientation
assignment similar to SIFT [12]. However, the method fails
primarily for two reasons. On the one hand, the angular bins
need to be densely divided according to the optimal numbers of
angular bins given in Section III-B, which brings about the need
to accurately estimate the dominant orientation. On the other
hand, the descriptor captures the aggregated shape features,
and thus, the dominant orientation is difficult to estimate very
accurately.

To eliminate the effect of rotation differences, a rotation
invariance enhancement method is designed by building a de-
scriptor vector for each feature point in the reference image
and seven descriptor vectors with different orientations for each
feature point in the sensed image. The orientation values are
equally spaced and are set as L = [−3l,−2l,−l, 0, l, 2l, 3l]. l
is the orientation spacing. Each orientation can be assigned to
generate a descriptor vector. It should be noted that the process
of generating multiple descriptor vectors is time-consuming. To
improve the computational efficiency, an acceleration scheme
is designed. In the stages of the grid representation and de-
scriptor vector generation, the initial descriptor vector can be
generated by a log-polar grid with dense radial bins, and then
the initial result is compressed into descriptor vectors in multiple
orientations under certain rules. The rules are derived from the
geometric relationship between a regular log-polar grid and an
RAB grid, as shown in Fig. 5.

1) Initial Descriptor Vector Generation: The initial descrip-
tor vector is captured in a regular log-polar grid. The radial
rings are divided into b radial bins. Set b = 360l so that when
multiple orientations are assigned, the values of the descriptor
are not changed, and only the order of the descriptor vector is
rotated, which avoids capturing descriptor values an extensive
number of times in the grid. The initial descriptor values for bin
(i, j) are

Ui,j = Wi,jWi,j/Mi,j i = 1, . . . , r j = 1, . . . , b. (9)

The initial descriptor vector for the ith ring is

Ri = [Ui,1, . . . , Ui,b] . (10)

2) Multiorientation Descriptor Vector Generation: The or-
der of Ri is rotated according to the specified orientation index
s, s = [−3,−2,−1, 0, 1, 2, 3], to obtain descriptor vectors for
the ith ring in seven orientations, as follows:

Es
i =

[
T s
i,1, . . . , T

s
i,b

]

=

{
[Ui,b+s+1,. . ., Ui,b, Ui,1,. . ., Ui,b+s] s = −3,−2,−1
[Ui,s+1,. . ., Ui,b, Ui,1,. . ., Ui,s] s = 0, 1, 2, 3.

(11)

The dimension of vector Es
i is b, which needs to be com-

pressed to ai as follows:

Ds
i =

⎡
⎣ c∑
j=1

T s
i,j ,

2c∑
j=c+1

T s
i,j , . . . ,

b∑
j=(ai−1)c+1

T s
i,j

⎤
⎦ , c = b/ai

(12)
According to (12), b is a common multiple of a1, . . . , ar, and

l = 360/b. For the RAB grid, we set

ai = i · a1, i = 1, . . . , r. (13)

Therefore, once the RAB grid (a1) is determined, l can be
calculated. Then, for the orientation s, the descriptor vectors of
all rings are connected to generate the final descriptor vector Ds

as follows:

Ds = [Ds
1, . . . , D

s
r ] . (14)

In summary, the abovementioned scheme only captures de-
scriptor values once in a regular log-polar grid and can directly
generate descriptor vectors with seven orientations. Obviously,
descriptor vectors with more orientations can also be generated
directly without significantly increasing the computational effi-
ciency. Compared with capturing descriptor values seven times
in the RAB grid, this scheme can improve the construction
efficiency of the descriptors.

E. Matching Algorithm

After feature detection and description in both the reference
and sensed images, the correspondences are selected by the
NNDR matching strategy [12] using the Euclidean distance.
However, for each feature point in the reference image, there
are seven distance values from the corresponding feature point
in the sensed image because each feature point in the sensed
image has seven descriptor vectors with different orientations.
Therefore, we should determine the correct orientation for the
feature point in the sensed image.

We use the minimum distance among the seven distances to
measure the distance of a match, and there exists an orientation
value corresponding to the minimum distance. Note that a match
with a smaller distance ratio is more likely to be a correct
correspondence. We first extract a set including the top 300
matches with the smallest distance ratio. The corresponding 300
orientation indices can also be obtained. Obviously, the rate of
correct match is high for the set. Then, we count the number of
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TABLE I
DETAILS OF EXPERIMENTAL DATASETS

Fig. 6. Number of matches on seven orientation indices for example image
pair with rotation angle of 10◦.

matches on seven orientation indices. The orientation index with
the largest number of matches is effective, and the corresponding
orientation is closest to the rotation angle between the two im-
ages. Fig. 6 presents the number of matches on seven orientation
indices for an example image pair with rotation angle of 10◦.
The descriptor is captured based on a specific RAB grid with
l = 5◦. As seen, the orientation index is 2, and the orientation is
2l = 10◦, which is equal to the rotation angle. Finally, for each
feature point in the sensed image, only the descriptors under the
effective orientation are reserved; the others are rejected.

After the abovementioned processing, there is only one de-
scriptor vector for feature points in the sensed image, so stand
NNDR matching can be performed to obtain the initial matches.
Furthermore, we use the FSC algorithm to remove outliers from
the initial matches [32]. The FSC algorithm can robustly extract
effective matches from a large number of outliers. However,
in FSC, the small distance ratio threshold dh, which controls
the size of the sample set, is sensitive to the image scene.
Instead of subjectively setting dh, we again select the top 300
matches with the smallest distance ratio as the sample set. In
addition, the affine transformation model is computed between

Fig. 7. SAR image pairs. (a)–(f) Correspond to Pairs 1–6.

the reference and sensed images to identify the effective matches
by considering a threshold of 2

√
2 pixels.

III. EXPERIMENTS AND RESULTS

In this section, we experimentally validate the performance of
the proposed SAR image registration method on six SAR image
pairs. First, the experimental datasets are introduced. Then, the
proposed RRSS descriptor is evaluated. Finally, the registration
results are analyzed.

A. Datasets

The experimental data consist of six SAR image pairs, as
presented in Table I and Fig. 7. These image pairs are a variety of
different bands (L, C, and X), polarizations (HH, VH, and VV),
orbit directions (Ascending and Descending), and resolutions
from different sensors including ALOS-PALSAR, Gaofen-3,
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Sentinel-1, and TerraSAR-X. The two images of each pair are ac-
quired at different times. In terms of geometric differences, Pairs
1, 3, and 5 have obvious rotation differences because they contain
two images from different orbit directions. Pairs 2, 5, and 6 have
significant scale differences as the ground sampling distances
(GSD) of the two images in them are different. Radiometric
differences exist between two images of a pair with varying
imaging conditions. According to the imaging conditions, these
image pairs can be classified into three categories: 1, 2, and 3.

Category 1: Image pairs of this category (Pairs 1 and 2) contain
two images from the same sensor in the same polarization.

Category 2: Image pairs of this category (Pairs 3 and 4) contain
two images from the same sensor in different polarizations.

Category 3: Image pairs of this category (Pairs 5 and 6)
contain two images from different sensors. Furthermore, there
is a temporal difference close to 1 year between the images in
these two pairs.

The radiometric differences of image pairs in Categories 2
and 3 are relatively large.

B. Descriptor Evaluation

In this section, we evaluate the performance of the proposed
RRSS descriptor by comparing it with seven state-of-the-art
descriptors (SIFT [12], SURF [35], KAZE [31], SAR-SIFT [17],
LSS [24], DOBSS [26], and RLSS [29]). The evaluation crite-
ria, parameter tuning, rotation invariance test, and comparative
analysis are presented in the following sections.

1) Evaluation Criteria: In our experiments, the performance
of the proposed RRSS descriptor is measured by the recall
and precision [11], [42]. The recall and precision values are
estimated as follows:

recall =
CM
C

, precision =
CM

CM + FM
(15)

where C is the total number of existing correspondences in the
feature point sets. CM and FM are the number of correct matches
and false matches in the initial matches, respectively. With the
threshold of NNDR spanned between 0.9 and 1 with a step of
0.02, different recall and precision values can be obtained. Then,
the precision versus recall curve can be drawn. The higher the
recall or precision, the better the robustness of the descriptor to
the image scene.

To identify the correct matches, 40–60 evenly distributed
points are manually selected as check points to compute the
projective transformation model between the images of each
pair. The obtained transformation is used to identify the correct
matches by considering a threshold value of

√
2 pixels.

2) Parameter Tuning: The proposed RRSS descriptor con-
tains three key parameters, namely, the radius of neighborhood
kσ, the number of radial bins r, and the number of angular bins
A = {a1, . . . , ar}. k should not be too small or too large. The
former makes it difficult for the descriptor to describe features
discriminatively, while the latter increases the sensitivity of
the descriptor to the local geometric distortion. The other two
parameters determine the density of the RAB grid. A grid with

Fig. 8. Average precision versus recall curves of six image pairs fo
r different k.

Fig. 9. Average precision versus recall curves of six image pairs for different
combinations of r and A.

appropriate density can ensure the distinctiveness of the descrip-
tor. In addition, if the density is excessive, then the descriptor will
be overdimensional, resulting in low computational efficiency.

To evaluate the influence of k on the descriptor, experiments
are conducted on six image pairs (see Table I) with different k.
In the experiments, k varies from 8 to 16 with an interval of 2; r
andA take fixed values, r = 3,A = {10, 20, 30}. Fig. 8 presents
the average precision versus recall curves of six image pairs for
different k. As seen, the performance of the RRSS descriptor is
close to optimal when k reaches 12 and only slightly changes
as k continues to increase. Therefore, k = 12 is chosen as the
optimum value in the following experiments.

To evaluate the influence of r and A, experiments are
conducted on six image pairs (see Table I) with dif-
ferent combinations of r and A. In the combinations,
two different values (3 and 4) are considered for r, and
eight sets {8, 16, 24}, {10, 20, 30}, {12, 24, 36}, {14, 28, 42},
{16, 32, 48}, {4, 8, 12, 16}, {6, 12, 18, 24}, and {8, 16, 24, 32}
are considered for A. k is set to a fixed value in the experiments,
k = 12. Fig. 9 presents the average precision versus recall
curves of six image pairs for different combinations of r and
A. As seen, the performance of the RRSS descriptor varies with
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Fig. 10. Example image pair (Pair 2) contains (a) reference image and
(b) sensed image.

Fig. 11. (a) Average recall and (b) precision of three image pairs with respect
to rotation angle when the orientation number is 7.

different combinations. Better results are obtained for r = 3 and
A = {10, 20, 30}, which are considered optimum values for the
RRSS descriptor in the following experiments. For the selected
parameters, the orientation spacing l is 6◦, and the dimension of
the RRSS descriptor is 120.

3) Rotation Invariance Test: To test the rotation invariance
of the proposed RRSS descriptor, experiments are conducted
on Pairs 2, 4, and 6 (see Table I). There are almost no rotation
differences in these three pairs. For each of the three pairs, the
reference image is rotated clockwise at a certain angle θ, as
shown in Fig. 10, and matched with the sensed image. The recall
and precision can be obtained by setting the threshold of NNDR
to 0.94. The average recall and precision of three image pairs
are counted as the rotation angle θ varies from 0◦ to 180◦ with
an interval of 1◦.

Fig. 11 shows the average recall and precision of three image
pairs with respect to the rotation angle when the orientation
number is 7. When the rotation angle is less than 19◦, the average
recall and precision remain stable with slight fluctuations. When
the rotation angle is increased to 19◦, the average recall and
precision drop rapidly, and the matching performance degrades.
When the rotation angle reaches 40◦, the average recall and
precision are 0, and the matching fails. This occurs because
the RRSS descriptor acquires descriptor vectors in seven orien-
tations with a spacing of 6◦ to enhance the rotation invariance,
and thus, the maximum rotation difference that the descriptor can
resist should be slightly greater than 18◦. This maximum rotation
difference can satisfy the matching scenes of the experiment in
this article. Note that the orientation number of the descriptor

Fig. 12. (a) Average recall and (b) precision of three image pairs with respect
to rotation angle when the orientation number is increased to 55.

can be increased to accommodate application scenes with larger
rotation differences. This does not significantly reduce the con-
struction efficiency of the descriptor because the acceleration
scheme is used in the rotation invariance enhancement method.
Fig. 12 shows the average recall and precision of three image
pairs with respect to the rotation angle when the orientation
number is increased to 55. As seen, the average recall and
precision can generally remain stable when the rotation angle
is less than 162◦. This confirms the effectiveness of the RRSS
descriptor in resisting the rotation differences.

4) Comparative Analysis: To verify the effectiveness of the
proposed RRSS descriptor, comparative experiments are con-
ducted on six image pairs (see Table I) with eight descriptors:
SIFT, SURF, KAZE, SAR-SIFT, LSS, DOBSS, RLSS, and
RRSS. SIFT, SURF, KAZE, and SAR-SIFT are gradient-based
descriptors, while DOBSS, RLSS, and RRSS are LSS-based de-
scriptors. The RLSS descriptor uses the same rotation invariance
enhancement method as the proposed RRSS descriptor, which
is based on the RAB grid.

Fig. 13 presents the precision versus recall curves of eight
descriptors for six image pairs. As seen, the RRSS descriptor
significantly outperforms the other descriptors in all six image
pair cases. The reason for this is that the ratio surface is robust
to speckles, and the rank surface can effectively express local
shape information. Furthermore, the unreliable process of orien-
tation assignment is avoid. Therefore, the RRSS descriptor can
describe features discriminatively.

After the RRSS, better results are achieved by the RLSS
and SAR-SIFT. Similar to the RRSS, the RLSS descriptor also
constructs the rank surface to enhance its discriminability, and
thus, they achieve better performance than other LSS-based
descriptors. The SAR-SIFT descriptor calculates the gradient
by ratio to reduce the interference of speckles. For this rea-
son, the SAR-SIFT performs better than other gradient-based
descriptors.

C. Registration Analysis

In this section, we analyze the registration performance of the
proposed method by comparing it with three advanced methods:
SIFT [12], KAZE [31], and SAR-SIFT [17]. The following
sections present the evaluation criteria and comparative analysis.

1) Evaluation Criteria: In the experiments, the performance
of the proposed registration method is quantitatively evaluated
by four criteria: CM, precision, root-mean-square error (RMSE),
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Fig. 13. Precision versus recall curves of eight descriptors for six image pairs.
(a)–(f) Correspond to Pairs 1–6.

and processing time (PT). CM and precision are calculated based
on the final matches, which are obtained after outlier removal
using the FSC algorithm. A higher value of CM or precision
indicates a better performance of the registration method. RMSE
is computed with the correct matches to evaluate the positional
accuracy. It is defined as follows:

RMSE =

√
1

CM

∑CM

i=1
(Δx2

i +Δy2i ) (16)

whereΔxi andΔyi are the residual errors of the correct matches
in the vertical and horizontal directions, respectively. A smaller
RMSE value corresponds to a higher positional accuracy.

PT is a measure that evaluates the computational efficiency.
An analysis of PT is carried out on a laptop with an Intel(R)
Core(TM) i7-8750H 2.20-GHz CPU, 32 GB RAM, and NVIDIA
Quadro P1000 graphics card.

2) Comparative Analysis: To analyze the registration perfor-
mance, comparative experiments are conducted on six image
pairs (see Table I) with four methods: SIFT, KAZE, SAR-
SIFT, and the proposed method. SIFT constructs Gaussian scale
spaces for feature detection and description. KAZE detects and
describes features in nonlinear scale spaces to achieve high
repeatability and distinctiveness. SAR-SIFT calculates the gra-
dient by ratio instead of differential to improve the robustness to
speckles. For these methods, almost all parameter settings follow
the recommendations of their author, except that the contrast

TABLE II
REGISTRATION PERFORMANCE OF SIFT, KAZE, SAR-SIFT, AND PROPOSED

METHOD FOR SIX IMAGE PAIRS

TABLE III
AVERAGE PT OF SIFT, KAZE, SAR-SIFT, AND PROPOSED METHOD FOR SIX

IMAGE PAIRS

threshold is fine-tuned to ensure that they extract approximately
equal numbers of feature points. All methods use the same
matching method (NNDR and FSC).

Table II compares the registration performance in terms of
CM, precision, and RMSE. The proposed method is capable
of robustly registering SAR images and generally outperforms
SIFT, KAZE, and SAR-SIFT in terms of CM and precision
(especially CM). This is mainly because the RRSS descriptor is
used in the proposed method. The RRSS descriptor can suppress
image speckles, discriminate local features robustly, and avoid
the unreliable process of orientation assignment. In terms of
RMSE, the performances of SIFT, KAZE, and the proposed
method are close and better than that of SAR-SIFT for all six
image pairs. Note that the positional accuracy of the matching
depends more on the type of feature detector than the type of
feature descriptor [27]. Therefore, the reason for the RMSE
performance is that SIFT, KAZE, and the proposed method
detect feature points with subpixel precision, while SAR-SIFT
can only obtain feature points with pixel precision.

Table III presents the average PT of SIFT, KAZE, SAR-SIFT,
and proposed method for six image pairs. The average PT result
of the proposed method is slightly better than that of SAR-SIFT
but obviously inferior to the results of SIFT and KAZE. One of
the reasons is that SIFT and KAZE are implemented in C++,
while SAR-SIFT and the proposed method are implemented in
MATLAB.
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Fig. 14. Matching results of the proposed method for six image pairs. (a)–(f)
Correspond to Pairs 1–6.

Fig. 15. Registration results of the proposed method for six image pairs. (a)–(f)
correspond to Pairs 1–6.

Figs. 14 and 15 show the matching and registration results
of the proposed method for six image pairs, respectively. The
results show that the proposed method can detect a sufficient
number of matches and is suitable for various SAR image
registration.

IV. CONCLUSION

In this article, a novel feature descriptor named RRSS is
proposed for reliable SAR image registration. The descriptor
calculates the ratio surface to suppress the speckles and extracts
the rank surface to enhance the discriminability. Furthermore,
to avoid the process of orientation assignment, a rotation in-
variance enhancement method is designed to efficiently cal-
culate descriptor vectors in multiple orientations. We conduct
extensive experiments using six SAR image pairs of various
bands, polarizations, and resolutions from different sensors. The
results demonstrate the superiority of the proposed descriptor
over several state-of-the-art descriptors. The registration results
also confirm the effectiveness and robustness of the proposed
descriptor for SAR image registration.

Note that a comparable PT is required for image registration
using the proposed descriptor. Therefore, our future work will
focus on improving computational efficiency.
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